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1. Introduction

In recent years, researchers have done many researches on the problems of artificial
neural networks and gain a series of results. Nowadays, the artificial neural networks
have widely been applied in variety of fields, such as biology, mechanical engineering,
electrical and computer engineering, computer science, and physics, etc.1,3,5,17 The
application problems have been occasionally converted into the problems of utilizing
an underlying artificial neural network as an approximation function.14,15,4,3,8,16,10

Although the approximation ability of artificial neural networks has been sufficiently
discussed in some earlier articles,3,8,16,10 the works of related quantitative analysis
is recently gave rise to the strong attention of the people, especially on the topic of
relationship between the converge rate of approximation and the structural topol-
ogy of hidden layer.2,11,9,13 In fact, the estimate of the approximation upper bound
with an underlying network which is bounded by the upper bound of converge rate
is clearly expressed.2,12 Having only the estimation of upper bound towards the
forecast ability of an underlying network is still unsatisfactory. The upper bound
reflect ability level of the underlying network. Hence, the work of consecutive esti-
mation of the lower bound is necessary. In addition, the degree of approximation
bound, regarding the estimation precision of the approximation if and only if the
underlying network can achieve, had better be given out to guarantee the exact
level of the ability for the underlying network. In order to get such an essential
order of approximation of a neural network, besides upper bound estimation, a
lower bound estimation that characterizes the worst approximation precision of the
network can also be expected. The essential order of approximation can be obtained
when and only when the upper and the lower bound estimations are of the same
order. Clearly, obtaining the essential order of a neural network is not easy, but
very important and is of significance. In Refs. 14 and 15, such are tackled for the
neural networks.

Among the previous researches, Suzuki13 obtained an upper bound estimation
on approximation of the neural networks. In this paper, we not only give the upper
bound estimation, which sharpens the result in Ref. 13, but also give the lower
bound estimation of the approximation and explicitly calculated the number of
hidden neurons needed for guaranteeing the predetermined approximation preci-
sion, the obtained results clarify the relationship between the approximation speed
(precision) and the number of hidden neurons needed for the neural networks.

The remainder of this paper is organized as follows. In Sec. 2, we present some
notations, basic concepts, and give the main result and remarks. Some fundamental
lemmas are given in Sec. 3. In Sec. 4, we prove our main result and give remarks.
Section 5 briefly summarizes our conclusions and indicates further study.

2. Notations and Main Results

The following notations are used through the paper. The symbols N,R, stand
for the sets of natural and real numbers, respectively. Let N0 = N ∪ {0},
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ei =
(
0, . . . ,

i
1, . . . , 0

) ∈ Nm
0 , |r| =

∑m
i=1 |ri|, rt =

∑m
i=1 riti and ‖t‖ = (

∑m
i=1 t2i )

1/2

for r = (r1, r2, . . . , rm) ∈ Nm
0 , t = (t1, t2, . . . , tm) ∈ Rm. For p ≥ 1, we denote

by Lp
2π(Rm) the space of 2π-periodic(on each R of domain Rm)pth-order Lebesgue

integrable functions on Rm to R with

‖f‖p =
{

(2π)−m

∫ π

−π

· · ·
∫ π

−π

|f(x)|pdx

} 1
p

, x ∈ Rm,

and by C2π(Rm) the space of 2π-periodic continuous functions on Rm to R with

‖f‖∞ = sup
|xi|≤π

|f(x)|, x ∈ Rm.

For convenience, we denote by L∞
2π(Rm) the space C2π(Rm). So for f, g ∈ Lp

2π(Rm),
we define the convolution

(f ∗ g)(x) = (2π)−m

∫ π

−π

· · ·
∫ π

−π

f(t)g(x − t)dt,

and the Fourier transformation

f̂(r) = 〈f, e−irt〉,
where

〈f, g〉 =
1

(2π)m

∫ π

−π

f(t)g(t)dt.

In order to characterize the approximation ability of neural networks, the higher-
order modulus of continuity and Lipschitz condition for a multivariate function are
defined as follows, which measure the variation and the smoothness of a function.

Definition 2.1 (Higher-order modulus of continuity and Lipschitz
condition). Let f ∈ Lp

2π(Rm) and δ > 0, the modulus of continuity of f in
Lp

2π(Rm) is

ω(f, δ) = sup
‖x1−x2‖≤δ

‖f(x1) − f(x2)‖p,

the rth-order modulus of continuity of f is defined by

ωr(f, t) = sup
x±he

2 ∈Q⊆Rm,‖h‖≤t

‖∆r
hf(x)‖p,

where ∆r
hf(x) =

∑r
i=0(−1)r−i

(
r
i

)
f(x + ( r

2 − i)hei) is the rth-order symmetric
difference of f along direction ei and with step-length h. A function f is said to
belong to the α-Lipschitz class, denoted by f ∈ Lip(α)2, if the second-order modulus
of continuity ω2(f, t) = O(tα), where α is a positive real parameter.

For all fi ∈ Lp
2π(R), we say F = (f1, f2, . . . , fm) is a F ∈ Lp

2π(Rm) function on
Rm → Rm. For F = (f1, f2, . . . , fm), Suzuki13 constructed a three-layer feedforward
neural networks

PN λ,σ[F ] = (PN λ,σ[f1], . . . ,PN λ,σ[fm])T ,
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here,

PN λ,σ[fi](x) = θλ,σ[fi] +
0≤pu,qv≤λ∑

Combinations of p �=q

×
4|p−q|σ−1∑

k=0

αλ,σ,p,q,k[fi]PLσ,k((p − q)x),

PLσ,k(rx) =




0 rx ≤ −|r|π +
kπ

2σ
,

2σ

π
rx + 2|r|σ − k −|r|π +

kπ

2σ
< rx < −|r|π +

(k + 1)π
2σ

,

1 rx ≥ −|r|π +
(k + 1)π

2σ
.

Note this summation is over combinations of p = (p1, p2, . . . , pm) and q =
(q1, q2, . . . , qm) ∈ Nm

0 such that p 
= q, 0 ≤ pu, qv ≤ λ.
In addition, Suzuki constructed another three-layer feedforward neural networks

SN λ,σ[F ] = (SN λ,σ[f1], . . . ,SN λ,σ[fm])T ,

here

SN λ,σ[fi](x) = θλ,σ[fi] +
0≤pu,qv≤λ∑

Combinations of p �=q

×
4|p−q|σ−1∑

k=0

αλ,σ,p,q,k[fi]SGσ,k((p − q)x),

SGσ,k(rx) =
[
1 + exp

{
−
(

8σ

π
rx + 8|r|σ − 4k − 2

)}]−1

,

θλ,σ[fi] = 〈fi, 1〉 + 2
(

2
λ + 2

)m

sin
π

4σ

0≤pu,qv≤λ∑
Combinations of p �=q

× (−1)|p−q|bλ,pbλ,q〈fi, cos(p − q)t〉,
and

αλ,σ,p,q,k = 4(−1)|p−q|
(

2
λ + 2

)m

bλ,pbλ,q sin
π

4σ

×
{
〈fi, sin(p − q)t〉 cos

(2k + 1)π
4σ

− 〈fi, cos(p − q)t〉 sin
(2k + 1)π

4σ

}
.

Suzuki obtained the upper bound of the above two neural networks. Our
approach will be based on establishing upper bound (more exact than the corre-
sponding result in Ref. 13) and lower bound estimation on the approximation order
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of this networks. The main results we obtain can be summarized as the following
theorems.

Theorem 2.1. Let f ∈ Lp
2π, for independent λ and σ ∈ N, there is a three-layer

network PN λ,σ[f ] with 2mσλ(λ+1)(2λ+1)m−1 piecewise linear hidden-layer units
of PLσ,k such that

‖fi − PN λ,σ[fi]‖p ≤ 1
2

(
1 +

√
m

2
π2

)2

ω2

(
fi,

1
λ + 2

)

+
1

2σ2
‖fi‖p

((
8(λ + 2)

π

)m

−
(

2
λ + 2

)m)
, (2.1)

ω2

(
fi,

1
λ + 2

)
≤ C

{
1
λ2

λ∑
k=1

k‖PN k,σ[fi] − fi‖p +
(

λm

σ2
+

1
λ2

)
‖fi‖p

}
, (2.2)

and for 0 < α ≤ 2, there holds the following essential order estimation:

‖fi − PN λ,σ[fi]‖p = O(λ−α) ⇔ σ2 = O(λm+α) and fi ∈ Lip(α)2. (2.3)

Here and hereafter, C, C1, C2, C3 are positive constants independent of n, f, and x

(its value, however, may be different in different contexts).

Theorem 2.2. Let f ∈ Lp
2π, for independent λ and σ ∈ N, there is a three-layer

network SN λ,σ[f ] with 2mσλ(λ + 1)(2λ + 1)m−1 sigmoidal hidden-layer units of
SGσ,k such that

‖fi − SN λ,σ[fi]‖p ≤ 1
2

(
1 +

√
m

2
π2

)2

ω2

(
fi,

1
(λ + 2)

)

+ ‖fi‖p

((
8(λ + 2)

π

)m

−
(

2
λ + 2

)m)

×
{ |r|

2σ
ln

4e3 + 4e

2e2 + e4 + 1
+

1
4σ2

}
, (2.4)

ω2

(
fi,

1
λ + 2

)
≤ C

{
1
λ2

λ∑
k=1

k‖SN k,σ[fi] − fi‖p

+
(

λm

σ2
+

λm

σ
+

1
λ2

)
‖fi‖p

}
, (2.5)

and for 0 < α ≤ 2, there holds the following essential order estimation:

‖fi − SN λ,σ[fi]‖p = O(λ−α) ⇔ σ = O(λm+α) and fi ∈ Lip(α)2. (2.6)

Remark 2.1. (1) If σ is a higher-order infinity than λ
m
2 , then ‖fi−PN λ,σ[fi]‖p → 0

as λ → ∞. (2) If σ is a higher-order infinity than λm, then ‖fi − SN λ,σ[fi]‖p → 0
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as λ → ∞. They therefore also show that any 2π-periodic on each R of domain Rm

Lebesgue integrable functions f can be approximated arbitrarily well by the above
networks.

Remark 2.2. In Ref. 13, the author obtained the following upper bounds:

‖fi − PN λ,σ[fi]‖p ≤
(

1 +
√

mπ2

2

)
ω

(
fi,

1
λ + 2

)
+ 2‖fi‖p

{(
8(λ + 2)

π2

)m

− 1
}

×
{

π
√

m

(2π)m−1σ

(
4σ

π
− cot

π

4σ

)} 1
p

, (2.7)

‖fi − SN λ,σ[fi]‖p ≤
(

1 +
√

mπ2

2

)
ω

(
fi,

1
λ + 2

)
+ 2‖fi‖p

{(
8(λ + 2)

π2

)m

− 1
}

×
{

π
√

m

(2π)m−1σ

(
ln 2 − 1

2
+

4σ

π
− cot

π

4σ

)} 1
p

. (2.8)

From Eqs. (2.1) and (2.4), the approximation error we obtained is more accurate
than Eqs. (2.7) and (2.8) in Ref. 13, respectively. For any λ ∈ N , if σ is large enough
for λ, the functions constructed by networks PN λ,σ and SN λ,σ become almost the
same, and their approximate errors become almost the same value, which can be
estimated mainly by the same formulation based on the second-order modulus of
continuity ω2(f, ·) in terms of λ, i.e. the first terms of the right sides of Eqs. (2.1)
and (2.4), while the second terms of the right sides of Eqs. (2.1) and (2.4) are
negligible.

Remark 2.3. The assertions (2.2) and (2.5) of Theorems 1 and 2 provide us lower
bound estimations on approximation accuracy of the networks PN λ,σ and SN λ,σ,
respectively, the results imply that the average of the networks PN λ,σ and SN λ,σ

over parameters λ, σ or, equivalently, over different number of neurons, is lower
controlled by the second-order modulus of smoothness of f and λ, σ (actually, we
can see this through rewriting (2.2) as

ω2

(
fi,

1
λ + 2

)
−
(

λm

σ2
+

1
λ2

)
‖fi‖p

≤ C

(
1
2

+
1
λ

){
2

λ(λ + 1)

λ∑
k=1

k‖PN λ,σ[fi] − fi‖p

}
,

and rewriting (2.5) as

ω2

(
fi,

1
λ + 2

)
−
(

λm

σ
+

λm

σ2
+

1
λ2

)
‖fi‖p

≤ C

(
1
2

+
1
λ

){
2

λ(λ + 1)

λ∑
k=1

k‖SN λ,σ − fi‖p

}
.
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Hence for any λ ∈ N , if σ is large enough for λ, (or, equivalently, the number of
hidden neurons) is sufficiently large, the above inequalities and Eqs. (2.2) and (2.5)
show that the networks PN λ,σ and SN λ,σ can achieve the highest approximation
accuracy and the accuracy is found to be ω2

(
fi,

1
λ+2

)
.

Remark 2.4. The assertions (2.3) and (2.6) give essential order estimation of the
networks PN λ,σ[f ] and SN λ,σ[f ]. Equation (2.3) shows that whenever f belongs
to the α-Lipschitz class and σ2 = O(λm+α), the essential order of approximation
of the networks PN λ,σ[f ] is ©(λ−α); Eq. (2.6) shows that whenever f belongs to
the α-Lipschitz class and σ = O(λm+α), the essential order of approximation of
the networks SN λ,σ[f ] is ©(λ−α). They show also that the higher the smoothness
of the function to be approximated, the faster the networks can approximate, and
vice versa.

3. Preliminaries

First, we prove an approximation theorem by multidimensional trigonometric
polynomials, which is a multidimensional extension of Jackson’s theorem6 of
approximations by trigonometric polynomials. This provides an explicit equational
representation of an approximating multidimensional trigonometric polynomial and
an explicit formulation of the corresponding approximation-error estimation for the
order of the polynomial.

Lemma 3.1. Let f ∈ Lp
2π, δ > 0, and kλ ∈ L1

2π(Rm) be non-negative and even
function for λ ∈ N . Then the convolution kλ∗f approximates f such that

‖kλ∗f − f‖p ≤ |k̂λ(0) − 1|‖f‖p +
1
2
ω2(f, δ)

×


(

1 + πδ−1(mk̂λ(0) −
m∑

i=1

Re(k̂λ(1i))
1
2

)2

.

Proof. Since t ≤ π sin t
2 , 0 ≤ t ≤ π; π sin t

2 ≤ t,−π ≤ t ≤ 0, then t2 ≤ π2 sin2 t
2 ,

−π ≤ t ≤ π. Then

(2π)−m

∫ π

−π

· · ·
∫ π

−π

‖t‖2kλ(t)dt ≤ π2

(
mk̂λ(0) −

m∑
i=1

Re(k̂λ(1i))

)
.

Since kλ(t) be even function, so

kλ∗f(x) =
1

(2π)m

∫ π

−π

1
2
(f(x + t) + f(x − t))kλ(t)dt,

1250021-7
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and by Cauchy–Swartz inequality, we have

‖kλ∗f − k̂λ(0)f‖p =
∥∥∥∥ 1

(2π)m

∫ π

−π

1
2
(f(x + t) + f(x − t) − 2f(x))Kλ(t)dt

∥∥∥∥
p

≤ 1
(2π)m

∫ π

−π

1
2
Kλ(t)‖�2

t f(x)‖pdt

≤ 1
(2π)m

∫ π

−π

1
2
Kλ(t)ω2(f, ‖t‖)pdt

≤ 1
(2π)m

ω2(f, δ)p

∫ π

−π

1
2
Kλ(t)(1 + δ−1‖t‖)2dt

≤ ω2(f, δ)

{
1
2

+ δ−2 1
(2π)m

∫ π

−π

1
2
Kλ(t)‖t‖2dt

+ δ−1

(
1

(2π)m

∫ π

−π

Kλ(t)dt
) 1

2
(

1
(2π)m

∫ π

−π

Kλ(t)‖t‖2dt
) 1

2
}

≤ ω2(f, δ)


1

2
+

1
2

δ−2π2

(
mk̂λ(0) −

m∑
i=1

Re(k̂λ(1i))

)

+ δ−1

(
π2

(
mk̂λ(0) −

m∑
i=1

Re(k̂λ(1i))

)) 1
2




=
1
2
ω2(f, δ)


1 + πδ−1

(
mk̂λ(0) −

m∑
i=1

Re(k̂λ(1i))

) 1
2



2

.

(3.1)

So from (3.1) and triangle inequality,

‖kλ∗f − f‖p ≤ ‖k̂λ(0)f − f‖p + ‖kλ∗f − k̂λ(0)f‖p

≤ |k̂λ(0) − 1|‖f‖p

+
1
2
ω2(f, δ)


1 + πδ−1

(
mk̂λ(0) −

m∑
i=1

Re(k̂λ(1i))

) 1
2



2

.

We introduce the following multivariate Fejér–Korovkin kernel.13 Let r =
(r1, r2, . . . , rm) ∈ Nm

0 , λ ∈ N , the Fejér–Korovkin kernel is defined by Kλ(t) =
Bλ|

∑
0≤ri≤λ bλ,re

irt|2, here bλ,r =
∏m

i=1
ri+1
λ+2 π, Bλ = (

∑
0≤ri≤λ(bλ,r)2)−1, from

1250021-8
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Ref. 13, we know

Bλ =
(

2
λ + 2

)m

, Kλ(t) = 1 + 2Bλ

0≤pu,qv≤λ∑
p �=q∈Nm

0

bλ,pbλ,q cos(p − q)t,

K̂λ(t) = Bλ

0≤pu,qv≤λ∑
p−q=r,p,q∈Nm

0

bλ,pbλ,q, K̂λ(0) = 1, K̂λ(1i) = cos
π

λ + 2
.

(3.2)

By using of multivariate Fejér–Korovkin kernel, we give a constructive approx-
imation theorem by trigonometric polynomial as follows.

Lemma 3.2. Let f ∈ Lp
2π and Kλ be the m-dimensional Fejér–Korovkin kernel.

The convolution Kλ∗f is an m-dimensional trigonometric polynomial which approx-
imates f such that

(Kλ∗f)(x) = 〈f, 1〉 + 2Bλ

0≤pu,qv≤λ∑
p �=q∈Nm

0

bλ,pbλ,q{〈f, cos(p − q)t〉 cos(p − q)x

+ 〈f, sin(p − q)t〉 sin(p − q)x}. (3.3)

The approximation upper bound is estimated by

‖Kλ∗f − f‖p ≤ 1
2
ω2

(
f,

1
λ + 2

)(
1 +

√
m

2
π2

)2

, (3.4)

and the lower bound is

ω2

(
f,

1
λ + 2

)
≤ C

λ2

{
λ∑

k=1

k‖Kk∗f − f‖p + ‖f‖p

}
. (3.5)

Proof. Let m-dimensional Fejér–Korovkin kernel Kλ instead kλ in Lemma 3.1, and
using (3.2), the upper bound is directly inferred. Now we prove the lower bound
estimation (3.5). Recalling that the convolution Kλ∗f of two continuous 2π-periodic
functions Kλ and f , obviously,

DνKλ∗f = (2π)−d

∫
[−π,π]d

Dνf(x − t)Kλ(t)dt.

For all 1 ≤ q ≤ ∞, since (2π)−d
∫
[−π,π]d

Kλ(x)dx = 1 and ‖Kλ∗f‖q ≤ ‖f‖q‖Kλ‖1,

we have

‖D|ν|Kλ∗f‖q ≤ ‖Dνf‖q. (3.6)

By using the Bernstein inequality, we then obtain

‖D|ν|Kλ∗f‖q ≤ Cλ|ν|‖Dνf‖q. (3.7)

1250021-9
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Let aλ = 1
λ2 ‖D|ν|Kλ∗f‖q, |ν| = 2, bλ = ‖Kλ∗f − f‖q. From Eqs. (3.6) and

(3.7), we obtain

aλ ≤ 1
λ2

‖D|ν|Kλ∗f(Kk∗f)‖q +
1
λ2

‖D|ν|Kλ∗f(f − Kk∗f)‖q

≤ 1
λ2

‖D|ν|Kk∗f‖q + C‖f − Kk∗f‖q

=
(

k

λ

)2

ak + Cbk.

Applying Lemma 1 in Ref. 15, thus gives

aλ ≤ C2λ
−2

{
λ∑

k=1

kbk + a1

}
.

So we obtain

sup
|ν|=2

‖D|ν|Kλ∗f‖q ≤ C2

{
λ∑

k=1

k‖Kk∗f − f‖q + ‖f‖q

}
. (3.8)

On the other hand, for λ ≥ 2, there exists m ∈ N such that λ
2 ≤ m ≤ λ and

‖f − Km∗f‖q ≤ ‖f − Kk∗f‖q,
λ

2
≤ k ≤ λ. (3.9)

Based on Eqs. (3.6)–(3.9), we now can define a K-function as follows:

K2(f, t2) = inf
g∈A.C.loc

{
‖f − g‖ + t2 sup

|m|=2

‖D|m|g‖
}

.

From Ref. 7, there exists a positive constant C1 such that

C−1
1 K2(f, t2) ≤ ω2(f, t) ≤ C1K2(f, t2). (3.10)

Hence,

K2

(
f,

1
(λ + 2)2

)
≤ ‖f − Km∗f‖q +

1
(λ + 2)2

sup
|ν|=2

‖D|ν|Kλ∗f‖q

≤ 4
λ2

∑
λ
2 ≤k≤λ

k‖f − Kk∗f‖q

+
C2

(λ + 2)2

{
λ∑

k=1

k‖Kk∗f − f‖q + ‖f‖q

}

≤ C3
1
λ2

{
λ∑

k=1

k‖Kk∗f − f‖q + ‖f‖q

}
.
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Using (3.10), we deduce that

ω2

(
f,

1
λ + 2

)
≤ C

λ2

{
λ∑

k=1

k‖f − Kk∗f‖q + ‖f‖q

}
.

Remark 3.1. From Theorem 5 of Ref. 13, we know the author had also obtained
the upper bound:

‖Kλ∗f − f‖p ≤ ω

(
f,

1
λ + 2

)(
1 +

√
mπ2

2

)
. (3.11)

Comparing (3.4) and (3.11), we take the second-order modulus of smoothness
instead of the modulus of first-order to deduce a more accurate upper bound esti-
mation on approximation of the Kλ∗f , which generalize and sharpen Theorem 5 of
Ref. 13. (For example, for the polynomial of nth-order P (x) =

∑n
i=1 aix

i, its mod-
ulus of first-order ω(P, δ) = O(δ), and the second-order modulus of smoothness
ω2(P, δ) = δ2. Obviously, the second-order modulus of smoothness is more accurate
than the modulus of first-order. In general, the relationship between them can be
found by the following expression

ω(f, t) = O(ω2(f,
√

t)); ω2(f, t) = O(ω(f, t)).

So for characterizing the error of approximation of the function, the second-
order modulus of smoothness is more sharpen than the first-order modulus.) With
Lemma 3.2, we also develop a lower bound estimation of approximation accuracy
of Kλ∗f .

The following we show two constructive approximation theorems to a multivari-
ate trigonometric function by networks with piecewise linear and sigmoidal hidden-
layer units, which are more accurate than the corresponds to that result of Ref. 13;
In addition, we can obtain the lower bound estimation of the networks. Applying
this to the polynomial obtained in Lemma 3.2, we derive our results.

Lemma 3.3. For σ ∈ N, three-layer networks PSσ(rx) and PCσ(rx), which
respectively approximate sin(rx) and cos(rx) and have 4|r|σ piecewise linear hidden-
layer units based on PLσ,k, are constructed by

PSσ(rx) = 2(−1)|r| sin
π

4σ

4|r|σ−1∑
k=0

cos
(2k + 1)π

4σ
PLσ,k(rx) (3.12)

and

PCσ(rx) = (−1)|r| − 2(−1)|r| sin
π

4σ

4|r|σ−1∑
k=0

sin
(2k + 1)π

4σ
PLσ,k(rx) (3.13)
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and we have the following estimation

‖sin(rx) − PSσ(rx)‖p = ‖cos(rx) − PCσ(rx)‖p ≤ 1
4σ2

.

Proof. We have the polygonal line with the vertex (−|r|π + kπ/2σ, sin(−|r|π +
kπ/2σ)) and (−|r|π + (k + 1)π/2σ, sin(−|r|π + (k + 1)π/2σ)), k = 0, 1, 2, . . . ,

4|r|σ − 1. Using the vertex of polygonal line, PLσ,k(rx) and trigonometric formula,
we have the network

PSσ(rx) =
4|r|σ−1∑

k=0

{
sin
(
−|r|π +

(k + 1)π
2σ

)
− sin

(
−|r|π +

kπ

2σ

)}
PLσ,k(rx)

= 2(−1)|r| sin
π

4σ

4|r|σ−1∑
k=0

cos
(2k + 1)π

4σ
PLσ,k(rx),

which approximates sin(rx), where σ is a partition number of a quarter period
of sin(rx). Obvious, |PSσ(rx) − sin(rx)| has the maximum value about rx in the
interval [−|r|π, |r|π], we denote the point of arriving maximum value by rx0, and
then we choose the j ∈ N such that rx0 ∈ [−|r|π + jπ

2σ ,−|r|π + (j + 1)π/2σ],
for convenience of consideration, we supposed x0 ≤ −|r|π + (k+1/2)π

2σ , then choose
|r|h = rx0 + |r|π − k/2σπ, so rx0 ± h ∈ [−|r|π + jπ/2σ,−|r|π + (j + 1)π/2σ] and
PSσ(rx) is linear, hence

sin(rx0 + |r|h) + sin(rx0 − |r|h) − 2 sin(rx0)

= sin(rx0 + |r|h) − PSσ(rx0 + |r|h) + sin(rx0 − |r|h)

−PSσ(rx0 − |r|h) − 2 sin(rx0) + 2PSσ(rx0).

So by sin(rx0−|r|h) = PSσ(rx0−|r|h) and |PSσ(rx0)− sin(rx0)| is the maximum
value of |PSσ(rx) − sin(rx)|, we have

‖sin(rx) − PSσ(rx)‖p

≤ ‖sin(rx0) − PSσ(rx0)‖p

≤ ‖2(sin(rx0) − PSσ(rx0)) − (sin(rx0 + |r|h) − PSσ(rx0 + |r|h)‖p

= ‖sin(rx0 + |r|h) + sin(rx0 − |r|h) − 2 sin(rx0)‖p

≤ ω2(sin, |r|h) ≤ (|r|h)2 ≤ 1
4σ2

.

From Eq. (3.13), the networks PSσ(rx) has 4|r|σ hidden-layer units. We can con-
struct PCσ(rx) in the same manner and prove the corresponding conclusion.

1250021-12
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Lemma 3.4. For σ ∈ N, three-layer networks SSσ(rx) and SCσ(rx), which respec-
tively approximate sin(rx) and cos(rx) and have 4|r|σ sigmoidal hidden-layer units
based on SGσ,k, are constructed by

SSσ(rx) = 2(−1)|r| sin
π

4σ

4|r|σ−1∑
k=0

cos
(2k + 1)π

4σ
SGσ,k(rx) (3.14)

and

SCσ(rx) = (−1)|r| − 2(−1)|r| sin
π

4σ

4|r|σ−1∑
k=0

sin
(2k + 1)π

4σ
SGσ,k(rx). (3.15)

Then we have the following estimation

‖sin(rx) − SSσ(rx)‖p = ‖cos(rx) − SCσ(rx)‖p

≤ |r|
2σ

ln
4e3 + 4e

2e2 + e4 + 1
+

1
4σ2

. (3.16)

Proof. We change PLσ,k in (3.13) by SGσ,k(rx), and obtain the networks denoted
by SSσ(rx), then it is a network with 4|r|σ sigmoidal hidden-layer units based on
SGσ,k(rx). If r = 0, the result is obvious; When r 
= 0, for convenience we supposed
rm 
= 0, Since

‖SSσ(rx) − PSσ(rx)‖1

= 2 sin
π

4σ

∣∣∣∣∣∣
4|r|σ−1∑

k=0

cos
(2k + 1)π

4σ

1
(2π)m

×
∫ π

−π

· · ·
∫ π

−π

(PLσ,k(rx) − SGσ,k(rx))

∣∣∣∣∣∣ dx

≤ 2 sin
π

4σ

4|r|σ−1∑
k=0

∣∣∣∣cos
(2k + 1)π

4σ

∥∥∥∥ 1
(2π)m

×
∫ π

−π

· · ·
∫ π

−π

|PLσ,k(rx) − SGσ,k(rx)|dx

= 2 sin
π

4σ

4|r|σ−1∑
k=0

∣∣∣∣∣cos
(2k + 1)π

4σ

∣∣∣∣∣
∣∣∣∣∣ 1
(2π)m

∫ π

−π

· · ·
∫ π

−π

∫ rx−rmxm+rm
|r|

rx−rmxm−rm
|r|

|r|
rm

× |PLσ,k(|r|y) − SGσ,k(|r|y)|dx1dx2 · · · dxxm−1dy
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≤ 2 sin
π

4σ

4|r|σ−1∑
k=0

∣∣∣∣∣∣ cos
(2k + 1)π

4σ

∥∥∥∥∥∥
1
2π

∫ π

−π

|r|
rm

|PLσ,k(|r|y) − SGσ,k(|r|y)|dy

= 2 sin
π

4σ

4|r|σ−1∑
k=0

∣∣∣∣∣∣ cos
(2k + 1)π

4σ

∥∥∥∥∥∥
1

2πrm

∫ |r|π

−|r|π

∣∣∣∣∣∣PLσ,k(t) − SGσ,k(t)|dt.

The following we will estimate 1
2πrm

∫ |r|π
−|r|π |PLσ,k(t) − SGσ,k(t)|dt.

1
2πrm

∫ |r|π

−|r|π
|PLσ,k(t) − SGσ,k(t)|dt

=
1

2πrm

{∫ −π+ kπ
2σ

−|r|π
SGσ,k(t)dt +

∫ −π+ (k+1)π
2σ

−π+ kπ
2σ

|SGσ,k(t) − PLσ,k(t)|dt

+
∫ |r|π

−π+
(k+1)π

2σ

(1 − SGσ,k(t))dt

}

=
1

2πrm

{∫ −π+ kπ
2σ

−|r|π

dt

1 + e−8σt/π−8σ+4k+2
+
∫ (k+1)π

2σ

kπ
2σ

∣∣∣∣2σ

π
(t − π) + 2σ

−k − 1
1 + e−8σ(t−π)/π−8σ+4k+2

∣∣∣∣ dt +
∫ |r|π

−π+ (k+1)π
2σ

e−8σt/π−8σ+4k+2

1 + e−8σt/π−8σ+4k+2
dt

}

.= I1 + I2 + I3.

The following we estimate I1, I2, I3, we have

I1 =
1

2πrm

∫ kπ
2σ

(−|r|+1)π

1
1 + e−8σ(t−π)/π−8σ+4k+2

dt

= − 1
16σrm

∫ 0

(−|r|+1)(−8σ)+4k

1
1 + et+2

dt

≤ 1
16σrm

(ln(1 + e2) − 2),

I2 =
1

2πrm

∫ (k+1)π
2σ

kπ
2σ

∣∣∣∣2σ

π
t − k − 1

1 + e−8σt/π+4k+2

∣∣∣∣ dt

=
1

2σrm

∫ 1

0

∣∣∣∣x − 1
1 + e−4x+2

∣∣∣∣ dt

≤ 1
8σrm

[2 ln 2 − ln(2 + e−2 + e2) + 1].
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Similarly, we have I3 ≤ 1
16σrm

ln(1 + e−2). As rm ≥ 1, so we have

‖SSσ(rx) − PSσ(rx)‖1 ≤ 2 sin
π

4σ

4|r|σ−1∑
k=0

∣∣∣∣cos
(2k + 1)π

4σ

∣∣∣∣ (I1 + I2 + I3)

≤ 4|r| 1
8σrm

ln
4e3 + 4e

2e2 + e4 + 1
=

|r|
2σ

ln
4e3 + 4e

2e2 + e4 + 1
. (3.17)

Using the Lemma 3.3, (3.17) is derived in the case of p = 1. As for 1 < p < ∞, we
can easily verify by use of the result of p = 1 and the following proposition.

Proposition 3.1. For ai ≥ 0 (0 ≤ i ≤ n), 1 ≤ p ≤ q, then we have

(
n∑

i=0

aq
i

) 1
q

≤
(

n∑
i=0

ap
i

) 1
p

.

Proof. The result is obvious for ai ≡ 0 (i = 0 · · ·n). Let τ = {∑n
i=0 ap

k}
1
p , we have

n∑
i=0

(
ai

τ

)q

=
n∑

i=0

((
ai

τ

)p) q
p

≤
n∑

i=0

(
ai

τ

)p

= 1.

Thus (
∑n

i=0 aq
i )

1
q ≤ (

∑n
i=0 ap

i )
1
p .

4. Proof of the Main Results

Proof (Network construction). We denote, by (3.3) of Lemma 3.2 replacing
cos(p − q)x and sin(p − q)x respectively with PCσ(rx) and PSσ(rx) of Lemma 3.3
and obtain the networks PN λ,σ[F ].

Upper bound estimation:

0≤pu,qv≤λ∑
Combinations of p �=q

Bλbλ,pbλ,q =
1
2
Bλ




∑
0≤pu,qv≤λ

bλ,pbλ,q −
∑

0≤pu≤λ

b2
λ,p




≤ 1
2

((
8(λ + 2)

π

)m

−
(

2
λ + 2

)m)
. (4.1)

Hence, from (3.4), Lemma 3.3, |〈fi, cos(p − q)t〉| ≤ ‖fi‖p, |〈fi, sin(p − q)t〉| ≤
‖fi‖p, and

‖Kλ∗fi − PN λ,σ[fi]‖ ≤ 1
2σ2

‖fi‖p

((
8(λ + 2)

π

)m

−
(

2
λ + 2

)m)
, (4.2)

the upper bound is obtained.
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Lower bound estimation: From Eq. (3.5), we have

ω2

(
fi,

1
λ + 2

)
≤ C

λ2

{
λ∑

k=1

k‖Kk∗fi − fi‖p + ‖fi‖p

}

≤ C

λ2

{
λ∑

k=1

k‖Kk∗fi − PN k,σ [fi]|p

+
λ∑

k=1

k‖PN k,σ[fi] − fi‖p + ‖fi‖p

}

≤ C

λ2

{
λ(λ + 1)

2
1

2σ2
‖fi‖p

((
8(λ + 2)

π

)m

−
(

2
λ + 2

)m)}

+
C

λ2

{
λ∑

k=1

k‖PN k,σ[fi] − fi‖p + ‖fi‖p

}

≤ C

{
1
λ2

λ∑
k=1

k‖PN k,σ[fi] − fi‖p +
(

λm

σ2
+

1
λ2

)
‖fi‖p

}
. (4.3)

Hidden-layer unit number: Each PN λ,σ[fi] has hidden units based on the PLσ,k.
Let r = p− q, then the number is given by

1
2

−λ≤ri≤λ∑
r�=0∈Nm

0

4|r|σ−1∑
k=0

= 2σ

−λ≤ri≤λ∑
r∈Nm

0

|r|

= 2σ


λ(λ + 1)(2λ + 1)m−1

+ (2λ + 1)
∑

−λ≤r2,r3,...,rm≤λ

(|r2| + |r3| + · · · + |rm|)



= 2mσλ(λ + 1)(2λ + 1)m−1.

This finishes the proof of Theorem 2.1. Similarly, we can prove Theorem 2.2.

5. Conclusion

In this work, approximation estimations of the neural networks have been studied.
In terms of second-order modulus of smoothness of a function, an upper bound
and lower bound estimations on approximation precision and speed of the neural
networks are simultaneously developed. Our research reveals that the approxima-
tion precision and speed of the neural networks depend not only on the number of
hidden neurons used, but also on the smoothness of the functions to be approxi-
mated. We have explicitly given a lower bound estimation on the number of hidden
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neurons of the network in order to attain a predetermined approximation precision.
The results obtained are helpful in understanding the approximation capability and
topology construction of the neural networks.
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