Int. J. Mach. Learn. & Cyber. (2013) 4:631-645
DOI 10.1007/s13042-012-0129-1

ORIGINAL ARTICLE

Fuzzy rough set models over two universes

Weihua Xu - Wenxin Sun - Yufeng Liu -
Wenxiu Zhang

Received: 6 April 2012/ Accepted: 27 August 2012/ Published online: 7 October 2012

© Springer-Verlag 2012

Abstract The extension of rough set model is an important
research direction in rough set theory. The aim of this paper is
to present new extensions of the rough set model over two
different universes which are rough fuzzy set model in a
generalized approximation space, rough set model in a fuzzy
approximation space and rough fuzzy set model in a fuzzy
approximation space based over two different universes.
Moreover, the properties of the approximation operators in
these models are investigated. Furthermore, by employing cut
set of fuzzy set and fuzzy relation, classical representations of
fuzzy rough approximation operators are studied. Finally, the
measures of fuzzy rough set models are presented, and the
relationships among the fuzzy rough models and rough set
model over two universes are investigated.

Keywords Rough set - Two universes - Fuzzy relation -
Fuzzy approximation space - Measure

1 Introduction

Rough set theory was proposed by Pawlak [15-17] in 1982,
has been successfully applied in the fields of artificial
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intelligence, pattern recognition, medical diagnosis, data
mining, conflict analysis, algebra[1,2,4, 5,9, 12, 18, 19, 20]
and so on. In recent decades, the rough set theory has
generated a great deal of interest among more and more
researchers.

It is widely acknowledged that the theory of rough sets,
which is important to construct a pair of upper and lower
approximation operators, is based on available information.
In the Pawlak approximation space, an arbitrary subset of
the universe of discourse can be approximated by the lower
and upper approximation sets. The lower approximation is
the union of all equivalence classes which are generalized
by the equivalence relation on the universe included in the
given set, and the upper approximation is the union of all
equivalence classes which are generalized by the equiva-
lence relation on the universe having a nonempty inter-
section with the given set. So the equivalence relation is a
key notion in Pawlak’s rough set model.

However, the requirement of an equivalence relation on
a universe seems to be a very restrictive condition, so it
limits the applications of rough set theory. Therefore, some
researchers have extended the Pawlak’s rough set model by
the other binary relations. For example, the notions of
approximation operators have been generalized by tolerance
relations [8, 13, 14] or similarity relations [36], dominance
relations [30], and general approximation spaces. On the
other hand, the rough sets in the fuzzy environment [3] and
intuitionistic fuzzy environment [34] have become a rapidly
progressing research area and have received much attention
since Dubois and Prade firstly proposed the notions of rough
fuzzy set and fuzzy rough set. Particular studies on fuzzy
rough sets and rough fuzzy sets can be found in the literature
[6, 7, 10, 12, 25,26, 27, 28, 29, 31, 33, 37, 38].

Moreover, the first study on the rough set model over
two universes was done in 1995, and was one of the hottest
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researches in recent years. Shen et al. [23] researched the
variable precision rough set model over two universes and
investigated the properties, Yan et al. [32] studied on the
model of rough set over dual-universe. More details about
recent advancements of rough set model over two uni-
verses can be found in the literatures [10, 11, 21, 22, 24,
35]. In this paper, we will discuss the fuzzy rough set
models over two universes in the fuzzy environment.

The structure of this paper is organized as follows: we
briefly introduce necessary notions relevant to the present
research in Sect. 2. In Sect. 3, we define some types of
approximation operators in the generalized and fuzzy
approximation space, respectively. All kinds of lower and
upper approximation operators on o-level have been
defined and the properties are investigated. In Sect. 4, the
measures of fuzzy rough set models on different universes
are researched. In Sect. 5, the relationships among fuzzy
rough set models and rough set model over two universes
are investigated. Finally, a brief conclusion is made in
Sect. 6.

2 Preliminaries

The following recalls necessary concepts and preliminaries
required in the sequel of our work. For one thing, we will
give some related definitions of fuzzy set theory.

2.1 Fuzzy set and fuzzy relation

Let U be a finite and nonempty set called the universe of
discourse.

A set A is said to be a fuzzy set if it is a mapping from
U into the unit interval [0, 1]:

Uy 2 U — [0, 1],

where we call p4(x) is the membership degree of x in A.
The classes of all subsets (respectively, fuzzy subsets) of
U will be denoted by P(U) [respectively, by F(U)].
The o cut and strong o cut of A will be denoted by A,
and A, as follows:

Ay = {x|,uA(x) > OC},

where o € [0, 1].
Especially, if o« =0, then Ag = U; if o =1, then
A, =0.

Ay, = {xlpa(x) > o,

Definition 2.1 Let U and V be two finite and nonempty
universes, R € P(U x V) be called as a binary relation
from U to V.

If U =V, R is referred to a binary relation on U x U.
Let R be a binary relation on U x U. R is a reflexive
relation, if for any x € U, we have (x,x) ER;R is a
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symmetric relation, if for any x,y € U,(x,y) ER=
(y,x) € R;R is a transitive relation, if for any x,y,z €
U,(x,y) €R and (y,z) €R= (x,2) €R;R is a serial
relation, if for any x € U there exists y € U such that
(x,y) € R;R is a reverse serial relation, if for any y € U
there exists x € U such that (x,y) € R.

Definition 2.2 A relation R is said to be a fuzzy relation,
if it is a mapping from U x V into the unit interval [0, 1],
1.e.,

R:UxV[0,1]
(x,3) = R(x,Y),

where R(x, y) is the degree of relation between x and y.

If U= V,R is referred to a binary fuzzy relation on
UxU.

Let R is a binary fuzzy relation on U x U, R is a
reflexive fuzzy relation, if for any x € U, we have
R(x,x) = 1; R is a symmetric fuzzy relation, if for any
x,y € U= R(x,y) = R(y,x);R is a transitive fuzzy rela-
tion, if for any x,z€ U= R(x,2)> V,.y(R(,2) A
R(x,2)); R is a serial fuzzy relation, if for any x € U there
exists y € U such that R(x,y) = 1; R is a reverse serial
fuzzy relation, if for any y € U, there exists x € U such
that R(x,y) = 1.

The o cut set and strong o cut set of R will be denoted by
R, and R,, as follows:

Ry = {(x,y)|R(x,y) = a};

where o € [0, 1].

It is not difficult to find out that for any o € [0,1],R is a
reflexive (symmetric, transitive, serial and reverse serial,
respectively) fuzzy relation, if and only if R,(R,, ) is a
reflexive (symmetric, transitive, serial and reverse serial,
respectively) relation.

Ry, = {(xY)[R(x,y) > o},

2.2 Fuzzy rough set models over a universe

We will introduce some basic knowledge and notions of
the fuzzy rough set theory [39].

The notion of approximation space provides a conve-
nient tool for the rough set theory research. A generalized
approximation space is an ordered triple (U, V, R), where
U, V are two finite and nonempty sets called two universes,
and R is an arbitrary binary relation on U x V. Especially,
if U = V and R is an equivalence relation on U, i.e., R is
reflexive, symmetric, and transitive, then the approxima-
tion space (U, R) is said to be the Pawlak approximation
space.

Definition 2.3 Let (U, R) be a Pawlak approximation
space, i.e., R is an equivalent relation on U, [x]r represents
the class which including x. For any A € F(U), denote
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R(A)(x) = min{A(y)|y € [x]g},
R(A)(x) = max{A(y)|y € [x|g},
where R(A) and R(A) are called the lower and upper

approximation of A in Pawlak approximation space
(U, R), respectively.

Proposition 2.1 Let (U, R) be a Pawlak approximation
space, then for any A,B € F(U), the lower and upper
approximations satisfy the following properties.

(1) R(A) CACR(A);

) R(A) = ~R(~A), R(A)= ~R(~A);

(3) R(ANB)=R(A)NR(B), R(AUB)=R(A)UR(B);
4)  R(AUB) D R(A)UR(B), R(ANB)CR(A)NR(B);
(5)  R(R(4)) = R(R(A)) = R(A);

©)  R(R(A)) = R(R(4)) = R(4)

An approximation space is called a fuzzy information
system, if R is a fuzzy reflexive relation on U x U. The
(U, R) is called a fuzzy equivalent relation information
system, if and only if R is a fuzzy equivalent relation.

Definition 2.4 Let (U, R) be a fuzzy information system,

for any x € U,
] : U= [0,1]
y = R(x,y).

[x] is called the fuzzy neighborhood of x. For any X C U,
the fuzzy lower and fuzzy upper approximation of X could
be defined as follows:

R(X)(y) = min(1 — R(x,y)), R(X)(y) = maxR(x,y),

x¢X xeX
where R : P(U) — F(U) and R : P(U) — F(U) are called
fuzzy lower and fuzzy upper approximation operators.

From the definition, we can easily find out the following
properties.

Proposition 2.2 Let (U, R) be a fuzzy information system
and X,Y C U, then the fuzzy lower and fuzzy upper
approximations satisfy the following properties.

(1) RWU)=U, R(@®) =0

2) R(X)= ~R(~X), R(X)=~R(~X);

3) R(XNY)=RX)NR(Y), RXUY)=R(X)UR(Y);
@  R(XXUY)2R(X)UR(Y), R(XNY)CR(X)NR(Y);
(5) R(X) CX CR(X)

Definition 2.5 Let (U, R) be a fuzzy information system,
for any A € F(U), denote

R(A)(x) = M{A(Y) vV (1 = R(x,y)ly € U)},
R(A)(x) = VA(Y) AR(x,y)lye U, xeU,

xeU;

where R(X) and R(X) are called the fuzzy lower and fuzzy
upper approximation of A in (U, R), respectively.

Proposition 2.3 Let (U, R) be a fuzzy information system,
then the lower and upper approximations satisfy the fol-
lowing properties.

(1) R(A) CACR(A);

(2 R(A)= ~R(~A), R(A)= ~R(~A);

(3) R(ANB)=R(A)NR(B), R(AUB)= R(A)UR(B);
(4) R(AUB)2R(A) UR(B), R(ANB)CR(A)NR(B)

2.3 Rough set over two universes

Let (U, V,R) be a generalized approximation space,
we can define two mappings R;:U+— P(V) and
R,:V— P(U)

Ri(x) = {y € V|xRy,x € U},
R,(y) ={x € UxRy,y € V};

where R(x), R,(y) denotes all R-related elements to x in V
and all R-related elements to y in U, respectively. R(x) is
called the successor neighborhood of x with respect to R in
V and R,(y) is called the predecessor neighborhood of y
with respect to R in U.

Definition 2.6 For any subset X of U and Y of V, the
lower and upper approximation of X and Y could be defined
as follows:

Ry(X) ={y € VIR,(y) C X},
Ry(X) = {y € VIR,(y) N X # 0};
Ry(Y) ={x € UR,(x) C Y},
Ry(Y) = {x € UR,(x) N Y # 0}.

If U=V and R is an equivalence relation on U, i.e.,
(U, R) is a Pawlak approximation space, then
Ri(x) ={y € UlxRy,x € U} = R,(y)
= {x € UlxRy,y € U} = [x].

For any subset X of U, the lower and upper
approximation of X could be defined as follows:

R(X) = U{Y € U/R|Y C X} = {x € U|lx], C X},
R(X)=U{Y e U/RIYNX # 0} = {x € U|[x]y N X # 0},

where [x], = {y € U|R,(y) =

Remark 2.1 Tt can easily find out that the approximation
operators over two universes can be degenerated into
Pawlak approximation operators when the two universes
satisfy U = V and the relation R is an equivalent relation
on U.

Ry(x)} and U/R={[x|z|x€ U}.
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3 Fuzzy rough set models over two universes

In this section, we will introduce three types of the rough
set models over the different universes.

3.1 Rough fuzzy set in a generalized approximation
space

Definition 3.1 Let (U, V, R) be a generalized approxi-
mation space, for any A € F(U),B € F(V), denote

Ry (A)(y) = min{A(x)lx € R,(v)}, Ru(A)(y) =
max{A(x)|x € R,(y)},y € V;

Ry (B)(x) = min{B(y)|y € R,(x)}, Rv(B)(x) =
max{B(y)|y € Ry(x)},x € U,

then R;(A) and Ry(A) are called the lower and upper
approximations of fuzzy set A in F(U),R,(B) and Ry(B)
are called the lower and upper approximations of fuzzy set
B in F(V).

If for any y €V (respectively, x € U),R,(A)(y) =
Ry(A)(y) (respectively, Ry (B)(x) = Ry(B)(x)), then the
fuzzy set A (respectively, B) is a fuzzy definable set about
the generalized approximation space (U, V, R). Otherwise
the fuzzy set A (respectively, B) is a rough set about the
generalized approximation space, and A (respectively, B) is
called a rough fuzzy set.

In the following, we employ an example to illustrate the
above concepts.

Example 3.1 The relationships of the students and classes
are given in Table 1 about some college, U = {x1,x,,

.,X10} is a universe which consists of ten students in some
college, MACI (Mathematic Class 1), ENCI (English Class
1), CHCI1 (Chinese Class 1), PHCI (Physical Class 1) are
classes of the college. A = (0.8, 0.9, 0.7, 0.3, 0.4, 0.6, 0.8,
0.9, 0.2, 0.7) is the excellent degree of these students by the
expert, and B = {0.9, 0.7, 0.5, 0.3} is the excellent degree
of these classes of the college.

We can raise some questions as following:

Question 1 What is the degree of these classes must
be excellent according to the excellent degree of these
students?

Question 2 What is the degree of these classes may
be excellent according to the excellent degree of these
students?

Question 3 What is the degree of these students must
be excellent according to the excellent degree of these
classes?

Question 4 What is the degree of these students may be
excellent according to the excellent degree of these classes?

@ Springer

Table 1 The relationships of the students and classes of some college

Class MACI1 ENCI1 CHC1 PHCI1

X1
X2
X3
Xg
Xs
X6
X7
Xg

Xo

_— = = OO O = O =
—-— 0O~ O =~ O O = = =
S O O = = = === O
_—m = = OO O = O =

X10

Now, we can solve the above questions according to
Definition 3.1 as follows:

R(A) ={0.2,0.6,0.3,0.2};
R(A) ={0.9,0.9,0.9,0.9};
R(B) ={0.3,0.5,0.3,0.5,0.5,0.5,0.3,0.3,0.3,0.3};
R(B) ={0.9,0.7,0.9,0.5,0.5,0.7,0.9,0.9,0.9,0.9}.
Remark 3.1 1In a generalized approximation space, we can
find out that the lower and upper approximations of fuzzy
set A € F(U) belong to F(V), and the lower and upper
approximations of fuzzy set B € F(V) belong to F(U)
according the results of Example 3.1. This property is
different from the lower and upper approximations over a
universe. What’s more, we can obtain the other properties
as following.

Theorem 3.1 Let (U, V, R) be a generalized approxi-
mation space, for any A,A' € F(U),B,B € F(V), we have
the following properties.

(D) RU(A) = ~Ry(~A), Ry(d) = ~Ry(~A);
Ry(B) = ~§v( ~B), Ry(B) = ~Ry(~B);

(@) Ry(ANA")=Ry( )
Ru(A UA") =Ry(A)URy(A);
Ry(BOB) =Ry (B) "Ry (B)
Rv(BUB,)—Rv(B)URv(B/),

3) A'CA=Ry(A) CRy(A), Ry(A") CRy(A);
B' C B= Ry(B') C Ry(B),Rv(B') C Ry(B);
(4)  R(AUA") DR(A)UR(A"), R(ANA) CR(A)NR(A');
R(BUB') DR(B)UR(B'), R(BNB') CR(B)NR(B);
(5)  Ry(A) CRy(A), Ry(B) C Ry(B)

Proof We only need to prove the first part of each
property as the similarity of the above properties.
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(1) Vy €V, according to Definition 3.1, we can obtain

Ry(~A)(y) = min{ ~A(x)[x € R,(y)}
=min{l —A(x)|x € R,(y)}
1 max (AW € R,()
= ~RyA(y).

So we can have Ry(A) = ~Ry,(~A).
The property R, (A) = ~Ry(~A) can be proved
similarly.
(2) Vy €V, we can have
Ry(ANA")(y) = min{A(x) ANA'(x)|x € R,(y)}
=min{A(x)|x € R,(y)}
A minfA'(x)|x € Ry(y)}
= Ry(A)(y) N Ry (A))()-

Hence, we can obtain R;; (A NA") = R, (A) N R, (A").
(3) According to the definitions of fuzzy lower and fuzzy
upper approximation, (3) holds.
(4) Tt is easy to prove by the property (3).
(5) Vy € Ry(A), we can have

Ry(A)(y) = min{A(x)]y € R, (y)} <
= max{A(x)|y € R,(y)}.

Therefore, R;;(A) C Ry(A).

Ry(A)(y)

Definition 3.2 Let (U, V, R) be a generalized approxi-
mation space, for any A € F(U),B € F(V), denote

Ry(Ay) = {yIR,(y) CAs}, Ru(As) = {YIR,(y) NA, # 0};
Ry(By) = {x|R,(x) C B}, Rv(B,) = {x|R,(x) N B, # 0},

where o € [0, 1], R;(A,) and Ry(A,) are called the lower
and upper approximation of A, on the universe U, R (B,)
and Ry (B,) are called the lower and upper approximation
of B, on the universe V.

Theorem 3.2 Let (U, V, R) be a generalized approxi-
mation space, if o < f§, we can obtain

Ry(Ap) € Ry(As), Ru(Ap) C Ry(As);

Ry(Bs) C Ry(B), Rv(Bg) CRy(B,).

Proof Since o < f5, so Ag C A,. For any y € R;;(Ap), we
can have R,(y) € Ag. Thus, R,(y) CA, <y € Ry(A,).
Le.. Ry(Ap) € Ry(Aq).

The property Ry(Ag) C Ry(As),Ry(Bg) C Ry(By) and
Ry (Bs) C Ry(B,) can be proved similarly.

According to the Definition 3.2, we can define two pairs
of fuzzy sets as follows:

R, (A)(y) = V{aly € Ry(A,)} = V{aIR,(y) C A.},
Ry (A)(y) = V{aly € Ry(A,)} = V{IR,(y) N A, # 0},
Ry(B)(x) = V{alx € Ry(B,)} = V{a|R,(x) C B,},
Ry (B)(x) = V{alx € Ry(B,)} = V{a|R,(x) N B, # 0}

Then we can obtain the properties in the following.

Theorem 3.3 Let (U, V, R) be a generalized approxi-
mation space, for any A € F(U),B € F(V), then

Ry(A) = Ry(A),  Ru(A) = Ry(A);

Ry(B) =Ry(B), Rv(B)

/

=R, (B).
Proof For any y € V, denote

=Ry(A)(y) = min{A(x)|x € R,(y)},
o2 = EU(A)(Y) = max{x|R,(y) C Ay}

Let o satisfy R,(y) C A,, if x € R,(y), then A(x) > a

and min A(x)>oa. So oy > o, therefore oy > o.
XER,(y)

On the other hand, for any o > a,, according to the
definition of o,, we can know that there exists x € R,(y),
st.x €A, ie., o) < A(x) < a, thus o > oy, by the arbitrary
of o > o, we can obtain o, > 0. Hence Ry (A) = Rj/(A).

=/
= RU(A)7EV(B)
= R,/ (B) can be proved similarly.

The properties Ry(A) =R, (B) and

Ry(B)

Remark 3.2 'We can obtain the same consequences for the
strong cut of A.

Definition 3.3 Let (U, V, R) be a generalized approxi-
mation space, Aj,A, € F(U),B;,B, € F(V).

If R;(A1) =Ry (Az), then A; and A, are called lower
rough equivalences of U, denoted by A; = yA,,
If Ry(A1) = Ry(A,), then A, and A, are called upper

rough equivalences of U, denoted by A; >~y Ay,

If Ry(A1) = Ry(Az) and Ry(A;) = Ry(Ay), then A} and
A, are called rough equivalences of U, denotedbyA; ~y Aj,

If R,(B1) = Ry(B,), then B; and B, are called lower
rough equivalences of V, denoted by B; = yB3,

If Ry(B;) = Ry(B,), then B, and B, are called upper
rough equivalences of V, denoted by B~y B,,

If Ry(B1) = Ry(B>) and Ry(B;) = Ry(B,), then B; and
B; are called rough equivalences of V, denoted by B; ~y B;.

Proposition 3.1 Let (U, V, R) be a generalized approxi-

mation space, Ay, Ay, A\, A, € F(U); Bi,By,B|,B) €
F(V), then
(1) A] = UAZ <~ (A] mAz):UAz, (Al ﬂAz) =~ UAI;

By =vyB, & (BiNBy)=vyB,, (B NBy) = yBy;
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2) Al ~yAry e (A UA) ~yAs, (A UAy) ~y Ay
B ~y By (ByUBy) ~y By, (B UBy) ~y By;
(3) If A =yA|, Ay=yAb, then (A N Ay)=pA) NAb;
if Ay =~y A}, Ay ~y AL, then (A UAy) ~y A} UA);
if Bj=yB|, By=yB), then (B, N By)=yB, N B;
if By ~y B}, By ~y B), then (B, UB,) ~y B} UB,.
@) ifA=yBorA,=y0, then A, N A, =0
ifB]zvq),B/]:Vq), then B, ﬂB’]:VQ
(5) IfA ~y UorA| ~yU,then Ay UA| ~y U,
if By ~v VorB| ~y V, then BiUB ~y V.
6) IfA; C A/ and A/_U(Z) then AI_U(Z);
if By C B} and B\=y{), then B;=y/{.
(7) If Ay CA| and Ay ~y U, then A| ~y U;
if By C B) and By ~y V, then B} ~y V.

Proof Straightforward.

Theorem 3.4 Let (U, V,R) be a generalized approxi-
mation space, A € F(U), B € F(V), then
(1) Ry(A) = {nA € F(U)lA=pA'),
Ry(B) ={NB' € F(V)|B=yB'};
(2) Ry(A)={UA' € F(U)|A ~y A'},
Ry(B) = {UB € F(V)|B ~y B'}.

Proof We can obtain them according to Proposition 3.1.

Theorem 3.5 Let (U, V, R) be a generalized approxi-
mation space, A € F(U), for any 0 <o, f < 1,if R is a
reverse serial relation on U x V, denote

Ry(A)), = {y € VIRy(A))(y) > o},
(Ru(A))g = {y € VI(Ru(A))(y) = B};

then

(1) (BU(A))

Proof
(1) For any yeRy(A,)=0#R,(y)CA,=Vxe
R,(y) CA, = Vx € Ry(y),A(x) > o= minA(x)|x €
)>o=y¢€ (Ry(A)), Thus,

Ry(y) = = Ry(A)(y
)

we can have (R,(4)), 2 Ry((A),).
The property (R;(A)), 2 Ry((A),). can be proved
similarly.

(2) Since « > fi, we can obtain Vy € (Ry(A4)), =

min{A(x)|x € R,(y)} > o = max{A(x)|x € R,(y)} >
v=y€ (Ry(A), = max{Ax)x €R,(y)}>a>
B =ye€ (Ru(A)),, therefore, (Ry(A)), C (Ru(A)),
- (EU(A))ﬁ'

Theorem 3.6 Let (U, V, R) be a generalized approxi-

mation space, B € F(V), for any 0 <o, f < 1,if R is a
serial relation on U x V, denote
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Proof The proof is similar to Theorem 3.5.
3.2 Rough set in a fuzzy approximation space

Let U and V be two non-empty finite sets called double
universes of discourse. R be an arbitrary fuzzy relation on
U x V, the ordered triple (U, V,R) is called fuzzy
approximation space.

Definition 3.4 Let (U, V, R) be a fuzzy approximation
space, for X C U Y C V, denote

Ry(X)(y)= r;}zi)r(l(l —R(xy)),Ry(X)(y) = maxR(x,y)y € V;
Ry(Y)(x) = r;g;l(l —R(x,y)),Rv(Y)(x) = gleagiR(w) x€U;

then R, (X) is called the fuzzy lower approximation of the
set X on the universe U, Ry(X) is called the fuzzy upper
approximation of the set X on the universe U, R, (Y) is
called the fuzzy lower approximation of the set Y on the
universe V, and Ry(Y) is called the fuzzy upper approxi-
mation of the set Y on the universe V.

If for any y € V(respectively, x € U), Ry(X)(y) =
Ry(X)(y) (respectively, Ry, (Y)(x) = Ry(Y)(x)), then the
set X (respectively, Y) is definable with respect to fuzzy
approximation space (U, V, R). Otherwise the set X
(respectively, Y) is rough set with respect to the fuzzy
approximation space.

Example 3.2 The student comprehensive evaluation sys-
tem of some college is given in Table2, U=
{Mental quality, Intelligent quality, Physical quality} is a
universe, V = {Best, Better, Good, Bad} is the evaluation
set as the other universe, and the relationships of U and V
are follows:

Table 2 The student comprehensive evaluation system of some
college

w, V) Best Better Good Bad
Mental quality 0.7 0.6 0.5 0.8
Intelligent quality 0.6 0.9 1 0.8
Physical quality 0.7 04 0.3 0.2
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Let’s consider the lower and upper approximations
of the set X = {Mental quality, Intelligent quality} and
Y = {Best, Better, Good}.

Obviously, we can obtain
Ry (X) =(0.3,0.6,0.7,0.8);
Ry(Y) = (0.2,0.2,0.8); Ry(Y) =

Ry(X) =(0.7,0.9,1,0.8);
(0.7,1,0.7).

Remark 3.3 In a fuzzy approximation space, we can find
out that the lower and upper approximations of fuzzy set
XecU belong to F(V),and the lower and upper
approximations of fuzzy set Y € V belong to F(U)
according the results of Example 3.2. This property is
different from the lower and upper approximations over a
universe. What’s more, the property R, (Y) C Ry (Y) is not
true in fuzzy approximation space.

Based on the above definitions, some properties of lower
and upper approximation operators will be obtained.

Theorem 3.7 Let (U, V, R) be a fuzzy approximation
space, forany X CU, X' CU,Y CV,Y' CV, we have the
following properties.

()  Ry(U) =V, Ry(h) =0;
2) Ry(X)= ~Ry(~X),R
Ry(Y) = ~Ry(~Y),Ry

3)  Ry(XNX')=Ry(X)
Ry(XUX')=R
Rv(YﬂY’) Ry(Y)
Ry(YUY')=Ry(Y)

4) X CX=RyX)
Y CY=R,(Y)CR

(5)  Ry(XUX') 2Ry(X)
Ry(XNX')CRy(X
Ry(YUY) DR, (Y
Ry(YNY')CRy(Y

B
S
<

>
=i
s
=
N
>
=

<

— Q
>
=
<
o
>
=
_SQ

C
=

AA@Q h<
~ —

> Cc S
wuw =
\;:):JN\

~— —

Proof According to the similarity of these characteristics,
we only need to prove the first portion of each properties.

(1) According to the definitions of fuzzy lower and fuzzy
upper approximation, we can obtain, Vy €V,

Ry(U)(3) = min(1 = R(x,3)) = 1

Ru(0)(y) = max R(x, ) = 0.

Therefore, Vy € V, weknowy € R, (U),y € ~ Ry (0).
Hence, we can obtain R;,(U) = V,Ry(0) = 0.

(2) Vy €V, according to the definitions of fuzzy lower
and fuzzy upper approximation, we can obtain

Ry(~X)(y) = min(1 —R(x,y)) = 1 — maxR(x,y)
= ~Ry(X)(y).

So we can have Ry(X) = ~Ry(~X).
The property R, (X) = ~Ry(~X) can be proved
similarly.

(3) For Vy € V, we can have

Ry(XNX')(y)= min (1—R(x,y))

xg(XNX')
= (gg)p(l = R(x,y))) A (g;i;}(l —R(x,y)))

= (Ry(X) N Ry (X)) (»)-

Hence, we can obtain R;(X N X’') = Ry(X) N Ry(X').
(4) According to the definitions of fuzzy lower and fuzzy
upper approximation, (4) holds.
(5) According to the property (4), obviously, (5) holds.

Theorem 3.8 Let (U, V,R) be a fuzzy approximation
space, VX C U, VY C V., we have

Ry(X) =Ry(X) & Vy € V,maxR(x,y) + maxR(x,y) = 1;
x¢X xeX

R, (Y) =Ry(Y) & Vx € U,max R(x,y) + maxR(x,y) = 1.
ey yey

Proof From the definitions of fuzzy lower and upper
approximation, Vy € V, we have

Ry(X) = Ry(X) & Ry(X)(y) = Ry(X)(y)
& min(1 — R(x,y)) = maxR(x,)
&1 - m;;?(R< = rilea)?(R(x y)
& maxR(x y) + maxR(x y)=1.

The theorem has been proved completely.
Definition 3.5 Let (U, V, R) be a fuzzy approximation
space, Vx e U, Vy € V,
[x] :V—[0,1] [y]:Uw[0,1]
y = R(x,y) x— R(x,y).
[x] is called the fuzzy neighborhood of x on the universe U

and [y] is called the fuzzy neighborhood of y on the uni-
verse V.

Theorem 3.9 Let (U, V,R) be a fuzzy approximation
space, for any X C U, Y CV, the following expressions
hold:

Ry(X) = [(~}), Ru(X)=J();
x¢X xeX

Ry(Y)=[(~DD), Rv(¥) =D
yeY yey

Proof 1t is easy to prove by the definitions of fuzzy
neighborhood.
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Definition 3.6 Let (U, V, R) be a fuzzy approximation
space, X1, X, C U, Y,,Y, CV.

If R,;(X1) =Ry(X2), then X; and X, are called fuzzy
lower rough equivalences of U, denoted by X, =yX>,

If Ry(X)) = Ry(Xz), then X; and X, are called fuzzy
upper rough equivalences of U, denoted by X; ~y X5,

IfBU(Xl) = EU(XZ) and EU(X1> = EU(XQ), then X; and
X, are called fuzzy rough equivalences of U, denoted by
X1 ~y Xo,

If R, (Y1) =Ry (Y>), then Y| and Y, are called fuzzy
lower rough equivalences of V, denoted by Y=y Y>,

If Ry(Y;) =Ry(Y;), then Y, and Y, are called fuzzy
upper rough equivalences of V, denoted by Y;~ Y5,

If Ry(Y1) = Ry(Y>) and Ry(Y;) = Ry(Y>), then Y; and
Y, are called fuzzy rough equivalences of V, denoted by
Y| =y Y.

Proposition 3.2 Let (U, V, R) be a fuzzy approximation
space, X1, X2, X1, X5 CU; Y\, Y2, Y], Y, CV, then
() Xi=uXa & (X1 NX2)=uXa, (X1 N X2)=uXy;
Yi=vYr & (Y1 NYa)=vYa, (Y1 NY2)=yYi;
2) X~y Xo & (X1UXa) =y Xo, (X1 UX) =y X5
Y] ~y Y2 = (Y] UYz) ~y Y2,(Y1 UYQ) ~y Yl;
(3)  Xi=uX,, Xa=uX,, then (X N X2)=yX, N Xy;
Xi ~u X, Xo ~y Xy, then (X; UX,) ~y X; UX,;
Yi=yY,, Ya=yY,, then (Y; N Y2)=yY, N Yy;
Yi 0y Y)Y 2y Yy, then (YiUYs) =~y Y UY,.
&) If Xi=yl or X;=y0, then X, N X, =~y 0;
ifY1ZVQ] or Y;zvm, then Yl N Yllsz
(5) If Xy ~y U or X, ~y U, then X; UX, ~y U;
ifY =y VorY oy V, then YUY, ~y V.
©) IfX, CX andX U(Z) then X,= U(Z)
if Y1 C Y andY =y, then Yi=v{.
7 Ifx, QXland X ~y U, then X] ~y U;
ifY; C Y; and Y| ~y V, then Y; ~y V.

Proof Straightforward.

Definition 3.7 Let (U, V, R) be a fuzzy approximation
space, the o cut relation and strong o cut relation of R are
denoted as R, and R,, , the lower and upper approximation
of X CUand Y C V based on R, and R,,, could be defined
as follows:

Ry(X)={y € VIR}(y) S X};  Ry(X) = {y € VIR}(») N X # 0}
RY(Y) = {x € URI(x) S ¥} Ry(Y) ={x€ URI(x)NY # 0};
Ry (X) ={y € VIR};*(») CX}; Ry (X)={y € VIR (y) N X #0};
Ry (Y) = {x€ UR"(x) CY}; Ry (Y) ={x€ URI(x)nY #0};

where

@ Springer

Ri(x) = {y € VIR(x,y) >a}; R (x) ={y € V|R(x
R (y) = {x € UR(x,y) >a}; Ry (y) = {x € UR(x,

»y) > ak;
y) > a}.
R (X), EZ (X) are called the o level lower and upper
approximation of the set X on the universe U, R} (Y),
I_QO‘C,(Y ) are named the o level lower and upper approxima-
tion of the set Y on the universe V, R} (X), R,/ (X) are
called the strong o level lower and upper approximation of
the set X on the universe U, and R}/ (Y), R, (Y) are named
the strong o level lower and upper approximation of the set
Y on the universe V.

Theorem 3.10 Let (U, V, R) be a fuzzy approximation
space, we can have

o

I_eU(X) =

o

(Ry(X)),;Ry(Y) = (Rv(Y)),,
where X CU, Y CV,a €[0,1].

Proof For Vy € R,(X), we can have R’(y) N X # 0, that
is to say Ix€X st R(x,y)>o. So we can obtain

max R(x,y) >, i.e., y € (R(X))

xeX 2

Conversely, if y € (R(X)),,

to say Ix € X s.t. R(x,y) >a, ie., R5(y) N X # 0, There-
fore, y € R,(X).

The theorem only holds for the upper approximation,
not for the lower approximation. In the following, we will
give an example.

then max R(x,y) > a, that is
xeX

Example 3.3 From Example 3.2, if we take « = 0.3, then
Ry is a general relation on U x V in Table 3:

We have got
Ry(X))o3 =V, @U(X))os =V
(Ry(Y))o5 = {Physical quality}, (I(?)\;(Y))O_3 = U;
Ry (X) = {Bad}, Rg}(X) =V
RY3(Y) = {Intelligent quality, Physical quality}, R, (Y)=U.

Hence, the following is obviously true
RO (X) # (Ry(X))os. Ry (X) = Ru(X))ys:
RP(Y) # Ry(V)os, RY'(Y) = Ru(Y))ys

Theorem 3.11 Let (U, V, R) be a fuzzy approximation
space, we can have

(Ry(X)),;
where X CU, Y CV, o€ [0,1].

RV (x) = Ry (V) = (Ry(Y)),,

Proof Vy € Bgia)‘ (X), we can have R,(,lfa)‘ (y) C X, that
istosay Vx € U, if R(x, y) > 1 — « then x € X. So we can
obtain Hél}l(l(l —R(x,y)) >aie, y € (Ry(X)),.

X
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Table 3 The relation Ry3 on U x V

Ro3 Best Better Good Bad
Mental quality 1 1 1 1
Intelligent quality 1 1 1
Physical quality 1 1 1 0
Conversely, if y € (Ry(X)),, then n;zin(l — R(x,y)) >,
xgZX

that is to say Vx € X s.t. 1 — R(x,y) > . Le., V x e U, if
R(x,y) > 1 — o then x € X. Therefore, y € R,(X).

Theorem 3.12 Let (U, V, R) be a fuzzy approximation
space, if a<B,¥X C U,Y CV we can have

(1) R%(X) CRY(X), R

Ry (X) CRY (X), Ry (X) C Ry (X);
2) Ry(Y) CRy(Y), Ry,

Ry (Y) SRy (Y), Ry (Y) CRy(Y).

Proof According to the similarity of the above properties,

we only need to prove the first part of each property.

(1) For any ye€Rj(X), ie, Rj(y) CX. Note that
« < f, thus, RF C R* and Rg(y) C R(y), that is to
say y € B@(X). Therefore, the properties R}, (X) C
Ij,ﬁ] (X) and R} (X) C Efj (X) can be proved similarly.

(2) It is similar to prove that R} (Y) C B’f,(Y) and
Ry (Y) CRY (V).

Definition 3.8 Let (U, V, R) be a fuzzy approximation
space, for any X C U,Y C V, we can denote

Ry(X)(y) = sup{aly € RI7*(X)}, Ry (X)(y) = sup{aly € Ry,(X)},
R, (Y)(x) = sup{ofx € RY;*(Y)}, Ry (Y)(x) = sup{ofx € Ry(Y)},
Ry(X)(y) = sup{aly € Ry " (X)), R, (X)(y) = sup{aly € Ry (X)},
Ry (Y)(x) = up{cx\xeR(l % (1)}, Ry(YV)(x) = sup{alx e Ry ()},

where R}, (X),R,,(X)(y) are called the fuzzy strong lower

and upper approximation of the set X on the universe
U, R,(Y), F’V(Y ) are named the fuzzy strong lower and
upper approximation of the set ¥ on the universe V, R},(X),
I_Q/Z/J(X) are called the fuzzy weak lower and upper

approximation of the set X on the universe U, and R} (Y),

I_QC(Y ) are named the fuzzy weak lower and upper

approximation of the set Y on the universe V.

Theorem 3.13 Let (U, V, R) be a fuzzy approximation
space, then the following properties hold.

-/

(M Ry(X) =Ry(X),

) Ry(X) = Ry(X), Ry(Y) = Ry(Y);

)
3) Ry(X)= ~Rj(~X), Ry(Y)= ~R}(~Y)

Proof According to the similarity of the above properties,
we only need to prove the first part of each property.

(1) For any y € V, denote

Br =Ru(X)()
pr =Ry(X)0)

according to the definition of f;, we can know that there
exists x € X s.t. R(x, y) = B, that is to say x € R}(y). So
RA(y) N X # 0, thus B, > ;.

Suppose i, > f;, we can see that there exists ff satisfying
B> > Po > P1, so we can obtain that there exists x € X,
s.t. R(x,y) > fo from the definition of f,. Therefore,
max R(x,y) > fy, which isn’t consistent with S, > f;.

Hence, , = ;.
(2) It is similar to prove that R},(X) = Ry (X).
(3) By the items (1) and (2) we can have

Ry(X) = Ru(X) = ~Ry(~X) = ~R}(~X).

— maxR
max R(x, y),

= sup{«|R)(y) N X # 0};

Definition 3.9 Let R is a binary fuzzy relation on
UxYV,

(1) R is a fuzzy serial relation, if for any x € U there
exists y € V such that R(x, y) = 1,

(2) R is a fuzzy reverse serial relation, if for any y € V
there exists x € U such that R(x,y) = 1.

Theorem 3.14 Let (U, V, R) be a fuzzy approximation
space, VX C U,Y C V., if R is a fuzzy serial relation, the
Ry(X) is a normal fuzzy set, if R is a fuzzy reverse serial
relation, the Ry (Y) is a normal fuzzy set.

Proof Since R is a fuzzy serial relation, then for any x €
U there exists y €V, such that R(x,y) = 1. Thus,
Ry(X)(y) = maxR(x,y) = 1.

Since R is a fuzzy reverse serial relation, then for any
y €V there exists x € U such that R(x,y) = 1. Thus,

Ry(¥)(x) = max R(x,y) = 1.

Theorem 3.15 Let (U, V, R) be a fuzzy approximation
space, for any X C U, Y C V., if R is a fuzzy reverse serial
relation, then

Ry (X) € Ry(X);
if R is a fuzzy serial relation, then

Ry(Y) CRy(Y).
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Proof Since R is a fuzzy reverse serial relation, then for
any y € V, there exists x € U such that R(x,y) = 1. Thus,
for any y € V there exists x € U such that max,cx R(x,y) +
max,gx R(x,y) > 1, That is to say

Ry(X)(y) = Ry(X)(y) = max R(x,y) — I;gg(l — R(x,y))
= TE%?(R(X’)}) + Tg?)?(R(x’y) -1
>0.

Thus, Vy € V, Ru(X)(y) 2 Ry(X)(y), i.e Ry(X) € Ru(X).

If R is a fuzzy serial relation, then, ¥ x € U there exists
y € Vsuch that R(x,y) = 1. Thus V x € U there exists y €
V such that

R R(x,y) > 1.
max R(x,y) + max R(x,y) >

That is to say

Ry(Y)(x) — Ry(Y)(x) = max R(x,y) — min(1 ~ R(x,y))
= r;leaxR(x y) +max R(x,y) —1
>0.

Thus, Vx € U, Ry(Y)(x) >Ry (Y)(x), i.e., Ry (Y) C Ry(Y).
3.3 Rough fuzzy set in a fuzzy approximation space

Definition 3.10 Let (U, V, R) is a fuzzy approximation
space, i.e, R is a fuzzy relation on U x V, for any A €
F(U) B € F(V), the upper and lower approximations of A
and B about (U, V, R), denoted by R,A, RyA, RyB and
RyB are fuzzy sets and are, respectively, defined as
follows:

Ry(A)(y) = MA(X) V (1 = R(x,y))lxe U} yeV,

Ry(A)(y) = VIA@) AR(x, )k € U} yeV;
Ry(B)(x) = M{B(y) V(1 = R(x,y))ly e V} x€U,
Ry(B)(x) = V{B(y) AR(x,y)ly €V} xeU.

In the following, we employ an example to illustrate the
above concepts.

Example 3.4 (Continued from Example 3.2) In Example
3.2, we have solved some questions, but we also can raise
the other questions such as:

If the comprehensive scholarship of a student is
A = 0.5, 0.3, 0.2, how about the evaluation of the student?
And if we have got the evaluation of a student is B =
0.4, 0.2, 0.2, 0.05, what is the comprehensive scholarship
according to the student comprehensive evaluation system?

Now, we can solve the above questions according to
Definition 3.10, we can have
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]

=0.3,0.3,0.3,0.3;

=|

)
Ru(A) =0.5,0.5,0.5,0.5;
v(B) =0.2,0.2,0.3;
Ry(B) =0.4,0.4,0.4.

Ry(A
(

I =

Remark 3.4 1Inafuzzy approximation space, we can find out
that the lower and upper approximations of fuzzy set A €
F(U) belong to F(V), and the lower and upper approximations
of fuzzy set B € F(V) belong to F(U) according the results of
Example 3.4. This property is different from the lower and
upper approximations over a universe.

Theorem 3.16 Let (U, V, R) is a fuzzy approximation
space, i.e, R is a fuzzy relation on U x V, for any A,A' €
F(U), B, B € F(V), we have the following properties.

(1) Ry(A) = ~Ry(~A),Ry(B) = ~Rv(~B);

2) Ry(AU&@) =Ry(A)Us, Ry(ANa)=Ry(A)Nd
Ry(BU&)=Ry(B)Ud, Ry(BN&) =Ry(B)NY

3)  Ry(ANA) =Ry (A)NRy(A),
Ry(AUA) =Ry(A)URy(A);
BV(BQBI):ENB)QRV(B,)’
Ry(BUB)=Ry(B)URy(B);

4 Ry(AUA) DR,(A)UR,(A),
Ry(ANA") CRy(A) N Ry(A');
Ry(BUB') 2 Ry(B) URy(B),

Ry(BNB) CRy(B)NRy(B).

Proof All terms can be proved by Definition 3.10.

Theorem 3.17 Let (U,V,R) is fuzzy approximation
space, i.e, R is a fuzzy relation on U x V, for any A €
F(U), B € F(V), we have

Ry(A) =\ [ARGA) =\ [xARG(AL))]
x€(0,1] a€(0,1]
= V kARG @A) = \/ ARG (A);
a€l0,1] o€l0,1]
Rv(B) = \/ [ ARy(B)) = \/ [xAR}(By,)]
u€l0,1] a€0,1]
=\ bARE B =\ AR (B
a€l0,1] o€l0,1]
Proof ForanyyeV,
\/ [« AR% = sup{x € [0, 1]]x € R%(A,)}
o€(0,1]

= sup{a € [0, 1]|x € R}(y) N (4,) # 0}
= sup{a € [0, 1]|3x € U,x € R}(y),x € A,}
= sup{a € [0,1]|3x € U,R(x,y) > o, A(x) > o}
= VA(x) AR(x,y)|x € U.

So Ry(A) = V,epo 1l ARG (As)].
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The others of the equivalents can be proved similarly.

Theorem 3.18 Let (U, V, R) is fuzzy approximation
space, i.e, R is a fuzzy relation on U x V, for any A €
F(U), B € F(V), we have

Ry(A) = \/ [t AR A = \/ [xARY*(A,.)]
o€l0,1] ael0,1]
=\ ARy @A) =\ ARy (AL)):
a€l0,1] ael0,1]
Ry(B)=\/ [ ARV B.)) = \/ [2ARY*(B..)]
o€[0,1] ael0,1]
=\ AR B =\ kAR (B,
x€0,1] ael0,1]

Proof The proof is similar to Theorem 3.17.

Theorem 3.19 Let (U, V,R) is fuzzy approximation
space, i.e, R is a fuzzy relation on U x V, for any x € U,
veV,A € F(U), B € F(V), we have

Ry(A)(y) = sup{a € [0, 1]|y € R;(A,)}

[

= sup{2 € [0, 1]ly € R (A.)}

= sup{a € [0, 1]|y € Ry (A,,)}

= sup{x € [0, 1]|y € R/ (Ax)};
Ry(B)(x) = sup{a € [0,1]|x € R%(B,)}

= sup{a € [0, 1]|x € R} (B,)}

= sup{a € [0, 1]|x € R%(By,)}

— sup{z € [0, 1]|x € R (B,,) };
Ry(A)(y) = sup{x € [0, 1]|y € R;; *(A,)}

— sup{z € [0,1]ly € Ry " (A,)}
sup{a € [0, 1]]y € Ry *(As, )}

0
0
0
0
= sup{z € [0, 1]ly € Ry " (4,)};
0
0
0
0

Ry(B)(x) = sup{x € [0, 1]|x € Ry *(B)}

sup{a € [0,1]]x € Ri/]_“)*(Ba)}
sup{a € [0, 1]|x € Rl_“(B )}

= sup{x € [0, 1]x € Ry " (B,,)}.

Proof We can prove it by Theorems 3.17, 3.18.

4 The measures of fuzzy rough set models over two
universes

In this section, we will research some measures of the
fuzzy rough set over different universes.

Definition 4.1 Let (U, V, R) be a generalized approxi-
mation space, A € F(U), for any 0<f<ua<1, the

approximate precision oy (A)(a, ) of A about Ry can be
defined as following:

(ByA),|
wA)o ) =

where A # 0, | - | denotes the cardinality of set.

Let py(A) (%, f) = 1 — g, (A)(x, ), and py(A)(2, f) is

called the rough degree of A about the universe U.

Theorem 4.1 Let (U, V, R) be a generalized approxi-
mation space, A € F(U), for any 0 < ff <o <1, the
approximate precision og(A)(a, ) and the rough degree
pu(A)(a, B) satisfy the properties as following:

OSOCU(A)(OC,ﬁ)Sl, 0§pU<A>(u>ﬁ>§l'

Proof According to Definition 4.1, this theorem can be
proved easily.

Theorem 4.2 Let (U, V, R) be a generalized approxi-
mation space, A,A; € F(U), ACA, and (RyA),; =
(RUAl)ﬂ,for any 0 < p<a <1,

ow(A) (e B) <ew(An) (e ), pulAn) (@, B) < py(A)(e, f).
Proof Since A C Ay, we can have (RjA), C (RyA1),. On

the other hand, (RyA); = (RuA,),. Therefore, the theorem
can be proved by Definition 4.1.

Theorem 4.3 Let (U, V, R) be a generalized approxi-
mation space, A € F(U), A;e€FU), and A CA,
(EUA)“ = (EUAI)wfor any 0 < f<a <1,

oy (Ar) (e, B) <oy (A) (2 B), - pu(A)(2, ) < py(Ai)(2; B).

Proof The proof is similar to Theorem 4.2.

Theorem 4.4 Let A A; € F(U),
0 < B <a<l,wecan have

oy (A) (o, f) = ow(Ar) (2, B),
pu(An)(#, ) = py(A) (2, B)-

Proof It can be proved by Definition 3.4 and Definition 4.1.

if Ay =y A, for any

Theorem 4.5 Let U, V be two non-empty finite universes,
R be the relation of U x V. For any A,A, € F(U). The
rough degree and precision of the A, A;, AU A and A N
A satisfying the following relations.

py(AUAL) (2, B)|(Ru(A)); U (Ry(Ar)) 4l
< py(A)(2, B)I(Ru(A)), |+Pu( 1) B)I(Ru(Ar)) 4]
— pu(ANA) (2 B)|(Ru(A)) N (Ry(A1)) ]
oy (AUAL) (2, B)[(Ru(A)) (RU(AI))/}|
> ay(A) (o, B)|(Ru(A)) gl + o (A1) (o, B)|(Ru(Ar)) gl
— ay(AN A (% B)|(Ry(A))5 N (Ru(A1))l.

@ Springer



642

Int. J. Mach. Learn. & Cyber. (2013) 4:631-645

Proof According to Theorem 3.1, we can obtain

pu(AUA (o, ) = 1 — L Bu(AUAD),|

Ru(AUAD)
L Ry(aUA),
[(Ru(A))p U (Ru(A1))g]
<1 [RBy(4)), U (Ry(A1)),|
T Ru(A)s U (Ry(An)gl
and
[(Ry(ANA)),|
PulANANGp) =1 - UETEL
_ 1 _|Ry(4)), 0 Ry(A1)),|
|(Ru(AUAY))
<1 [R(yA)), 0 (Ry(A1)),|
T [(Ru(A))p N (Ru (A1)l
Hence,
pu(AUA) (2, B)|(Ru(A))5 U (Ru(Ar))4l
<|(Ru(A)); U RulAr))gl — [(Ry(A)), U (Ry (A1),
= |(Ru(A))g] + [(Ru(A1))5 — |(Ru(A)) s N (Ru(A1))4]

)
—(Ry(A)),| = [(Ry (A

)2+ |(Ry(A)), N (Ry(Ar)),|
<|(Ru(A))gl + [(Ru(A1))g] = [(Ry(A)),] = [(Ry(Ar)),]
pu(AN AN (2, B)|(Ru(A)); N (Ry(Ar)) 4l
= py(A) (o, B)|(Ru(A)) gl + pu(Ai) (e, B)I(Ru(Ar)) 4]
— pu(ANA)(x, B)I(Ru(A)) N (Ru(Ar))gl-

The other inequality can be proved similarly.

In the following, we will give some results about the
measures of fuzzy approximation space.

Let (U, V,R) be a fuzzy approximation space, g:
Uw—Vy V, is a nonempty finite integer set, d is the
decision set, we call the (U, V, R, g, d) is a fuzzy decision
approximation space. denote

Dy =xeUlglx)=k, keV,
For any « € [0, 1], denote
Rﬁl = {(x,y)|R(x,y) ZOC},

then (U, V, R,) is a generally approximation space, so we
can have

U/Ry = {[x],Ix € U},
where
[, = {xilRY (xi) = R{(x)},

the lower approximation of D, in generally approximation
space (U, V, R,) can be defined as

@ Springer

R,(Dy) = {x € U|lxl, C Di}k<r=|Va|.

Definition 4.2 Let (U, V, R, g, d) be a fuzzy decision
approximation space, g : U — V, denote

1 r
D(d/x) = FZ IR, (D)l
U=
as the decision precision of « level. Denote
R, (D
D'(d/a) = min{| R,(Dy)| k< }
12
as the rule precision of o level.
Obviously, D(d/a) > D'(d/x).

Theorem 4.6 Let (U, V, R, g, d) be a fuzzy decision
approximation space, if o < f3, then

D(d/x) > D(d/B),D'(d/o) = D'(d/ ).

Proof  Since o« < f8, we can have Ry C R, and [x],; C [x],,
so we can have

R,(Dx) C Rp(Di)(Vk <1).

According to Definition 4.1 we can obtain

D(d/o) = D(d/B),D'(d/) > D'(d/ ).

Definition 4.3 Let (U, V, R) and (U, V, G) be two fuzzy

approximation spaces, then (U, V, R, G) is called fuzzy
objective approximation space.

Let (U, V, R, G) be a fuzzy objective approximation
space, for any 0 < o, f < 1 denote

R, = {(x,y) € U x V|R(x,y) > o},
Gp ={(x,y) € U x V|G(x,y) = B}.
So we have

U/Ry = {[x],lx € U},
U/Gp = {[xl4lx € U},

[x], = {xlRY (xi) = RY(x) },
]y = {xilGl (xi) = G (%)},
where

R (x) = {y € V|(x,y) € Ry},

Gl(x) = {y € V|(x,y) € Gg}.

Definition 4.4 Let (U, V, R, G) be a fuzzy objective
approximation space, for any 0 < o, f# < 1, denote

Dh(d/n) =~ 3 IR,(D),

| |D€U/G/j

as the decision precision of (o, f8) level, denote

min 2P, ¢ v/,

DY) = min

as the rule precision of (o, f) level, where
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R} (D) = {x € U|[x], € D}.
Theorem 4.7 Let (U, V,R, G) be a fuzzy objective

approximation space, for any 0 < o, f < 1, we have
(1) Didla) = Dfdlw),
() oy <w = Di(d/a) <Dl (d)x),
Dfj(d/m) < Dj(d/%),
(3)  Bi<By = Dip(d/w) <Dy (d]=),
Dl (d/w) <D (d]a).

Proof According to Definition 4.3 and 4.4, the properties
can be proved easily.

Remark 4.1 The results about the universe U also hold for
the universe V.

5 The relationships among fuzzy rough set models
and rough set model over two universes

Theorem 5.1 I[fACU,BCVand R C U X V, then the
rough fuzzy set in fuzzy approximation space can be
degenerated into rough set model over two universes.

Proof According to the definitions of rough fuzzy set in

fuzzy approximation space, we can have

Ry(A)(y) = 1 & Vx € U,A() V (1 - R(x,y)) = 1
sSVxelU, ifxgA= (x,y) ¢R
SVxgA=x¢R,(y)
< Ry(y) CA,

Ry(A)y) =1 Ix e U,st,A(x) =1 and R(x,y)
=1 ANR,(y) #0,
Ry(B)(x) =1 Vye V,B(y)V (1 -R(x,y) =1

SVyeV,ifygdB= (x,y) ¢R
S Vx g€ B=ydgR(x)
& Ry(x) C B,
Ry(B)(x)=1<3dyeV,st,B(y)=1 and
R(x,y) = 1< BNR(x) # 0.
Theorem 5.2 If A€ F(U), Be F(V) and RC U XV,
then rough fuzzy set in a fuzzy approximation space can be

degenerated into rough fuzzy set in a generalized
approximation space.

Proof According to the definitions of rough fuzzy set in
fuzzy approximation space, we can have

Ry (A)(y) = min{A(x) V (1 = R(x,y))|x € U}
= min{A(x)|(x,y) € R}
= min{A(x)|x € R,(y)},

Ry(A)(y) = max{A(x) AR(x,y)|x € U}

= max{A(x)|(x,y) € R}

= max{A(x)|x € R,(y)},
Ry(B)(x) = min{B(y) V (1 — R(x,y))|y € V}

= min{B(y)|(x,y) € R} = min{B(y)[y € R,(x)},
Ry (B)(x) = max{B(y) AR(x,y)|y € V}

= max{B(y)|(x,y) € R}

= max{B(y)|y € R;(x)}.

Theorem 53 [fACU,BCVand R:U xV — [0,1],
then rough fuzzy set in a fuzzy approximation space can be
degenerated rough set in a fuzzy approximation space.

Proof According to the definitions of rough fuzzy set in
fuzzy approximation space, we can have

Ry(A)(y) = min{A(x) V (1 — R(x,y))|x € U}
= min(1 — R(x.y)),
Ry(A)(y) = max{A(x) A R(x,y)lx € U} = max R(x, ),
Ry(B)(x) = min{B(y) V (1 — R(x,y))ly € V}
= rgg(l = R(x,y)),
Ry (B)(x) = max{B(y) AR(x,y)ly € V} = max R(x,y).

Theorem 54 [fACU,BCVand R C U x V, then the
rough fuzzy set in a generalized approximation space can
be degenerated into rough set model over two universes.

Proof According to the definitions of rough fuzzy set in a
generalized approximation space, we can have

410 =1 R0)>46) =1 1) 4
Ry(A)(y) =1 IxeR,(y) = Ax) =1 & R, (y) NA # 1),

Ry(B)(x) = 1 5%y € Ry(x) = B(Y) = 1 5 Ry(x) C B,

Ry(B)(x) =1 3Jy €R(x) = B(y) =1 < R,(x) NB # 0.

Theorem 5.5 I[fACU,BCV and RCU XV, then the
rough set in fuzzy approximation space can be degenerated
into rough set model over two universes.

Proof According to the definitions of rough set in fuzzy

approximation space, we can have

RyA)y) =1V g€A=Rxy) =0 Vx€A=>xER,)(y)
S VxeR,(y) = xeA S R,)(y) CA,

Ry(A)p) =1 K e€A=>Rxy)=1eI€A=>xER(Y)
S Ry(y) NA#0,

Ry(B)(x) =1 Vy€B=R(x,y) =0&VyZB=y¢&R(x)
< Vy € Ry(x) =y € B < Ri(x) C B,

RyB)(x) =13y eB=R(x,y)=1TFyeB=ycR(x)
& R(x)NB# 0.
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According to the Theorem 5.1, 5.2, 5.3,5.4,5.5 we can
know that the rough set models over two universes are the
special cases of the fuzzy rough set models over two
universes. We also can easily find out that the fuzzy rough
set models over two universes can be degenerated into
Pawlak rough set model over a universe according to
Remark 2.1.

6 Conclusion

From a generalized approximation space (U, V, R) to a
fuzzy approximation space (U, V, R), we have defined
rough fuzzy set in generalize approximation, rough set in
fuzzy approximation space and rough fuzzy set in fuzzy
approximation space over different universes which
respectively resulted from the approximation of fuzzy
information system on a universe, and mainly discussed the
properties of the approximation operators and o level lower
and upper approximation operators. In addition, the inter-
relationships of the lower and upper approximation on o
level of the fuzzy relation R and the o level of the lower
and upper approximation of the fuzzy relation R are ana-
lyzed. What’s more, the measures of the fuzzy rough set
models are also studied. Finally, the relationships among
fuzzy rough set models and rough set models over two
universes are investigated.
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