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Abstract The extension of rough set model is an important

research direction in rough set theory. The aim of this paper is

to present new extensions of the rough set model over two

different universes which are rough fuzzy set model in a

generalized approximation space, rough set model in a fuzzy

approximation space and rough fuzzy set model in a fuzzy

approximation space based over two different universes.

Moreover, the properties of the approximation operators in

these models are investigated. Furthermore, by employing cut

set of fuzzy set and fuzzy relation, classical representations of

fuzzy rough approximation operators are studied. Finally, the

measures of fuzzy rough set models are presented, and the

relationships among the fuzzy rough models and rough set

model over two universes are investigated.

Keywords Rough set � Two universes � Fuzzy relation �
Fuzzy approximation space � Measure

1 Introduction

Rough set theory was proposed by Pawlak [15–17] in 1982,

has been successfully applied in the fields of artificial

intelligence, pattern recognition, medical diagnosis, data

mining, conflict analysis, algebra [1, 2, 4, 5, 9, 12, 18, 19, 20]

and so on. In recent decades, the rough set theory has

generated a great deal of interest among more and more

researchers.

It is widely acknowledged that the theory of rough sets,

which is important to construct a pair of upper and lower

approximation operators, is based on available information.

In the Pawlak approximation space, an arbitrary subset of

the universe of discourse can be approximated by the lower

and upper approximation sets. The lower approximation is

the union of all equivalence classes which are generalized

by the equivalence relation on the universe included in the

given set, and the upper approximation is the union of all

equivalence classes which are generalized by the equiva-

lence relation on the universe having a nonempty inter-

section with the given set. So the equivalence relation is a

key notion in Pawlak’s rough set model.

However, the requirement of an equivalence relation on

a universe seems to be a very restrictive condition, so it

limits the applications of rough set theory. Therefore, some

researchers have extended the Pawlak’s rough set model by

the other binary relations. For example, the notions of

approximation operators have been generalized by tolerance

relations [8, 13, 14] or similarity relations [36], dominance

relations [30], and general approximation spaces. On the

other hand, the rough sets in the fuzzy environment [3] and

intuitionistic fuzzy environment [34] have become a rapidly

progressing research area and have received much attention

since Dubois and Prade firstly proposed the notions of rough

fuzzy set and fuzzy rough set. Particular studies on fuzzy

rough sets and rough fuzzy sets can be found in the literature

[6, 7, 10, 12, 25,26, 27, 28, 29, 31, 33, 37, 38].

Moreover, the first study on the rough set model over

two universes was done in 1995, and was one of the hottest
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researches in recent years. Shen et al. [23] researched the

variable precision rough set model over two universes and

investigated the properties, Yan et al. [32] studied on the

model of rough set over dual-universe. More details about

recent advancements of rough set model over two uni-

verses can be found in the literatures [10, 11, 21, 22, 24,

35]. In this paper, we will discuss the fuzzy rough set

models over two universes in the fuzzy environment.

The structure of this paper is organized as follows: we

briefly introduce necessary notions relevant to the present

research in Sect. 2. In Sect. 3, we define some types of

approximation operators in the generalized and fuzzy

approximation space, respectively. All kinds of lower and

upper approximation operators on a-level have been

defined and the properties are investigated. In Sect. 4, the

measures of fuzzy rough set models on different universes

are researched. In Sect. 5, the relationships among fuzzy

rough set models and rough set model over two universes

are investigated. Finally, a brief conclusion is made in

Sect. 6.

2 Preliminaries

The following recalls necessary concepts and preliminaries

required in the sequel of our work. For one thing, we will

give some related definitions of fuzzy set theory.

2.1 Fuzzy set and fuzzy relation

Let U be a finite and nonempty set called the universe of

discourse.

A set A is said to be a fuzzy set if it is a mapping from

U into the unit interval [0, 1]:

lA : U 7! ½0; 1�;

where we call lA(x) is the membership degree of x in A.

The classes of all subsets (respectively, fuzzy subsets) of

U will be denoted by P(U) [respectively, by F(U)].

The a cut and strong a cut of A will be denoted by Aa

and Aaþ as follows:

Aa ¼ fxjlAðxÞ� ag; Aaþ ¼ fxjlAðxÞ[ ag;

where a 2 ½0; 1�:
Especially, if a = 0, then A0 = U; if a = 1, then

A1þ ¼ ;:

Definition 2.1 Let U and V be two finite and nonempty

universes, R 2 PðU � VÞ be called as a binary relation

from U to V.

If U = V, R is referred to a binary relation on U 9 U.

Let R be a binary relation on U 9 U. R is a reflexive

relation, if for any x 2 U; we have ðx; xÞ 2 R; R is a

symmetric relation, if for any x; y 2 U; ðx; yÞ 2 R)
ðy; xÞ 2 R; R is a transitive relation, if for any x; y; z 2
U; ðx; yÞ 2 R and ðy; zÞ 2 R) ðx; zÞ 2 R; R is a serial

relation, if for any x 2 U there exists y 2 U such that

ðx; yÞ 2 R; R is a reverse serial relation, if for any y 2 U

there exists x 2 U such that ðx; yÞ 2 R:

Definition 2.2 A relation R is said to be a fuzzy relation,

if it is a mapping from U 9 V into the unit interval [0, 1],

i.e.,

R : U � V 7! ½0; 1�
ðx; yÞ 7! Rðx; yÞ;

where R(x, y) is the degree of relation between x and y.

If U = V, R is referred to a binary fuzzy relation on

U 9 U.

Let R is a binary fuzzy relation on U 9 U, R is a

reflexive fuzzy relation, if for any x 2 U; we have

R(x,x) = 1; R is a symmetric fuzzy relation, if for any

x; y 2 U ) Rðx; yÞ ¼ Rðy; xÞ; R is a transitive fuzzy rela-

tion, if for any x; z 2 U ) Rðx; zÞ�
W

y2UðRðy; zÞ ^
Rðx; zÞÞ; R is a serial fuzzy relation, if for any x 2 U there

exists y 2 U such that R(x,y) = 1; R is a reverse serial

fuzzy relation, if for any y 2 U; there exists x 2 U such

that R(x,y) = 1.

The a cut set and strong a cut set of R will be denoted by

Ra and Raþ as follows:

Ra ¼ fðx; yÞjRðx; yÞ� ag; Raþ ¼ fðx; yÞjRðx; yÞ[ ag;

where a 2 ½0; 1�:
It is not difficult to find out that for any a 2 ½0; 1�;R is a

reflexive (symmetric, transitive, serial and reverse serial,

respectively) fuzzy relation, if and only if RaðRaþÞ is a

reflexive (symmetric, transitive, serial and reverse serial,

respectively) relation.

2.2 Fuzzy rough set models over a universe

We will introduce some basic knowledge and notions of

the fuzzy rough set theory [39].

The notion of approximation space provides a conve-

nient tool for the rough set theory research. A generalized

approximation space is an ordered triple (U, V, R), where

U, V are two finite and nonempty sets called two universes,

and R is an arbitrary binary relation on U 9 V. Especially,

if U = V and R is an equivalence relation on U, i.e., R is

reflexive, symmetric, and transitive, then the approxima-

tion space (U, R) is said to be the Pawlak approximation

space.

Definition 2.3 Let (U, R) be a Pawlak approximation

space, i.e., R is an equivalent relation on U, [x]R represents

the class which including x. For any A 2 FðUÞ; denote
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RðAÞðxÞ ¼ minfAðyÞjy 2 ½x�Rg;
RðAÞðxÞ ¼ maxfAðyÞjy 2 ½x�Rg;

where RðAÞ and RðAÞ are called the lower and upper

approximation of A in Pawlak approximation space

(U, R), respectively.

Proposition 2.1 Let (U, R) be a Pawlak approximation

space, then for any A;B 2 FðUÞ; the lower and upper

approximations satisfy the following properties.

(1) RðAÞ � A � RðAÞ;
(2) RðAÞ ¼ �Rð�AÞ; RðAÞ ¼ �Rð�AÞ;
(3) RðA\BÞ ¼ RðAÞ \RðBÞ; RðA[BÞ ¼ RðAÞ [RðBÞ;
(4) RðA[BÞ � RðAÞ [RðBÞ; RðA\BÞ � RðAÞ \RðBÞ;
(5) RðRðAÞÞ ¼ RðRðAÞÞ ¼ RðAÞ;
(6) RðRðAÞÞ ¼ RðRðAÞÞ ¼ RðAÞ:

An approximation space is called a fuzzy information

system, if R is a fuzzy reflexive relation on U 9 U. The

(U, R) is called a fuzzy equivalent relation information

system, if and only if R is a fuzzy equivalent relation.

Definition 2.4 Let (U, R) be a fuzzy information system,

for any x 2 U;

½x� : U 7! ½0; 1�
y 7! Rðx; yÞ:

[x] is called the fuzzy neighborhood of x. For any X � U;

the fuzzy lower and fuzzy upper approximation of X could

be defined as follows:

RðXÞðyÞ ¼ min
x 62X
ð1	 Rðx; yÞÞ; RðXÞðyÞ ¼ max

x2X
Rðx; yÞ;

where R : PðUÞ 7! FðUÞ and R : PðUÞ 7! FðUÞ are called

fuzzy lower and fuzzy upper approximation operators.

From the definition, we can easily find out the following

properties.

Proposition 2.2 Let (U, R) be a fuzzy information system

and X; Y � U; then the fuzzy lower and fuzzy upper

approximations satisfy the following properties.

(1) RðUÞ ¼ U; Rð;Þ ¼ ;;
(2) RðXÞ ¼ �Rð�XÞ; RðXÞ ¼ �Rð�XÞ;
(3) RðX\YÞ ¼ RðXÞ\RðYÞ; RðX[YÞ ¼ RðXÞ[RðYÞ;
(4) RðX[YÞ � RðXÞ[RðYÞ; RðX\YÞ � RðXÞ\RðYÞ;
(5) RðXÞ � X � RðXÞ:

Definition 2.5 Let (U, R) be a fuzzy information system,

for any A 2 FðUÞ; denote

RðAÞðxÞ ¼ ^fAðyÞ _ ð1	 Rðx; yÞjy 2 UÞg; x 2 U;

RðAÞðxÞ ¼ _AðyÞ ^ Rðx; yÞjy 2 U; x 2 U;

where RðXÞ and RðXÞ are called the fuzzy lower and fuzzy

upper approximation of A in (U, R), respectively.

Proposition 2.3 Let (U, R) be a fuzzy information system,

then the lower and upper approximations satisfy the fol-

lowing properties.

(1) RðAÞ � A � RðAÞ;
(2) RðAÞ ¼ �Rð�AÞ; RðAÞ ¼ �Rð�AÞ;
(3) RðA\BÞ ¼ RðAÞ \RðBÞ; RðA[BÞ ¼ RðAÞ[RðBÞ;
(4) RðA[BÞ � RðAÞ [ RðBÞ; R ðA\BÞ � RðAÞ\RðBÞ:

2.3 Rough set over two universes

Let (U, V, R) be a generalized approximation space,

we can define two mappings Rs : U 7! PðVÞ and

Rp : V 7! PðUÞ

RsðxÞ ¼ fy 2 V jxRy; x 2 Ug;
RpðyÞ ¼ fx 2 UjxRy; y 2 Vg;

where Rs(x), Rp(y) denotes all R-related elements to x in V

and all R-related elements to y in U, respectively. Rs(x) is

called the successor neighborhood of x with respect to R in

V and Rp(y) is called the predecessor neighborhood of y

with respect to R in U.

Definition 2.6 For any subset X of U and Y of V, the

lower and upper approximation of X and Y could be defined

as follows:

RUðXÞ ¼ fy 2 V jRpðyÞ � Xg;
RUðXÞ ¼ fy 2 V jRpðyÞ \ X 6¼ ;g;
RVðYÞ ¼ fx 2 UjRsðxÞ � Yg;
RVðYÞ ¼ fx 2 UjRsðxÞ \ Y 6¼ ;g:

If U = V and R is an equivalence relation on U, i.e.,

(U, R) is a Pawlak approximation space, then

RsðxÞ ¼ fy 2 UjxRy; x 2 Ug ¼ RpðyÞ
¼ fx 2 UjxRy; y 2 Ug ¼ ½x�R:

For any subset X of U, the lower and upper

approximation of X could be defined as follows:

RðXÞ ¼ [fY 2 U=RjY � Xg ¼ fx 2 Uj½x�R � Xg;
RðXÞ ¼ [fY 2 U=RjY \ X 6¼ ;g ¼ fx 2 Uj½x�R \ X 6¼ ;g;

where ½x�R¼fy2UjRsðyÞ¼RsðxÞg and U=R¼f½x�Rjx2Ug:

Remark 2.1 It can easily find out that the approximation

operators over two universes can be degenerated into

Pawlak approximation operators when the two universes

satisfy U = V and the relation R is an equivalent relation

on U.
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3 Fuzzy rough set models over two universes

In this section, we will introduce three types of the rough

set models over the different universes.

3.1 Rough fuzzy set in a generalized approximation

space

Definition 3.1 Let (U, V, R) be a generalized approxi-

mation space, for any A 2 FðUÞ;B 2 FðVÞ; denote

RUðAÞðyÞ ¼ minfAðxÞjx 2 RpðyÞg; RUðAÞðyÞ ¼
maxfAðxÞjx 2 RpðyÞg; y 2 V;

RVðBÞðxÞ ¼ minfBðyÞjy 2 RsðxÞg; RVðBÞðxÞ ¼
maxfBðyÞjy 2 RsðxÞg; x 2 U;

then RUðAÞ and RUðAÞ are called the lower and upper

approximations of fuzzy set A in FðUÞ;RVðBÞ and RVðBÞ
are called the lower and upper approximations of fuzzy set

B in F(V).

If for any y 2 V (respectively, x 2 UÞ;RUðAÞðyÞ ¼
RUðAÞðyÞ (respectively, RVðBÞðxÞ ¼ RVðBÞðxÞÞ; then the

fuzzy set A (respectively, B) is a fuzzy definable set about

the generalized approximation space (U, V, R). Otherwise

the fuzzy set A (respectively, B) is a rough set about the

generalized approximation space, and A (respectively, B) is

called a rough fuzzy set.

In the following, we employ an example to illustrate the

above concepts.

Example 3.1 The relationships of the students and classes

are given in Table 1 about some college, U ¼ fx1; x2;

. . .; x10g is a universe which consists of ten students in some

college, MAC1 (Mathematic Class 1), ENC1 (English Class

1), CHC1 (Chinese Class 1), PHC1 (Physical Class 1) are

classes of the college. A = (0.8, 0.9, 0.7, 0.3, 0.4, 0.6, 0.8,

0.9, 0.2, 0.7) is the excellent degree of these students by the

expert, and B = {0.9, 0.7, 0.5, 0.3} is the excellent degree

of these classes of the college.

We can raise some questions as following:

Question 1 What is the degree of these classes must

be excellent according to the excellent degree of these

students?

Question 2 What is the degree of these classes may

be excellent according to the excellent degree of these

students?

Question 3 What is the degree of these students must

be excellent according to the excellent degree of these

classes?

Question 4 What is the degree of these students may be

excellent according to the excellent degree of these classes?

Now, we can solve the above questions according to

Definition 3.1 as follows:

RðAÞ ¼ f0:2; 0:6; 0:3; 0:2g;
RðAÞ ¼ f0:9; 0:9; 0:9; 0:9g;
RðBÞ ¼ f0:3; 0:5; 0:3; 0:5; 0:5; 0:5; 0:3; 0:3; 0:3; 0:3g;
RðBÞ ¼ f0:9; 0:7; 0:9; 0:5; 0:5; 0:7; 0:9; 0:9; 0:9; 0:9g:

Remark 3.1 In a generalized approximation space, we can

find out that the lower and upper approximations of fuzzy

set A 2 FðUÞ belong to F(V), and the lower and upper

approximations of fuzzy set B 2 FðVÞ belong to F(U)

according the results of Example 3.1. This property is

different from the lower and upper approximations over a

universe. What’s more, we can obtain the other properties

as following.

Theorem 3.1 Let (U, V, R) be a generalized approxi-

mation space, for any A;A0 2 FðUÞ;B;B0 2 FðVÞ; we have

the following properties.

(1) RUðAÞ ¼ �RUð�AÞ; RUðAÞ ¼ �RUð�AÞ;
RVðBÞ ¼ �RVð�BÞ; RVðBÞ ¼ �RVð�BÞ;

(2) RUðA\A0Þ¼RUðAÞ\RUðA0Þ;
RUðA[A0Þ¼RUðAÞ[RUðA0Þ;
RVðB\B0Þ ¼ RVðBÞ\RVðB0Þ;
RVðB[B0Þ ¼ RVðBÞ[RVðB0Þ;

(3) A0 � A) RUðA0Þ � RUðAÞ; RUðA0Þ � RUðAÞ;
B0 � B) RVðB0Þ � RVðBÞ;RVðB0Þ � RVðBÞ;

(4) RðA[A0Þ �RðAÞ[RðA0Þ; RðA\A0Þ �RðAÞ\RðA0Þ;
RðB[B0Þ �RðBÞ[RðB0Þ; RðB\B0Þ �RðBÞ\RðB0Þ;

(5) RUðAÞ � RUðAÞ; RVðBÞ � RVðBÞ:

Proof We only need to prove the first part of each

property as the similarity of the above properties.

Table 1 The relationships of the students and classes of some college

Class MAC1 ENC1 CHC1 PHC1

x1 1 1 0 1

x2 0 1 1 0

x3 1 1 1 1

x4 0 0 1 0

x5 0 0 1 0

x6 0 1 1 0

x7 1 0 1 1

x8 1 1 0 1

x9 1 0 0 1

x10 1 1 0 1
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(1) 8y 2 V; according to Definition 3.1, we can obtain

RUð�AÞðyÞ ¼ minf�AðxÞjx 2 RpðyÞg
¼ minf1	 AðxÞjx 2 RpðyÞg
¼ 1	maxfAðxÞjx 2 RpðyÞg
¼ �RUAðyÞ:

So we can have RUðAÞ ¼ �RUð�AÞ:
The property RUðAÞ ¼ �RUð�AÞ can be proved

similarly.

(2) 8y 2 V; we can have

RUðA \ A0ÞðyÞ ¼ minfAðxÞ ^ A0ðxÞjx 2 RpðyÞg
¼ minfAðxÞjx 2 RpðyÞg
^minfA0ðxÞjx 2 RpðyÞg
¼ RUðAÞðyÞ \ RUðA0ÞðyÞ:

Hence, we can obtain RUðA \ A0Þ ¼ RUðAÞ \ RUðA0Þ:
(3) According to the definitions of fuzzy lower and fuzzy

upper approximation, (3) holds.

(4) It is easy to prove by the property (3).

(5) 8y 2 RUðAÞ; we can have

RUðAÞðyÞ ¼ minfAðxÞjy 2 RpðyÞg
RUðAÞðyÞ
¼ maxfAðxÞjy 2 RpðyÞg:

Therefore, RUðAÞ � RUðAÞ:

Definition 3.2 Let (U, V, R) be a generalized approxi-

mation space, for any A 2 FðUÞ;B 2 FðVÞ; denote

RUðAaÞ ¼ fyjRpðyÞ � Aag; RUðAaÞ ¼ fyjRpðyÞ \Aa 6¼ ;g;
RVðBaÞ ¼ fxjRsðxÞ � Bag; RVðBaÞ ¼ fxjRsðxÞ \Ba 6¼ ;g;

where a 2 ½0; 1�;RUðAaÞ and RUðAaÞ are called the lower

and upper approximation of Aa on the universe U;RVðBaÞ
and RVðBaÞ are called the lower and upper approximation

of Ba on the universe V.

Theorem 3.2 Let (U, V, R) be a generalized approxi-

mation space, if a\ b, we can obtain

RUðAbÞ � RUðAaÞ; RUðAbÞ � RUðAaÞ;
RVðBbÞ � RVðBaÞ; RVðBbÞ � RVðBaÞ:

Proof Since a\ b, so Ab � Aa: For any y 2 RUðAbÞ; we

can have RpðyÞ � Ab: Thus, RpðyÞ � Aa , y 2 RUðAaÞ:
I.e., RUðAbÞ � RUðAaÞ:

The property RUðAbÞ � RUðAaÞ;RVðBbÞ � RVðBaÞ and

RVðBbÞ � RVðBaÞ can be proved similarly.

According to the Definition 3.2, we can define two pairs

of fuzzy sets as follows:

R0UðAÞðyÞ ¼ _fajy 2 RUðAaÞg ¼ _fajRpðyÞ � Aag;
R
0
UðAÞðyÞ ¼ _fajy 2 RUðAaÞg ¼ _fajRpðyÞ \ Aa 6¼ ;g;

R0VðBÞðxÞ ¼ _fajx 2 RVðBaÞg ¼ _fajRsðxÞ � Bag;
R
0
VðBÞðxÞ ¼ _fajx 2 RVðBaÞg ¼ _fajRsðxÞ \ Ba 6¼ ;g:

Then we can obtain the properties in the following.

Theorem 3.3 Let (U, V, R) be a generalized approxi-

mation space, for any A 2 FðUÞ;B 2 FðVÞ; then

RUðAÞ ¼ R0UðAÞ; RUðAÞ ¼ R
0
UðAÞ;

RVðBÞ ¼ R0VðBÞ; RVðBÞ ¼ R
0
VðBÞ:

Proof For any y 2 V; denote

a1 ¼ RUðAÞðyÞ ¼ minfAðxÞjx 2 RpðyÞg;
a2 ¼ R0UðAÞðyÞ ¼ maxfajRpðyÞ � Aag:

Let a satisfy RpðyÞ � Aa; if x 2 RpðyÞ; then A(x) C a
and min

x2RpðyÞ
AðxÞ� a: So a1 C a, therefore a1 C a2.

On the other hand, for any a[ a2, according to the

definition of a2, we can know that there exists x 2 RpðyÞ;
s.t. x 62 Aa; i.e., a1 B A(x) \ a, thus a[ a1, by the arbitrary

of a[ a2, we can obtain a2 C a1. Hence RUðAÞ ¼ R0UðAÞ:

The properties RUðAÞ ¼ R
0
UðAÞ;RVðBÞ ¼ R0VðBÞ and

RVðBÞ ¼ R
0
VðBÞ can be proved similarly.

Remark 3.2 We can obtain the same consequences for the

strong cut of A.

Definition 3.3 Let (U, V, R) be a generalized approxi-

mation space, A1;A2 2 FðUÞ;B1;B2 2 FðVÞ:
If RUðA1Þ ¼ RUðA2Þ; then A1 and A2 are called lower

rough equivalences of U, denoted by A1 g UA2;

If RUðA1Þ ¼ RUðA2Þ; then A1 and A2 are called upper

rough equivalences of U, denoted by A1 ’ U A2;

If RUðA1Þ ¼ RUðA2Þ and RUðA1Þ ¼ RUðA2Þ; then A1 and

A2 are called rough equivalences of U, denoted by A1 � U A2;

If RVðB1Þ ¼ RVðB2Þ; then B1 and B2 are called lower

rough equivalences of V, denoted by B1 g V B2;

If RVðB1Þ ¼ RVðB2Þ; then B1 and B2 are called upper

rough equivalences of V, denoted by B1^V B2,

If RVðB1Þ ¼ RVðB2Þ and RVðB1Þ ¼ RVðB2Þ; then B1 and

B2 are called rough equivalences of V, denoted by B1 � V B2:

Proposition 3.1 Let (U, V, R) be a generalized approxi-

mation space, A1, A2, A01, A02 2 FðUÞ; B1;B2;B
0
1;B

0
2 2

FðVÞ; then

(1) A1 g UA2 , ðA1 \ A2ÞgUA2; ðA1 \ A2Þg UA1;

B1 g V B2 , ðB1 \ B2Þg V B2; ðB1 \ B2Þg V B1;
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(2) A1 ’ U A2 , ðA1 [ A2Þ ’ U A2; ðA1 [ A2Þ ’ U A1;

B1 ’ V B2 , ðB1 [ B2Þ ’ V B2; ðB1 [ B2Þ ’ V B1;

(3) If A1 gUA01;A2gUA02; then ðA1 \ A2ÞgUA01 \ A02;

if A1 ’U A
0
1;A2 ’U A02; then ðA1 [ A2Þ ’U A01 [ A02;

if B1gV B01;B2gVB02; then ðB1 \ B2ÞgV B01 \ B02;

if B1 ’V B01;B2 ’V B02; then ðB1 [ B2Þ ’V B01 [ B02:

(4) if A1gU; or A01gU;; then A1 \ A01gU;;
if B1gV;;B01gV;; then B1 \ B01gV;:

(5) If A1 ’U U or A01 ’U U; then A1 [ A01 ’U U;

if B1 ’V VorB01 ’V V ; then B1 [ B01 ’V V:

(6) If A1 � A01 and A01gU;; then A1gU;;
if B1 � B01 and B01gV;; then B1gV;:

(7) If A1 � A01 and A1 ’U U; then A01 ’U U;

if B1 � B01 and B1 ’V V ; then B01 ’V V :

Proof Straightforward.

Theorem 3.4 Let (U, V, R) be a generalized approxi-

mation space, A [ F(U), B [ F(V), then

(1) RUðAÞ ¼ f\A0 2 FðUÞjAgUA0g;
RVðBÞ ¼ f\B0 2 FðVÞjBgV B0g;

(2) RUðAÞ ¼ f[A0 2 FðUÞjA ’U A0g;
RVðBÞ ¼ f[B0 2 FðVÞjB ’V B0g:

Proof We can obtain them according to Proposition 3.1.

Theorem 3.5 Let (U, V, R) be a generalized approxi-

mation space, A [ F(U), for any 0 B a, b B 1, if R is a

reverse serial relation on U 9 V, denote

RUðAÞÞa ¼ fy 2 V jðRUðAÞÞðyÞ� ag;
ðRUðAÞÞb ¼ fy 2 V jðRUðAÞÞðyÞ� bg;

then

(1) ðRUðAÞÞa � RUððAÞaÞ; ðRUðAÞÞb � RUððAÞbÞ:
(2) a� b) ðRUðAÞÞa � ðRUðAÞÞa � ðRUðAÞÞb:

Proof

(1) For any y 2 RUðAaÞ ) ; 6¼ RpðyÞ � Aa ) 8x 2
RpðyÞ � Aa ) 8x 2 RpðyÞ;AðxÞ� a) min AðxÞjx 2
RpðyÞ� a ) RUðAÞðyÞ� a) y 2 ðRUðAÞÞa: Thus,

we can have ðRUðAÞÞa � RUððAÞaÞ:
The property ðRUðAÞÞa � RUððAÞaÞ: can be proved

similarly.

(2) Since a C b, we can obtain 8y 2 ðRUðAÞÞa )
minfAðxÞjx 2 RpðyÞg� a) maxfAðxÞjx 2 RpðyÞg�
a) y 2 ðRUðAÞÞa ) maxfAðxÞjx 2 RpðyÞg� a�
b) y 2 ðRUðAÞÞb; therefore, ðRUðAÞÞa � ðRUðAÞÞa
� ðRUðAÞÞb:

Theorem 3.6 Let (U, V, R) be a generalized approxi-

mation space, B 2 FðVÞ; for any 0 B a, b B 1, if R is a

serial relation on U 9 V, denote

RVðBÞÞa ¼ fx 2 UjðRVðBÞÞðxÞ� ag;
ðRVðBÞÞb ¼ fx 2 UjðRVðBÞÞðxÞ� bg;

then

(1) ðRVðBÞÞa � RVðBaÞ; ðRVðBÞÞb � RVðBbÞ:
(2) a� b) ðRUðAÞÞa � ðRUðAÞÞb;

ðRVðBÞÞa � ðRVðBÞÞb:

Proof The proof is similar to Theorem 3.5.

3.2 Rough set in a fuzzy approximation space

Let U and V be two non-empty finite sets called double

universes of discourse. R be an arbitrary fuzzy relation on

U 9 V, the ordered triple (U, V, R) is called fuzzy

approximation space.

Definition 3.4 Let (U, V, R) be a fuzzy approximation

space, for X � U Y � V; denote

RUðXÞðyÞ¼min
x 62X
ð1	Rðx;yÞÞ;RUðXÞðyÞ¼max

x2X
Rðx;yÞy2V ;

RVðYÞðxÞ¼min
y 62Y
ð1	Rðx;yÞÞ;RVðYÞðxÞ¼max

y2Y
Rðx;yÞ x2U;

then RUðXÞ is called the fuzzy lower approximation of the

set X on the universe U, RUðXÞ is called the fuzzy upper

approximation of the set X on the universe U, RVðYÞ is

called the fuzzy lower approximation of the set Y on the

universe V, and RVðYÞ is called the fuzzy upper approxi-

mation of the set Y on the universe V.

If for any y 2 V(respectively, x 2 UÞ; RUðXÞðyÞ ¼
RUðXÞðyÞ (respectively, RVðYÞðxÞ ¼ RVðYÞðxÞÞ; then the

set X (respectively, Y) is definable with respect to fuzzy

approximation space (U, V, R). Otherwise the set X

(respectively, Y) is rough set with respect to the fuzzy

approximation space.

Example 3.2 The student comprehensive evaluation sys-

tem of some college is given in Table 2, U ¼
fMental quality; Intelligent quality;Physical qualityg is a

universe, V ¼ fBest;Better;Good;Badg is the evaluation

set as the other universe, and the relationships of U and V

are follows:

Table 2 The student comprehensive evaluation system of some

college

(U, V) Best Better Good Bad

Mental quality 0.7 0.6 0.5 0.8

Intelligent quality 0.6 0.9 1 0.8

Physical quality 0.7 0.4 0.3 0.2
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Let’s consider the lower and upper approximations

of the set X = {Mental quality, Intelligent quality} and

Y = {Best, Better, Good}.

Obviously, we can obtain

RUðXÞ ¼ ð0:3; 0:6; 0:7; 0:8Þ; RUðXÞ ¼ ð0:7; 0:9; 1; 0:8Þ;
RVðYÞ ¼ ð0:2; 0:2; 0:8Þ; RVðYÞ ¼ ð0:7; 1; 0:7Þ:

Remark 3.3 In a fuzzy approximation space, we can find

out that the lower and upper approximations of fuzzy set

X 2 U belong to F(V), and the lower and upper

approximations of fuzzy set Y 2 V belong to F(U)

according the results of Example 3.2. This property is

different from the lower and upper approximations over a

universe. What’s more, the property RVðYÞ � RVðYÞ is not

true in fuzzy approximation space.

Based on the above definitions, some properties of lower

and upper approximation operators will be obtained.

Theorem 3.7 Let (U, V, R) be a fuzzy approximation

space, for any X � U; X0 � U; Y � V ; Y 0 � V ; we have the

following properties.

(1) RUðUÞ ¼ V; RUð;Þ ¼ ;; RVðVÞ ¼ U; RVð;Þ ¼ ;;
(2) RUðXÞ ¼ �RUð�XÞ;RUðXÞ ¼ �RUð�XÞ;

RVðYÞ ¼ �RVð� YÞ;RVðYÞ ¼ �RVð� YÞ;
(3) RUðX\X0Þ ¼RUðXÞ\RUðX0Þ;

RUðX[X0Þ ¼RUðXÞ[RUðX0Þ;
RVðY \Y 0Þ ¼RVðYÞ\RVðY 0Þ;
RVðY [Y 0Þ ¼RVðYÞ[RVðY 0Þ;

(4) X0 � X ) RUðX0Þ � RUðXÞ;RUðX0Þ � RUðXÞ;
Y 0 � Y ) RVðY 0Þ � RVðYÞ;RVðY 0Þ � RVðY 0Þ;

(5) RUðX[X0Þ �RUðXÞ[RUðX0Þ;
RUðX\X0Þ �RUðXÞ\RðX0Þ;
RVðY [Y 0Þ �RVðYÞ[RVðY 0Þ;
RVðY \Y 0Þ �RVðYÞ\RVðY 0Þ:

Proof According to the similarity of these characteristics,

we only need to prove the first portion of each properties.

(1) According to the definitions of fuzzy lower and fuzzy

upper approximation, we can obtain, Vy [ V,

RUðUÞðyÞ ¼ min
x 62U
ð1	 Rðx; yÞÞ ¼ 1;

RUð;ÞðyÞ ¼ max
x2;

Rðx; yÞ ¼ 0:

Therefore,8y 2 V ;we know y 2 RUðUÞ; y 2 �RUð;Þ:
Hence, we can obtain RUðUÞ ¼ V ;RUð;Þ ¼ ;:

(2) V y [ V, according to the definitions of fuzzy lower

and fuzzy upper approximation, we can obtain

RUð�XÞðyÞ ¼ min
x2X
ð1	 Rðx; yÞÞ ¼ 1	max

x2X
Rðx; yÞ

¼ �RUðXÞðyÞ:

So we can have RUðXÞ ¼ �RUð�XÞ:
The property RUðXÞ ¼ �RUð�XÞ can be proved

similarly.

(3) For 8y 2 V ; we can have

RUðX \ X0ÞðyÞ ¼ min
x62ðX\X0Þ

ð1	 Rðx; yÞÞ

¼ ðmin
x 62X
ð1	 Rðx; yÞÞÞ ^ ðmin

x 62X0
ð1	 Rðx; yÞÞÞ

¼ ðRUðXÞ \ RUðX0ÞÞðyÞ:

Hence, we can obtain RUðX \ X0Þ ¼ RUðXÞ \ RUðX0Þ:
(4) According to the definitions of fuzzy lower and fuzzy

upper approximation, (4) holds.

(5) According to the property (4), obviously, (5) holds.

Theorem 3.8 Let (U, V, R) be a fuzzy approximation

space, 8X � U; 8Y � V ; we have

RUðXÞ ¼ RUðXÞ , 8y 2 V;max
x 62X

Rðx;yÞ þmax
x2X

Rðx;yÞ ¼ 1;

RVðYÞ ¼ RVðYÞ , 8x 2 U;max
y 62Y

Rðx;yÞ þmax
y2Y

Rðx;yÞ ¼ 1:

Proof From the definitions of fuzzy lower and upper

approximation, 8y 2 V ; we have

RUðXÞ ¼ RUðXÞ , RUðXÞðyÞ ¼ RUðXÞðyÞ
, min

x 62X
ð1	 Rðx; yÞÞ ¼ max

x2X
Rðx; yÞ

, 1	max
x 62X

Rðx; yÞ ¼ max
x2X

Rðx; yÞ

, max
x 62X

Rðx; yÞ þmax
x2X

Rðx; yÞ ¼ 1:

The theorem has been proved completely.

Definition 3.5 Let (U, V, R) be a fuzzy approximation

space, 8x 2 U; 8y 2 V ;

½x� :V 7! ½0; 1� ½y� : U 7! ½0; 1�
y! Rðx; yÞ x! Rðx; yÞ:

[x] is called the fuzzy neighborhood of x on the universe U

and [y] is called the fuzzy neighborhood of y on the uni-

verse V.

Theorem 3.9 Let (U, V, R) be a fuzzy approximation

space, for any X � U; Y � V ; the following expressions

hold:

RUðXÞ ¼
\

x 62X

ð� ½x�Þ; RUðXÞ ¼
[

x2X

ð½x�Þ;

RVðYÞ ¼
\

y 62Y

ð� ½y�Þ; RVðYÞ ¼
[

y2Y

ð½y�Þ:

Proof It is easy to prove by the definitions of fuzzy

neighborhood.
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Definition 3.6 Let (U, V, R) be a fuzzy approximation

space, X1;X2 � U; Y1; Y2 � V:

If RUðX1Þ ¼ RUðX2Þ; then X1 and X2 are called fuzzy

lower rough equivalences of U, denoted by X1gUX2;

If RUðX1Þ ¼ RUðX2Þ; then X1 and X2 are called fuzzy

upper rough equivalences of U, denoted by X1 ’U X2;

If RUðX1Þ ¼ RUðX2Þ and RUðX1Þ ¼ RUðX2Þ; then X1 and

X2 are called fuzzy rough equivalences of U, denoted by

X1 �U X2;

If RVðY1Þ ¼ RVðY2Þ; then Y1 and Y2 are called fuzzy

lower rough equivalences of V, denoted by Y1gV Y2;

If RVðY1Þ ¼ RVðY2Þ; then Y1 and Y2 are called fuzzy

upper rough equivalences of V, denoted by Y1^V Y2,

If RVðY1Þ ¼ RVðY2Þ and RVðY1Þ ¼ RVðY2Þ; then Y1 and

Y2 are called fuzzy rough equivalences of V, denoted by

Y1 �V Y2:

Proposition 3.2 Let (U, V, R) be a fuzzy approximation

space, X1;X2;X
0
1;X

0
2 � U; Y1; Y2; Y

0
1; Y

0
2 � V ; then

(1) X1gUX2 , ðX1 \ X2ÞgUX2; ðX1 \ X2ÞgUX1;
Y1gVY2 , ðY1 \ Y2ÞgV Y2; ðY1 \ Y2ÞgVY1;

(2) X1 ’U X2 , ðX1 [ X2Þ ’U X2; ðX1 [ X2Þ ’U X1;

Y1 ’V Y2 , ðY1 [ Y2Þ ’V Y2; ðY1 [ Y2Þ ’V Y1;

(3) X1gUX
0
1;X2gUX

0
2; then ðX1 \ X2ÞgUX

0
1 \ X

0
2;

X1 ’U X
0
1;X2 ’U X

0
2; then ðX1 [ X2Þ ’U X

0
1 [ X

0
2;

Y1gVY
0
1; Y2gV Y

0
2; then ðY1 \ Y2ÞgV Y

0
1 \ Y

0
2;

Y1 ’V Y
0

1; Y2 ’V Y
0

2; then ðY1 [ Y2Þ ’V Y
0

1 [ Y
0

2:

(4) If X1gU; or X
0
1gU;; then X1 \ X

0
1gU;;

if Y1gV; or Y
0
1gV;; then Y1 \ Y

0
1gV;:

(5) If X1 ’U U or X
0

1 ’U U; then X1 [ X
0

1 ’U U;

if Y1 ’V V or Y
0
1 ’V V; then Y1 [ Y

0
1 ’V V:

(6) If X1 � X
0
1 and X

0
1gU;; then X1gU;;

if Y1 � Y
0
1 and Y

0
1gV;; then Y1gV;:

(7) If X1 � X
0

1and X1 ’U U; then X
0

1 ’U U;

if Y1 � Y
0
1 and Y1 ’V V ; then Y

0
1 ’V V :

Proof Straightforward.

Definition 3.7 Let (U, V, R) be a fuzzy approximation

space, the a cut relation and strong a cut relation of R are

denoted as Ra and Raþ , the lower and upper approximation

of X � U and Y � V based on Ra and Raþ could be defined

as follows:

Ra
UðXÞ ¼ fy 2 V jRa

pðyÞ � Xg; R
a
UðXÞ ¼ fy 2 V jRa

pðyÞ \ X 6¼ ;g;
Ra

VðYÞ ¼ fx 2 UjRa
s ðxÞ � Yg; R

a
VðYÞ ¼ fx 2 UjRa

s ðxÞ \ Y 6¼ ;g;
R

aþ
U ðXÞ ¼ fy 2 V jRaþ

p ðyÞ � Xg; R
aþ
U ðXÞ ¼ fy 2 V jRaþ

p ðyÞ \ X 6¼ ;g;
R

aþ
V ðYÞ ¼ fx 2 UjRaþ

s ðxÞ � Yg; R
aþ
V ðYÞ ¼ fx 2 UjRaþ

s ðxÞ \ Y 6¼ ;g;

where

Ra
s ðxÞ ¼ fy 2 V jRðx; yÞ� ag; Raþ

s ðxÞ ¼ fy 2 V jRðx; yÞ[ ag;
Ra

pðyÞ ¼ fx 2 UjRðx; yÞ� ag; Raþ
p ðyÞ ¼ fx 2 UjRðx; yÞ[ ag:

Ra
UðXÞ; R

a
UðXÞ are called the a level lower and upper

approximation of the set X on the universe U, Ra
VðYÞ;

R
a
VðYÞ are named the a level lower and upper approxima-

tion of the set Y on the universe V, R
aþ
U ðXÞ; R

aþ
U ðXÞ are

called the strong a level lower and upper approximation of

the set X on the universe U, and R
aþ
V ðYÞ; R

aþ
V ðYÞ are named

the strong a level lower and upper approximation of the set

Y on the universe V.

Theorem 3.10 Let (U, V, R) be a fuzzy approximation

space, we can have

R
a
UðXÞ ¼ ðRUðXÞÞa; R

a
VðYÞ ¼ ðRVðYÞÞa;

where X � U; Y � V; a 2 ½0; 1�:

Proof For 8y 2 RaðXÞ; we can have Ra
pðyÞ \ X 6¼ ;; that

is to say 9x 2 X s.t. Rðx; yÞ� a: So we can obtain

max
x2X

Rðx; yÞ� a; i.e., y 2 ðRðXÞÞa:

Conversely, if y 2 ðRðXÞÞa; then max
x2X

Rðx; yÞ� a; that is

to say 9x 2 X s.t. Rðx; yÞ� a; i.e., Ra
pðyÞ \ X 6¼ ;; There-

fore, y 2 RaðXÞ:
The theorem only holds for the upper approximation,

not for the lower approximation. In the following, we will

give an example.

Example 3.3 From Example 3.2, if we take a = 0.3, then

R0.3 is a general relation on U 9 V in Table 3:

We have got

ðRUðXÞÞ0:3 ¼ V ; ðRUðXÞÞ0:3 ¼ V;
ðRVðYÞÞ0:3 ¼ fPhysical qualityg; ðRVðYÞÞ0:3 ¼ U;

R0:3
U ðXÞ ¼ fBadg; R

0:3
U ðXÞ ¼ V ;

R0:3
V ðYÞ ¼ fIntelligent quality;Physical qualityg; R

0:3
V ðYÞ ¼ U:

Hence, the following is obviously true

R0:3
U ðXÞ 6¼ ðRUðXÞÞ0:3; R

0:3
U ðXÞ ¼ ðRUðXÞÞ0:3;

R0:3
V ðYÞ 6¼ ðRVðYÞÞ0:3; R

0:3
V ðYÞ ¼ ðRVðYÞÞ0:3:

Theorem 3.11 Let (U, V, R) be a fuzzy approximation

space, we can have

R
ð1	aÞþ
U ðXÞ ¼ ðRUðXÞÞa; R

ð1	aÞþ
V ðYÞ ¼ ðRVðYÞÞa;

where X � U; Y � V; a 2 ½0; 1�:

Proof 8y 2 R
ð1	aÞþ
U ðXÞ; we can have R

ð1	aÞþ
p ðyÞ � X; that

is to say Vx [ U, if R(x, y) [ 1 - a then x [ X. So we can

obtain min
x 62X
ð1	 Rðx; yÞÞ� a i.e., y 2 ðRUðXÞÞa:
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Conversely, if y 2 ðRUðXÞÞa; then min
x 62X
ð1	 Rðx; yÞÞ� a;

that is to say 8x 62 X s.t. 1 - R(x,y) C a. I.e., V x [ U, if

R(x,y) [ 1 - a then x [ X. Therefore, y 2 RaðXÞ:

Theorem 3.12 Let (U, V, R) be a fuzzy approximation

space, if a\b; 8X � U; Y � V we can have

(1) Ra
UðXÞ � R

b
UðXÞ; R

b
UðXÞ � R

a
UðXÞ;

R
aþ
U ðXÞ � R

bþ
U ðXÞ; R

bþ
U ðXÞ � R

aþ
U ðXÞ;

(2) Ra
VðYÞ � R

b
VðYÞ; R

b
VðYÞ � R

a
VðYÞ;

R
aþ
V ðYÞ � R

bþ
V ðYÞ; R

bþ
V ðYÞ � R

aþ
V ðYÞ:

Proof According to the similarity of the above properties,

we only need to prove the first part of each property.

(1) For any y 2 Ra
UðXÞ; i.e., Ra

pðyÞ � X: Note that

a\ b, thus, Rb � Ra and Rb
pðyÞ � Ra

pðyÞ; that is to

say y 2 R
b
UðXÞ: Therefore, the properties Ra

UðXÞ �
R

b
UðXÞ and R

aþ
U ðXÞ � R

bþ
U ðXÞ can be proved similarly.

(2) It is similar to prove that Ra
VðYÞ � R

b
VðYÞ and

R
aþ
V ðYÞ � R

bþ
V ðYÞ:

Definition 3.8 Let (U, V, R) be a fuzzy approximation

space, for any X � U; Y � V; we can denote

R0UðXÞðyÞ ¼ supfajy 2 R1	a
U ðXÞg; R

0
UðXÞðyÞ ¼ supfajy 2 R

a
UðXÞg;

R0VðYÞðxÞ ¼ supfajx 2 R1	a
V ðYÞg; R

0
VðYÞðxÞ ¼ supfajx 2 R

a
VðYÞg;

R00UðXÞðyÞ ¼ supfajy 2 R
ð1	aÞþ
U ðXÞg; R

00
UðXÞðyÞ ¼ supfajy 2 R

aþ
U ðXÞg;

R00VðYÞðxÞ ¼ supfajx 2 R
ð1	aÞþ
V ðYÞg; R

00
VðYÞðxÞ ¼ supfajx 2 R

aþ
V ðYÞg;

where R0UðXÞ;R
0
UðXÞðyÞ are called the fuzzy strong lower

and upper approximation of the set X on the universe

U, R0VðYÞ; R
0
VðYÞ are named the fuzzy strong lower and

upper approximation of the set Y on the universe V, R00UðXÞ;
R
00
UðXÞ are called the fuzzy weak lower and upper

approximation of the set X on the universe U, and R00VðYÞ;
R
00
VðYÞ are named the fuzzy weak lower and upper

approximation of the set Y on the universe V.

Theorem 3.13 Let (U, V, R) be a fuzzy approximation

space, then the following properties hold.

(1) R
0
UðXÞ ¼ RUðXÞ; R

0
VðYÞ ¼ RVðYÞ;

(2) R00UðXÞ ¼ RUðXÞ; R00VðYÞ ¼ RVðYÞ;
(3) R

0
UðXÞ ¼ �R00Uð�XÞ; R

0
VðYÞ ¼ �R00Vð� YÞ:

Proof According to the similarity of the above properties,

we only need to prove the first part of each property.

(1) For any y [ V, denote

b1 ¼ RUðXÞðyÞ ¼ max
x2X

Rðx; yÞ;

b2 ¼ R
0
UðXÞðyÞ ¼ supfajRa

pðyÞ \ X 6¼ ;g;

according to the definition of b1, we can know that there

exists x 2 X s.t. R(x, y) = b1, that is to say x 2 Ra
pðyÞ: So

Ra
pðyÞ \ X 6¼ ;; thus b2� b1:

Suppose b2 [ b1, we can see that there exists b0 satisfying

b2 [ b0 [ b1, so we can obtain that there exists x [ X,

s.t. R(x,y) C b0 from the definition of b2. Therefore,

max
x2X

Rðx; yÞ� b0; which isn’t consistent with b0 [ b1:

Hence, b2 ¼ b1:

(2) It is similar to prove that R00UðXÞ ¼ RUðXÞ:
(3) By the items (1) and (2) we can have

R
0
UðXÞ ¼ RUðXÞ ¼ �RUð�XÞ ¼ �R00Uð�XÞ:

Definition 3.9 Let R is a binary fuzzy relation on

U 9 V ,

(1) R is a fuzzy serial relation, if for any x 2 U there

exists y 2 V such that R(x, y) = 1,

(2) R is a fuzzy reverse serial relation, if for any y 2 V

there exists x 2 U such that R(x,y) = 1.

Theorem 3.14 Let (U, V, R) be a fuzzy approximation

space, 8X � U; Y � V ; if R is a fuzzy serial relation, the

RUðXÞ is a normal fuzzy set, if R is a fuzzy reverse serial

relation, the RVðYÞ is a normal fuzzy set.

Proof Since R is a fuzzy serial relation, then for any x 2
U there exists y 2 V; such that R(x,y) = 1. Thus,

RUðXÞðyÞ ¼ max
x2X

Rðx; yÞ ¼ 1:

Since R is a fuzzy reverse serial relation, then for any

y 2 V there exists x 2 U such that R(x,y) = 1. Thus,

RVðYÞðxÞ ¼ max
y2Y

Rðx; yÞ ¼ 1:

Theorem 3.15 Let (U, V, R) be a fuzzy approximation

space, for any X � U; Y � V; if R is a fuzzy reverse serial

relation, then

RUðXÞ � RUðXÞ;

if R is a fuzzy serial relation, then

RVðYÞ � RVðYÞ:

Table 3 The relation R0.3 on U 9 V

R0.3 Best Better Good Bad

Mental quality 1 1 1 1

Intelligent quality 1 1 1 1

Physical quality 1 1 1 0
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Proof Since R is a fuzzy reverse serial relation, then for

any y 2 V; there exists x 2 U such that R(x,y) = 1. Thus,

for any y 2 V there exists x 2 U such that maxx2X Rðx; yÞ þ
maxx 62X Rðx; yÞ� 1; That is to say

RUðXÞðyÞ 	 RUðXÞðyÞ ¼ max
x2X

Rðx; yÞ 	min
x 62X
ð1	 Rðx; yÞÞ

¼ max
x2X

Rðx; yÞ þmax
x 62X

Rðx; yÞ 	 1

� 0:

Thus, 8y 2 V; RUðXÞðyÞ�RUðXÞðyÞ; i.e., RUðXÞ � RUðXÞ:

If R is a fuzzy serial relation, then, V x [ U there exists

y [ V such that R(x,y) = 1. Thus V x [ U there exists y [
V such that

max
y2Y

Rðx; yÞ þmax
y 62Y

Rðx; yÞ� 1:

That is to say

RVðYÞðxÞ 	 RVðYÞðxÞ ¼ max
y2Y

Rðx; yÞ 	min
y 62Y
ð1	 Rðx; yÞÞ

¼ max
y2Y

Rðx; yÞ þmax
y 62Y

Rðx; yÞ 	 1

� 0:

Thus, 8x 2 U; RVðYÞðxÞ�RVðYÞðxÞ; i.e., RVðYÞ � RVðYÞ:

3.3 Rough fuzzy set in a fuzzy approximation space

Definition 3.10 Let (U, V, R) is a fuzzy approximation

space, i.e, R is a fuzzy relation on U 9 V, for any A [
F(U) B [ F(V), the upper and lower approximations of A

and B about (U, V, R), denoted by RUA; RUA; RV B and

RV B are fuzzy sets and are, respectively, defined as

follows:

RUðAÞðyÞ ¼ ^fAðxÞ _ ð1	 Rðx; yÞÞjx 2 Ug y 2 V ;

RUðAÞðyÞ ¼ _fAðxÞ ^ Rðx; yÞjx 2 Ug y 2 V;

RVðBÞðxÞ ¼ ^fBðyÞ _ ð1	 Rðx; yÞÞjy 2 Vg x 2 U;

RVðBÞðxÞ ¼ _fBðyÞ ^ Rðx; yÞjy 2 Vg x 2 U:

In the following, we employ an example to illustrate the

above concepts.

Example 3.4 (Continued from Example 3.2) In Example

3.2, we have solved some questions, but we also can raise

the other questions such as:

If the comprehensive scholarship of a student is

A = 0.5, 0.3, 0.2, how about the evaluation of the student?

And if we have got the evaluation of a student is B =

0.4, 0.2, 0.2, 0.05, what is the comprehensive scholarship

according to the student comprehensive evaluation system?

Now, we can solve the above questions according to

Definition 3.10, we can have

RUðAÞ ¼ 0:3; 0:3; 0:3; 0:3;

RUðAÞ ¼ 0:5; 0:5; 0:5; 0:5;

RVðBÞ ¼ 0:2; 0:2; 0:3;

RVðBÞ ¼ 0:4; 0:4; 0:4:

Remark 3.4 In a fuzzy approximation space, we can find out

that the lower and upper approximations of fuzzy set A 2
FðUÞ belong to F(V), and the lower and upper approximations

of fuzzy set B 2 FðVÞ belong to F(U) according the results of

Example 3.4. This property is different from the lower and

upper approximations over a universe.

Theorem 3.16 Let (U, V, R) is a fuzzy approximation

space, i.e, R is a fuzzy relation on U 9 V, for any A;A0 2
FðUÞ; B, B0 [ F(V), we have the following properties.

(1) RUðAÞ ¼ �RUð�AÞ;RVðBÞ ¼ �RVð�BÞ;
(2) RUðA [ âÞ ¼ RUðAÞ [ â; RUðA \ âÞ ¼ RUðAÞ \ â;

RVðB [ âÞ ¼ RVðBÞ [ â; RVðB \ âÞ ¼ RVðBÞ \ â;

(3) RUðA\A
0 Þ ¼ RUðAÞ\RUðA

0 Þ;
RUðA[A

0 Þ ¼ RUðAÞ[RUðA
0 Þ;

RVðB\B
0 Þ ¼ RVðBÞ\RVðB

0 Þ;
RVðB[B

0 Þ ¼ RVðBÞ[RVðB
0 Þ;

(4) RUðA [ A
0 Þ � RUðAÞ [ RUðA

0 Þ;
RUðA \ A

0 Þ � RUðAÞ \ RUðA
0 Þ;

RVðB [ B
0 Þ � RVðBÞ [ RVðB

0 Þ;
RVðB \ B

0 Þ � RVðBÞ \ RVðB
0 Þ:

Proof All terms can be proved by Definition 3.10.

Theorem 3.17 Let (U, V, R) is fuzzy approximation

space, i.e, R is a fuzzy relation on U 9 V, for any A [
F(U), B [ F(V), we have

RUðAÞ ¼
_

a2½0;1�
½a ^ Ra

UðAaÞ� ¼
_

a2½0;1�
½a ^ Ra

UðAaþÞ�

¼
_

a2½0;1�
½a ^ R

aþ
U ðAaÞ� ¼

_

a2½0;1�
½a ^ R

aþ
U ðAaþÞ�;

RVðBÞ ¼
_

a2½0;1�
½a ^ Ra

VðBaÞ� ¼
_

a2½0;1�
½a ^ Ra

VðBaþÞ�

¼
_

a2½0;1�
½a ^ R

aþ
V ðBaÞ� ¼

_

a2½0;1�
½a ^ R

aþ
V ðBaþÞ�:

Proof For any y 2 V;
_

a2½0;1�
½a ^ Ra

UðAaÞ� ¼ supfa 2 ½0; 1�jx 2 Ra
UðAaÞg

¼ supfa 2 ½0; 1�jx 2 Ra
pðyÞ \ ðAaÞ 6¼ ;g

¼ supfa 2 ½0; 1�j9x 2 U; x 2 Ra
pðyÞ; x 2 Aag

¼ supfa 2 ½0; 1�j9x 2 U;Rðx; yÞ� a;AðxÞ� ag
¼ _AðxÞ ^ Rðx; yÞjx 2 U:

So RUðAÞ ¼
W

a2½0;1�½a ^ Ra
UðAaÞ�:
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The others of the equivalents can be proved similarly.

Theorem 3.18 Let (U, V, R) is fuzzy approximation

space, i.e, R is a fuzzy relation on U 9 V, for any A 2
FðUÞ; B [ F(V), we have

RUðAÞ ¼
_

a2½0;1�
½a ^ R1	a

U ðAaÞ� ¼
_

a2½0;1�
½a ^ R1	a

U ðAaþÞ�

¼
_

a2½0;1�
½a ^ R

ð1	aÞþ
U ðAaÞ� ¼

_

a2½0;1�
½a ^ R

ð1	aÞþ
U ðAaþÞ�;

RVðBÞ ¼
_

a2½0;1�
½a ^ R1	a

V ðBaÞ� ¼
_

a2½0;1�
½a ^ R1	a

V ðBaþÞ�

¼
_

a2½0;1�
½a ^ R

ð1	aÞþ
V ðBaÞ� ¼

_

a2½0;1�
½a ^ R

ð1	aÞþ
V ðBaþÞ�:

Proof The proof is similar to Theorem 3.17.

Theorem 3.19 Let (U, V, R) is fuzzy approximation

space, i.e, R is a fuzzy relation on U 9 V, for any x 2 U;

y [ V, A [ F(U), B [ F(V), we have

RUðAÞðyÞ ¼ supfa 2 ½0; 1�jy 2 Ra
UðAaÞg

¼ supfa 2 ½0; 1�jy 2 R
aþ
U ðAaÞg

¼ supfa 2 ½0; 1�jy 2 Ra
UðAaþÞg

¼ supfa 2 ½0; 1�jy 2 R
aþ
U ðAaþÞg;

RVðBÞðxÞ ¼ supfa 2 ½0; 1�jx 2 Ra
VðBaÞg

¼ supfa 2 ½0; 1�jx 2 R
aþ
V ðBaÞg

¼ supfa 2 ½0; 1�jx 2 Ra
VðBaþÞg

¼ supfa 2 ½0; 1�jx 2 R
aþ
V ðBaþÞg;

RUðAÞðyÞ ¼ supfa 2 ½0; 1�jy 2 R1	a
U ðAaÞg

¼ supfa 2 ½0; 1�jy 2 R
ð1	aÞþ
U ðAaÞg

¼ supfa 2 ½0; 1�jy 2 R1	a
U ðAaþÞg

¼ supfa 2 ½0; 1�jy 2 R
ð1	aÞþ
U ðAaþÞg;

RVðBÞðxÞ ¼ supfa 2 ½0; 1�jx 2 R1	a
V ðBaÞg

¼ supfa 2 ½0; 1�jx 2 R
ð1	aÞþ
V ðBaÞg

¼ supfa 2 ½0; 1�jx 2 R1	a
V ðBaþÞg

¼ supfa 2 ½0; 1�jx 2 R
ð1	aÞþ
V ðBaþÞg:

Proof We can prove it by Theorems 3.17, 3.18.

4 The measures of fuzzy rough set models over two

universes

In this section, we will research some measures of the

fuzzy rough set over different universes.

Definition 4.1 Let (U, V, R) be a generalized approxi-

mation space, A 2 FðUÞ; for any 0
 b
 a
 1; the

approximate precision aU(A)(a, b) of A about RU can be

defined as following:

aUðAÞða; bÞ ¼
jðRUAÞaj
jðRUAÞbj

;

where A = ;, j � j denotes the cardinality of set.

Let qUðAÞða; bÞ ¼ 1	 aRU
ðAÞða; bÞ; and qUðAÞða; bÞ is

called the rough degree of A about the universe U.

Theorem 4.1 Let (U, V, R) be a generalized approxi-

mation space, A 2 FðUÞ; for any 0 B b B a B 1, the

approximate precision aU(A)(a, b) and the rough degree

qU(A)(a, b) satisfy the properties as following:

0
 aUðAÞða; bÞ
 1; 0
 qUðAÞða; bÞ
 1:

Proof According to Definition 4.1, this theorem can be

proved easily.

Theorem 4.2 Let (U, V, R) be a generalized approxi-

mation space, A;A1 2 FðUÞ; A � A1; and ðRUAÞb ¼
ðRUA1Þb; for any 0 B b B a B 1,

aUðAÞða; bÞ
 aUðA1Þða; bÞ; qUðA1Þða; bÞ
 qUðAÞða; bÞ:

Proof Since A � A1; we can have ðRUAÞa � ðRUA1Þa: On

the other hand, ðRUAÞb ¼ ðRUA1Þb: Therefore, the theorem

can be proved by Definition 4.1.

Theorem 4.3 Let (U, V, R) be a generalized approxi-

mation space, A 2 FðUÞ; A1 [ F(U), and A � A1;

ðRUAÞa ¼ ðRUA1Þa; for any 0 B b B a B 1,

aUðA1Þða; bÞ
 aUðAÞða; bÞ; qUðAÞða; bÞ
 qUðA1Þða; bÞ:

Proof The proof is similar to Theorem 4.2.

Theorem 4.4 Let A;A1 2 FðUÞ; if A1 �U A; for any

0 B b B a B 1, we can have

aUðAÞða; bÞ ¼ aUðA1Þða; bÞ;
qUðA1Þða; bÞ ¼ qUðAÞða; bÞ:

Proof It can be proved by Definition 3.4 and Definition 4.1.

Theorem 4.5 Let U, V be two non-empty finite universes,

R be the relation of U 9 V. For any A;A1 2 FðUÞ: The

rough degree and precision of the A, A1, A [ A1 and A \
A1 satisfying the following relations.

qUðA [ A1Þða; bÞjðRUðAÞÞb [ ðRUðA1ÞÞbj

 qUðAÞða; bÞjðRUðAÞÞbj þ qUðA1Þða; bÞjðRUðA1ÞÞbj
	 qUðA \ A1Þða; bÞjðRUðAÞÞb \ ðRUðA1ÞÞbj

aUðA [ A1Þða; bÞjðRUðAÞÞb [ ðRUðA1ÞÞbj
� aUðAÞða; bÞjðRUðAÞÞbj þ aUðA1Þða; bÞjðRUðA1ÞÞbj
	 aUðA \ A1Þða; bÞjðRUðAÞÞb \ ðRUðA1ÞÞbj:
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Proof According to Theorem 3.1, we can obtain

qUðA [ A1Þða; bÞ ¼ 1	 jðRUðA [ A1ÞÞaj
jðRUðA [ A1ÞÞbj

¼ 1	 jðRUðA [ A1ÞÞaj
jðRUðAÞÞb [ ðRUðA1ÞÞbj


 1	 jðRUðAÞÞa [ ðRUðA1ÞÞaj
jðRUðAÞÞb [ ðRUðA1ÞÞbj

;

and

qUðA \ A1Þða; bÞ ¼ 1	 jðRUðA \ A1ÞÞaj
jðRUðA \ A1ÞÞbj

¼ 1	 jðRUðAÞÞa \ ðRUðA1ÞÞaj
jðRUðA [ A1ÞÞbj


 1	 jðRðUAÞÞa \ ðRUðA1ÞÞaj
jðRUðAÞÞb \ ðRUðA1ÞÞbj

:

Hence,

qUðA [ A1Þða; bÞjðRUðAÞÞb [ ðRUðA1ÞÞbj


 jðRUðAÞÞb [ ðRUðA1ÞÞbj 	 jðRUðAÞÞa [ ðRUðA1ÞÞaj

¼ jðRUðAÞÞbj þ jðRUðA1ÞÞb 	 jðRUðAÞÞb \ ðRUðA1ÞÞbj

	 jðRUðAÞÞaj 	 jðRUðA1ÞÞa þ jðRUðAÞÞa \ ðRUðA1ÞÞaj

 jðRUðAÞÞbj þ jðRUðA1ÞÞbj 	 jðRUðAÞÞaj 	 jðRUðA1ÞÞaj

qUðA \ A1Þða; bÞjðRUðAÞÞb \ ðRUðA1ÞÞbj

¼ qUðAÞða; bÞjðRUðAÞÞbj þ qUðA1Þða; bÞjðRUðA1ÞÞbj

	 qUðA \ A1Þða; bÞjðRUðAÞÞb \ ðRUðA1ÞÞbj:

The other inequality can be proved similarly.

In the following, we will give some results about the

measures of fuzzy approximation space.

Let (U, V, R) be a fuzzy approximation space, g :
U 7! Vd; Vd is a nonempty finite integer set, d is the

decision set, we call the (U, V, R, g, d) is a fuzzy decision

approximation space. denote

Dk ¼ x 2 UjgðxÞ ¼ k; k 2 Vd:

For any a 2 ½0; 1�; denote

Ra ¼ fðx; yÞjRðx; yÞ� ag;

then (U, V, Ra) is a generally approximation space, so we

can have

U=Ra ¼ f½x�ajx 2 Ug;

where

½x�a ¼ fxijRa
s ðxiÞ ¼ Ra

s ðxÞg;

the lower approximation of Dk in generally approximation

space (U, V, Ra) can be defined as

RaðDkÞ ¼ fx 2 Uj½x�a � Dkg; k
 r ¼j Vd j :

Definition 4.2 Let (U, V, R, g, d) be a fuzzy decision

approximation space, g : U 7! Vd; denote

Dðd=aÞ ¼ 1

jUj
Xr

k¼1

jRaðDkÞj;

as the decision precision of a level. Denote

D0ðd=aÞ ¼ min
jRaðDkÞj
jDkj

: jk
 r

� �

;

as the rule precision of a level.

Obviously, D(d/a) C D0(d/a).

Theorem 4.6 Let (U, V, R, g, d) be a fuzzy decision

approximation space, if a\ b, then

Dðd=aÞ�Dðd=bÞ;D0ðd=aÞ�D0ðd=bÞ:

Proof Since a\ b, we can have Rb � Ra and ½x�b � ½x�a;
so we can have

RaðDkÞ � RbðDkÞð8k
 lÞ:

According to Definition 4.1 we can obtain

Dðd=aÞ�Dðd=bÞ;D0ðd=aÞ�D0ðd=bÞ:

Definition 4.3 Let (U, V, R) and (U, V, G) be two fuzzy

approximation spaces, then (U, V, R, G) is called fuzzy

objective approximation space.

Let (U, V, R, G) be a fuzzy objective approximation

space, for any 0 B a, b B 1 denote

Ra ¼ fðx; yÞ 2 U � VjRðx; yÞ� ag;
Gb ¼ fðx; yÞ 2 U � VjGðx; yÞ� bg:

So we have

U=Ra ¼ f½x�ajx 2 Ug; ½x�a ¼ fxijRa
s ðxiÞ ¼ Ra

s ðxÞg;
U=Gb ¼ f½x�bjx 2 Ug; ½x�b ¼ fxijGb

s ðxiÞ ¼ Gb
s ðxÞg;

where

Ra
s ðxÞ ¼ fy 2 Vjðx; yÞ 2 Rag;

Gb
s ðxÞ ¼ fy 2 Vjðx; yÞ 2 Gbg:

Definition 4.4 Let (U, V, R, G) be a fuzzy objective

approximation space, for any 0 B a, b B 1, denote

D
b
Uðd=aÞ ¼

1

jUj
X

D2U=Gb

jRaðDÞj;

as the decision precision of (a, b) level, denote

D
0b
U ðd=aÞ ¼ min

jRaðDÞ
jDj jjD 2 U=Gb;

as the rule precision of (a, b) level, where
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Ra
UðDÞ ¼ fx 2 Uj½x�a � Dg:

Theorem 4.7 Let (U, V, R, G) be a fuzzy objective

approximation space, for any 0 B a, b B 1, we have

(1) DU
b (d/a) C DU

0b(d/a),

(2) a1\a2 ) D
b
Uðd=a1Þ
D

b
Uðd=a2Þ;

D
0b
U ðd=a1Þ
D

0b
U ðd=a2Þ;

(3) b1\b2 ) D
b2

U ðd=aÞ
D
b1

U ðd=aÞ;
D
0b2

U ðd=aÞ
D
0b1

U ðd=aÞ:

Proof According to Definition 4.3 and 4.4, the properties

can be proved easily.

Remark 4.1 The results about the universe U also hold for

the universe V.

5 The relationships among fuzzy rough set models

and rough set model over two universes

Theorem 5.1 If A � U; B � V and R � U � V; then the

rough fuzzy set in fuzzy approximation space can be

degenerated into rough set model over two universes.

Proof According to the definitions of rough fuzzy set in

fuzzy approximation space, we can have

RUðAÞðyÞ ¼ 1, 8x 2 U;AðxÞ _ ð1	 Rðx; yÞÞ ¼ 1

, 8x 2 U; if x 62 A) ðx; yÞ 62 R

, 8x 62 A) x 62 RpðyÞ
, RpðyÞ � A;

RUðAÞðyÞ ¼ 1, 9x 2 U; s:t:;AðxÞ ¼ 1 and Rðx; yÞ
¼ 1, A \ RpðyÞ 6¼ ;;

RVðBÞðxÞ ¼ 1, 8y 2 V;BðyÞ _ ð1	 Rðx; yÞÞ ¼ 1

, 8y 2 V; if y 62 B) ðx; yÞ 62 R

, 8x 62 B) y 62 RsðxÞ
, RsðxÞ � B;

RVðBÞðxÞ ¼ 1, 9y 2 V; s:t:;BðyÞ ¼ 1 and

Rðx; yÞ ¼ 1, B \ RsðxÞ 6¼ ;:

Theorem 5.2 If A 2 FðUÞ; B [ F(V) and R � U � V;

then rough fuzzy set in a fuzzy approximation space can be

degenerated into rough fuzzy set in a generalized

approximation space.

Proof According to the definitions of rough fuzzy set in

fuzzy approximation space, we can have

RUðAÞðyÞ ¼ minfAðxÞ _ ð1	 Rðx; yÞÞjx 2 Ug
¼ minfAðxÞjðx; yÞ 2 Rg
¼ minfAðxÞjx 2 RpðyÞg;

RUðAÞðyÞ ¼ maxfAðxÞ ^ Rðx; yÞjx 2 Ug
¼ maxfAðxÞjðx; yÞ 2 Rg
¼ maxfAðxÞjx 2 RpðyÞg;

RVðBÞðxÞ ¼ minfBðyÞ _ ð1	 Rðx; yÞÞjy 2 Vg
¼ minfBðyÞjðx; yÞ 2 Rg ¼ minfBðyÞjy 2 RsðxÞg;

RVðBÞðxÞ ¼ maxfBðyÞ ^ Rðx; yÞjy 2 Vg
¼ maxfBðyÞjðx; yÞ 2 Rg
¼ maxfBðyÞjy 2 RsðxÞg:

Theorem 5.3 If A � U; B � V and R : U � V 7! ½0; 1�;
then rough fuzzy set in a fuzzy approximation space can be

degenerated rough set in a fuzzy approximation space.

Proof According to the definitions of rough fuzzy set in

fuzzy approximation space, we can have

RUðAÞðyÞ ¼ minfAðxÞ _ ð1	 Rðx; yÞÞjx 2 Ug
¼ min

x 62A
ð1	 Rðx; yÞÞ;

RUðAÞðyÞ ¼ maxfAðxÞ ^ Rðx; yÞjx 2 Ug ¼ max
x2A

Rðx; yÞ;

RVðBÞðxÞ ¼ minfBðyÞ _ ð1	 Rðx; yÞÞjy 2 Vg
¼ min

y 62B
ð1	 Rðx; yÞÞ;

RVðBÞðxÞ ¼ maxfBðyÞ ^ Rðx; yÞjy 2 Vg ¼ max
y2B

Rðx; yÞ:

Theorem 5.4 If A � U; B � V and R � U � V; then the

rough fuzzy set in a generalized approximation space can

be degenerated into rough set model over two universes.

Proof According to the definitions of rough fuzzy set in a

generalized approximation space, we can have

RUðAÞðyÞ ¼ 1,8x 2 RpðyÞ ) AðxÞ ¼ 1, RpðyÞ � A;

RUðAÞðyÞ ¼ 1,9x 2 RpðyÞ ) AðxÞ ¼ 1, RpðyÞ \A 6¼ ;;
RVðBÞðxÞ ¼ 1,8y 2 RsðxÞ ) BðyÞ ¼ 1, RsðxÞ � B;

RVðBÞðxÞ ¼ 1,9y 2 RsðxÞ ) BðyÞ ¼ 1, RsðxÞ \B 6¼ ;:

Theorem 5.5 If A� U; B� V and R� U �V; then the

rough set in fuzzy approximation space can be degenerated

into rough set model over two universes.

Proof According to the definitions of rough set in fuzzy

approximation space, we can have

RUðAÞðyÞ ¼ 1, 8x 62 A) Rðx; yÞ ¼ 0, 8x 62 A) x 62 RpðyÞ
, 8x 2 RpðyÞ ) x 2 A, RpðyÞ � A;

RUðAÞðyÞ ¼ 1, 9x 2 A) Rðx; yÞ ¼ 1, 9x 2 A) x 2 RpðyÞ
, RpðyÞ \ A 6¼ ;;

RVðBÞðxÞ ¼ 1, 8y 62 B) Rðx; yÞ ¼ 0, 8y 62 B) y 62 RsðxÞ
, 8y 2 RsðxÞ ) y 2 B, RsðxÞ � B;

RVðBÞðxÞ ¼ 1, 9y 2 B) Rðx; yÞ ¼ 1, 9y 2 B) y 2 RsðxÞ
, RsðxÞ \ B 6¼ ;:
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According to the Theorem 5.1, 5.2, 5.3,5.4,5.5 we can

know that the rough set models over two universes are the

special cases of the fuzzy rough set models over two

universes. We also can easily find out that the fuzzy rough

set models over two universes can be degenerated into

Pawlak rough set model over a universe according to

Remark 2.1.

6 Conclusion

From a generalized approximation space (U, V, R) to a

fuzzy approximation space (U, V, R), we have defined

rough fuzzy set in generalize approximation, rough set in

fuzzy approximation space and rough fuzzy set in fuzzy

approximation space over different universes which

respectively resulted from the approximation of fuzzy

information system on a universe, and mainly discussed the

properties of the approximation operators and a level lower

and upper approximation operators. In addition, the inter-

relationships of the lower and upper approximation on a
level of the fuzzy relation R and the a level of the lower

and upper approximation of the fuzzy relation R are ana-

lyzed. What’s more, the measures of the fuzzy rough set

models are also studied. Finally, the relationships among

fuzzy rough set models and rough set models over two

universes are investigated.
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