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Abstract: Double-quantitative rough approximation, containing two types of quan-

titative information, indicated stronger generalization ability and more accurate data

processing capacity than the single-quantitative rough approximation. In this paper,

the neighborhood-based double-quantitative rough set models are firstly presented in a

set-valued information system. Secondly, the attribute reduction method based on the

lower approximation invariant is addressed, and the relevant algorithm for the approx-

imation attribute reduction is provided in the set-valued information system. Finally,

to illustrate the superiority and the effectiveness of the proposed reduction approach,

experimental evaluation is performed using three datasets coming from the University of

California-Irvine (UCI) repository.
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§1. Introduction

Rough set model [9] proposed by Pawlak, is a mathematical theory for data analysis.

However, the traditional Pawlak rough set can only handle discrete data, and it is impossible

to process the quantitative information. In order to make the rough set model suitable for
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more kinds of data processing scenarios, many scholars have extended the rough set model from

multiple perspectives. Yao et al. proposed the rough set decision model based on Bayesian

risk analysis [13,14], Wong and Ziarko raised the 0.5-probability rough set model [10], Ziarko

put forward a variable precision rough set model [21], Sun and Gong extended the variable

precision probabilistic rough set model [11], Li and Xu considered two types of quantitative

information on the basis of the probability rough set model and the degree rough set model, and

proposed the the double-quantitative rough set model [5]. From the results reported in [5], it

could find that the double-quantitative rough set model has strong fault tolerance. The relative

and absolute quantitative information are two kinds of quantification mythologies encountered

in certain applications [3, 12,18–20].

Attribute reduction is an important issue of knowledge discovery [7, 8, 15–17]. As the

information system often contains redundant attributes, it is necessary to obtain the necessary

attributes of the information system to extract useful and important information, so as to

improve the decision-making efficiency of the model [1,2,4,6]. In this paper, we want to establish

a double-quantitative rough set model in an information system with the set-valued data and

discover the decision-making rules based on the proposed models, and then propose a lower

approximation reduction algorithm for the model.

The paper is organized as follows. Related concepts are reviewed briefly in Section 2. In

Section 3, we construct a fuzzy similarity relation in the set-valued information system, and

derive the corresponding fuzzy similarity classes. And then present the neighborhood-based

set-valued single-quantitative rough sets. In Section 4, we mainly discuss the neighborhood-based

set-valued double-quantitative rough set models based on the fuzzy similarity relation. In Section

5, we develop the lower approximation reduction based on the presented double-quantitative

rough set models, and provide the corresponding algorithm for the reduction method. In

Section 6, we conduct a comprehensive analysis on the advantage and disadvantage for the

single-quantitative and double-quantitative models. Finally, Section 7 covers some conclusions.

§2. Preliminary and basic concepts

This section briefly reviews the basic knowledge of Pawlak rough set, single-quantization

models, and attribute reduction. In this paper, P (U) and F (U) represent the class of subsets

and fuzzy subsets of U , respectively.

Definition 2.1. Let (U,A,V,f) be an information system, R is an equivalence relation, for any

X⊆U , the upper and lower approximation of the target set X are defined as

R(X) ={x∈U |[x]R∩X 6=∅},

R(X) ={x∈U |[x]R⊆X}.

If R(X) =R(X), X is a definable set; If R(X) 6=R(X), X is a Pawlak rough set.

The Set PosR(X) is called positive domain if PosR(X) =R(X); the set NegR(X) is called
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positive domain if NegR(X) =∼R(X); the set BnR(X) is called boundary domain if BnR(X) =

R(X)−R(X).

Definition 2.2. Let (U,A,V,f) be an information system, X is the target set, B is an equivalence

relation, the upper and lower approximation operators based on the threshold α, β are defined as

B(α,β)(X) =

{
x∈U |

|[x]B∩X|
|[x]B |

>β

}
,

B(α,β)(X) =

{
x∈U |

|[x]B∩X|
|[x]B |

≥α
}
,

where 0≤β<α≤1. If B(α,β)(X) 6=B(α,β)(X), X is a probabilistic rough set (PRS) model.

Definition 2.3. Let (U,A,V,f) be an information system, for B⊆A, B is an equivalence

relation, given a parameter k to indicate the degree, which satisfies 0≤k≤|U |, k∈R, R is a set

of real numbers, for any X⊆U , the upper approximation operator and the lower approximation

operator are defined as

Bk(X) ={x∈U ||[x]B∩X|>k} ,

Bk(X) ={x∈U ||[x]B |−|[x]B∩X|≤k}.

If Bk(X)=Bk(X) then X is a degree k definable set; otherwise X is a degree k rough set, then

there is no inclusion relation between the upper approximation and the lower approximation.

Definition 2.4. Let B be the coordination set of (U,A,F ) for B⊆A, if RB =RA, and for any

b∈B, exists RB−{b} 6=RA, then B is the reduction of (U,A,F ). For any information system

(U,A,F ), its reduction always exists, and the intersection of all reductions is called the kernel of

the information system.

An information system can have multiple reductions, but the kernel is unique.

§3. Neighborhood-based set-valued single-quantitative rough sets

In this section, we mainly study how to construct neighborhood-based set-valued single-

quantitative rough set (NB-SV-SqRS) models. The first step in model construction is to construct

the fuzzy similarity relation on the set-valued information system, and obtain the corresponding

fuzzy similarity classes. As we know, the distance between two objects could reflect the degree

of difference for this two objects. In a sense, the greater the distance between two objects, the

lower similarity degree between the two objects. It is necessary to construct a distance function.

Definition 3.1. Let S=(U,A,V,f) be a set-valued information system, xi and xj are two

objects in U . If B⊆A, the distance dij of xi, xj about B is defined as:

dij = (

|B|∑
k=1

∣∣∣∣ |f(xi,ak)⊕f(xj ,ak)|
|f(xi,ak)∪f(xj ,ak)|

∣∣∣∣p)1/p,
where ⊕ is the symmetric difference operation of the set, if the value of p is different, the distance

represented is different. Choose p= 2 at here. The distance function has the following properties:
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(1) Non-negativity: dij≥0,

(2) Symmetric: dij =dji,

(3) Triangle inequality: dij≤dim+dmj.

It is clear that property (1), (2) was established, and now give the proof of property (3) by

contradiction. Suppose ∀xi,xm,xj⊆U , let a= |f(xi,ak)⊕f(xm,ak)|, b= |f(xm,ak)⊕f(xj ,ak)|,
c= |f(xi,ak)∪f(xm,ak)|, d= |f(xm,ak)∪f(xj ,ak)|. Assume property 3 is not true, so

dij≥dim+dmj . (a)

Equation a can be defined as∣∣∣∣ |f(xi,ak)⊕f(xj ,ak)|
|f(xi,ak)∪f(xj ,ak)|

∣∣∣∣2≥ ∣∣∣ac ∣∣∣2 +

∣∣∣∣ bd
∣∣∣∣2 +2(

∣∣∣∣abcd
∣∣∣∣2)1/2,∣∣∣∣ |f(xi,ak)⊕f(xj ,ak)|

|f(xi,ak)∪f(xj ,ak)|

∣∣∣∣2≥ ∣∣∣ac ∣∣∣2 +

∣∣∣∣ bd
∣∣∣∣2 +2

∣∣∣∣abcd
∣∣∣∣. (b)

According to the knowledge of set theory can find that A⊕B⊆ (A⊕C)∪(B⊕C) and A∪B⊆
(A∪C)∪(B∪C), thus

|A⊕B|≤ |A⊕C|+ |B⊕C|,

|A∪B|≤ |A∪C|+ |B∪C|.

Accordingly

dij≤ (

|B|∑
k=1

∣∣∣∣a+b

c+d

∣∣∣∣2)1/2,

thus ∣∣∣∣ |f(xi,ak)⊕f(xj ,ak)|
|f(xi,ak)∪f(xj ,ak)|

∣∣∣∣2≤ ∣∣∣∣ a

c+d

∣∣∣∣2 +

∣∣∣∣ b

c+d

∣∣∣∣2 +2

∣∣∣∣ ab

(c+d)2

∣∣∣∣.
Obviously, it can be seen that∣∣∣∣ a

c+d

∣∣∣∣2≤ ∣∣∣ac ∣∣∣2,
∣∣∣∣ b

c+d

∣∣∣∣2≤ ∣∣∣∣ bd
∣∣∣∣2, ∣∣∣∣ ab

(c+d)2

∣∣∣∣≤ ∣∣∣∣abcd
∣∣∣∣.

Therefore ∣∣∣∣ a

c+d

∣∣∣∣2 +

∣∣∣∣ b

c+d

∣∣∣∣2 +2

∣∣∣∣ ab

(c+d)2

∣∣∣∣≤ ∣∣∣ac ∣∣∣2 +

∣∣∣∣ bd
∣∣∣∣2 +2

∣∣∣∣abcd
∣∣∣∣.

So, equation b is not existed, it’s also signify that equation a is not established. In conclusion,

property 3 is established.

In order to get the similar value sij between the two object xi and xj under the attribute

set B through the distance function, however the value of sij should be between 0 and 1, so dij

need to normalized.
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Definition 3.2. Let (U,A,V,f) be a set-valued information system and B⊆A, dij is the

distance between two objects xi and xj under the attribute set B, Dij is the distance between

the two objects xi and xj under the attribute set A, then normalize dij to d∗ij:

d∗ij =
dij

max(Dij)
.

Definition 3.3. Let (U,A,V,f) be a set-valued information system and B⊆A, B̃ is the

neighborhood-based fuzzy similarity relationship of B, and its fuzzy similarity matrix S(B̃) is

defined as:

S(B̃) =


S11 .. . S1n

...
. . .

...

Sn1 ·· · Snn

,
where sij =1−d∗ij represents the similarity value between the two objects xi and xj, and the

relationship B̃ is the fuzzy similarity relationship.

Suppose I is a identity matrix, S(B̃) satisfies the following two properties:

(1) Reflexivity: I≤S(B̃)(⇔sii= 1).

(2) Symmetry: S(B̃)T =S(B̃)(⇔sij =sji).

Thus S(B̃) is a fuzzy similarity matrix, B̃ is proved by the fuzzy similarity relationship.

Definition 3.4. Let (U,A,V,f) be a set-valued information system and B⊆A, B̃ is the

fuzzy similarity relation of B, for any ∀x∈B, [xi]B̃ ={y|y∈B∧xB̃y}, [xi]B̃ is called the fuzzy

similarity class of xi about the fuzzy similarity relation B̃ which is referred to as the fuzzy

similarity class for short, abbreviated as [x].

If B̃ is the fuzzy similarity relation on set-valued information system (U,A,V,f), then [x]

has the following properties:

(1) ∀x∈A, [x] is a nonempty subset.

(2) ∪{[x] |x∈A}=A.

The previous section explained how to construct a fuzzy similarity relation. The following will

discuss how to construct two single-quantitative rough set models. The difference between the two

models is that the introduced quantitative information is different. The introduction of relative

quantitative information can construct a neighborhood-based set-valued probabilistic single-

quantitative rough set (NB-SVP-SqRS); the introduction of absolute quantitative information can

construct a neighborhood-based set-valued degree single-quantitative rough set (NB-SVD-SqRS).

Definition 3.5. Let (U,A,V,f) be a set-valued information system and B⊆A, B̃ is the fuzzy

similarity, for any X̃ ∈F(U), F(U) represents the class of all fuzzy subsets of U , let 0≤β<α≤1,

then the upper approximation operator and lower approximation operator of the probabilistic

set-valued information system are

B̃(α,β)(X̃) =

x∈U |
∣∣∣[x]B̃∩X̃

∣∣∣
|[x]B̃ |

>β

,
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B̃(α,β)(X̃) =

x∈U |
∣∣∣[x]B̃∩X̃

∣∣∣
|[x]B̃ |

≥α

.
The upper approximation operator and lower approximation operator of the probabilistic

set-valued information system can also be defined as

B̃(α,β)(X̃) =
{
x∈U |

∣∣∣[x]B̃∩X̃
∣∣∣>β · |[x]B̃ |

}
,

B̃(α,β)(X̃) =
{
x∈U |

∣∣∣[x]B̃∩X̃
∣∣∣≥α · |[x]B̃ |

}
.

It can be seen that there is a strict containment relationship between B̃(α,β)(X̃) and

B̃(α,β)(X̃), which is B̃(α,β)(X̃)⊆ B̃(α,β)(X̃).

Definition 3.6. Let (U,A,V,f) be a set-valued information system and B⊆A, B̃ is the fuzzy

similarity relation of B, 0≤k≤|U |, k∈R, for any X̃ ∈F(U), then the upper approximation

operator and lower approximation operator of the degree set-valued information system be defined

as

B̃k(X̃) =
{
x∈U |

∣∣∣[x]B̃∩X̃
∣∣∣>k},

B̃k(X̃) =
{
x∈U ||[x]B̃ |−

∣∣∣[x]B̃∩X̃
∣∣∣≤k}.

The lower operators of degree set-valued information systemcan can also be defined as:

B̃k(X̃) =
{
x∈U |

∣∣∣[x]B̃∩X̃
∣∣∣≥|[x]B̃ |−k

}
.

Obviously, compared with the classic rough set model, there is not strict inclusion relation

between B̃k(X̃) and B̃k(X̃). If B̃k(X̃)=B̃k(X̃), then X̃ is a definable set, otherwise, X̃ is the

degree k rough set.

§4. Neighborhood-based set-valued double-quantitative rough sets

Let (U,A,V,f) be a set-valued information system and B⊆A, B̃ is the fuzzy similarity

relation of B. 0≤β<α≤1 and 0≤k≤|U |, k∈R. For any X̃ ∈F(U), let

P =
∣∣∣[x]B̃∩X̃

∣∣∣/|[x]B̃ |, D=
∣∣∣[x]B̃∩X̃

∣∣∣ .
The logical operators are introduced into the upper and lower approximations, and four

neighborhood-based double-quantitative rough approximations are obtained. There are two

kinds of upper approximation operators, which can be shown as follows.

(1) The upper approximation operator with logical “and” B̃∧(α,β,k)(X̃) = B̃(α,β)(X̃)∩B̃k(X̃).

The upper approximation operator with logical “and” also can be defined as

B̃∧(α,β,k)(X̃) ={x∈U |P >β∧D>k},

B̃∧(α,β,k)(X̃) ={x∈U |D>max(β · |[x]B̃ |,k)}.
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(2) The upper approximation operator with logical “or”. B̃∨(α,β,k)(X̃) = B̃(α,β)(X̃)∪B̃k(X̃).

The upper approximation operator with logical “or” also can be defined as

B̃∨(α,β,k)(X̃) ={x∈U |P >β∨G>k},

B̃∨(α,β,k)(X̃) ={x∈U |D>min(β · |[x]B̃ |,k)}.

There are two lower approximation operators, which are:

(1) The lower approximation operator with logical “and”, B̃∧(α,β,k)(X̃) = B̃(α,β)(X̃)∩B̃k(X̃).

The lower approximation operator with logical “and” can also be defined as,

B̃∧(α,β,k)(X̃) ={x∈U |P ≥α∧|[x]B̃ |−D≤k},

B̃∧(α,β,k)(X̃) ={x∈U |D>max(α · |[x]B̃ |,|[x]B̃ |−k)}.

(2) The lower approximation operator with logical “or”, B̃∨(α,β,k)(X̃) = B̃(α,β)(X̃)∪B̃k(X̃).

The lower approximation operator with logical “or” can also be defined as

B̃∨(α,β,k)(X̃) ={x∈U |P ≥α∨|[x]B̃ |−D≤k},

B̃∨(α,β,k)(X̃) ={x∈U |D>min(α · |[x]B̃ |, |[x]B̃ |−k)}.

Based on the above four approximation operators, optimistic and pessimistic double-

quantitative rough set models are proposed here, the upper and lower approximation-

s of neighborhood-based set-valued pessimistic double-quantitative rough sets model (NB-

SVP-DqRS) both choose the approximation operators with logical “and”, denoted by

(U,B̃∨(α,β,k)(X̃),B̃∨(α,β,k)(X̃)); the upper and lower approximations of neighborhood-based set-

valued optimistic double-quantitative rough sets model (NB-SVO-DqRS) both choose the

approximation operators with logical “or”, denoted by (U,B̃∨(α,β,k)(X̃),B̃∨(α,β,k)(X̃)). Due to the

introduction of different logical operators in the models, compared with the NB-SVO-DqRS

model, the upper and lower approximation conditions of the NB-SVP-DqRS model are more

stringent, therefore the classification conditions are also more stringent. The two models will be

elaborated as follows.

Definition 4.1. Let (U,A,V,f) be a set-valued information system and B⊆A, B̃ is the fuzzy

similarity relation, for any X̃ ∈F(U), x∈U , the NB-SVP-DqRS model is defined as

B̃∧(α,β,k)(X̃) ={x∈U |P >β∧D>k},

B̃∧(α,β,k)(X̃) ={x∈U |P ≥α∧|[x]B̃ |−D≤k}.

The NB-SVP-DqRS model can also be defined as

B̃∧(α,β,k)(X̃) ={x∈U |D>max(β · |[x]B̃ |,k)},

B̃∧(α,β,k)(X̃) ={x∈U |D>max(α · |[x]B̃ |, |[x]B̃ |−k}.
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Definition 4.2. Let (U,B,V,f) be a set-valued information, and B̃ is the fuzzy similarity

relation, the NB-SVP-DqRS model can be represented as (U,B̃∧(α,β,k)(X̃),B̃∧(α,β,k)(X̃)), Obviously

there is no strict inclusion relationship between the upper and lower approximations of this

model, so the positive domain, negative domain, upper boundary domain, lower boundary domain

of NB-SVP-DqRS model are defined as:

PosP(α,β,k)(X̃) = B̃∧(α,β,k)(X̃)∩B̃∧(α,β,k)(X̃),

NegP(α,β,k)(X̃) =∼ (B̃∧(α,β,k)(X̃)∩B̃∧(α,β,k)(X̃)),

UbnP(α,β,k)(X̃) = B̃∧(α,β,k)(X̃)−B̃∧(α,β,k)(X̃),

LbnP(α,β,k)(X̃) = B̃∧(α,β,k)(X̃)−B̃∧(α,β,k)(X̃).

Definition 4.3. Let (U,A,V,f) be a set-valued information system and B⊆A. B̃ is the fuzzy

similarity relation of B, for any X̃ ∈F(U), x∈U , the NB-SVO-DqRS model is defined as

B̃∨(α,β,k)(X̃) ={x∈U |P >β∨D>k},

B̃∨(α,β,k)(X̃) ={x∈U |P ≥α∨|[x]B̃ |−D≤k}.

The NB-SVO-DqRS model can also be defined as

B̃∨(α,β,k)(X̃) ={x∈U |D>min(β · |[x]B̃ |,k)},

B̃∨(α,β,k)(X̃) ={x∈U |D>min(α · |[x]B̃ |, |[x]B̃ |−k)}.

Definition 4.4. Let (U,B,V,f) be a set-valued information system, B̃ is the fuzzy similarity

relation of attribute set B. Use (U,B̃∨(α,β,k)(X̃),B̃∨(α,β,k)(X̃)) to represent the NB-SVO-DqRS

model. The positive domain, negative domain, upper boundary domain, lower boundary domain

of NB-SVO-DqRS model are defined as

PosO(α,β,k)(X̃) = B̃∨(α,β,k)(X̃)∩B̃∨(α,β,k)(X̃),

NegO(α,β,k)(X̃) =∼ (B̃∨(α,β,k)(X̃)∩B̃∨(α,β,k)(X̃)),

UbnO(α,β,k)(X̃) = B̃∨(α,β,k)(X̃)−B̃∨(α,β,k)(X̃),

LbnO(α,β,k)(X̃) = B̃∨(α,β,k)(X̃)−B̃∨(α,β,k)(X̃).

In the above two models, if the objects belonging to the positive region, we make the decision

to accept; if the objects belonging to the negative region, we make the decision to reject; if

the objects belonging to the boundary region indicate that we need to make further judgments

before we can make a decision. Among them, the objects in the upper boundary domain are

more inclined to reject, and the objects in the lower boundary domain are more inclined to

accept.

In the following, we will analyze the two NB-SV-DqRS models with practical examples to

obtain the upper and lower approximations and to discuss the decision rules of two models

respectively.
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Example 4.1. Given a set-valued information system I=(U,A,V,F ) (Table 1). The u-

niverse U is a universe of 6 products, five attributes a1, a2, a3, a4, a5, respectively rep-

resent the size, feel, weight, color, and shape of the product. Given a target set X̃={
0.30
x1

+ 0.50
x2

+ 0.10
x3

+ 0.50
x4

+ 0.00
x5

+ 0.20
x6

}
represent each parameter of the product, set the parameter

α=0.50, β=0.45, k= 1.0. Then we can discuss how to make decisions based on the NB-SV-DqRS

models.

Table 1 Set-valued information system

U a1 a2 a3 a4 a5
x1 {2, 4} {1, 2} {2, 3} {1, 3, 4} {2, 4, 5}
x2 {2, 4} {2} {1} {2, 4} {2, 3}
x3 {2} {1} {3} {3, 4} {1, 4, 5}
x4 {2, 3} {1, 2} {1, 3} {2, 4} {1}
x5 {2, 3, 5} {1, 2, 3, 4} {1, 2, 3} {1, 2, 4, 5} {2}
x6 {2, 4, 5} {2} {1, 4, 5} {2, 4, 5} {1, 2, 4}

Calculate the distance between objects according to the distance function

D(A) =



0.00 1.54 1.05 1.57 1.31 1.50

1.54 0.00 1.92 1.39 1.44 1.11

1.05 1.92 0.00 1.28 1.76 1.80

1.57 1.39 1.28 0.00 1.31 1.39

1.31 1.44 1.76 1.31 0.00 1.40

1.50 1.11 1.80 1.39 1.40 0.00


.

It is easy to find that max(Dij)=1.92, then normalize the above matrix to

D∗(A) =



0.00 0.80 0.55 0.82 0.68 0.78

0.80 0.00 1.00 0.73 0.75 0.58

0.55 1.00 0.00 0.67 0.92 0.94

0.82 0.73 0.67 0.00 0.68 0.72

0.68 0.75 0.92 0.68 0.00 0.73

0.78 0.58 0.94 0.72 0.73 0.00


.

The fuzzy similarity matrix is

S(B̃) =



1.00 0.20 0.45 0.18 0.32 0.22

0.20 1.00 0.00 0.27 0.25 0.42

0.45 0.00 1.00 0.33 0.08 0.06

0.18 0.27 0.33 1.00 0.32 0.28

0.32 0.25 0.08 0.32 1.00 0.27

0.22 0.42 0.06 0.28 0.27 1.00


.
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Then the fuzzy similarity classes of attribute set A could be obtained as follows.

[x1]B̃ =

{
1

x1
+

0.20

x2
+

0.45

x3
+

0.18

x4
+

0.32

x5
+

0.22

x6

}
[x2]Ã=

{
0.20

x1
+

1

x2
+

0

x3
+

0.27

x4
+

0.25

x5
+

0.42

x6

}
[x3]Ã=

{
0.45

x1
+

0

x2
+

1.00

x3
+

0.33

x4
+

0.08

x5
+

0.06

x6

}
[x4]Ã=

{
0.18

x1
+

0.27

x2
+

0.33

x3
+

1.00

x4
+

0.32

x5
+

0.28

x6

}
[x5]Ã=

{
0.32

x1
+

0.25

x2
+

0.08

x3
+

0.32

x4
+

1

x5
+

0.27

x6

}
[x6]Ã=

{
0.22

x1
+

0.42

x2
+

0.06

x3
+

0.28

x4
+

0.27

x5
+

1.00

x6

}
.

Consequently,

|[x1]R̃|= 2.37, |[x2]R̃|= 2.14, |[x3]R̃|= 1.93,

|[x4]R̃|= 2.38, |[x5]R̃|= 2.24, |[x6]R̃|= 2.25.

The value of
∣∣∣[xi]B̃∩X̃∣∣∣ are shown as∣∣∣[x1]B̃∩X̃

∣∣∣= 0.98,
∣∣∣[x2]B̃∩X̃

∣∣∣= 0.97,
∣∣∣[x3]B̃∩X̃

∣∣∣= 0.79,∣∣∣[x4]B̃∩X̃
∣∣∣= 1.26,

∣∣∣[x5]B̃∩X̃
∣∣∣= 1.15,

∣∣∣[x6]B̃∩X̃
∣∣∣=1.05.

And the conditional probabilities of all objects are∣∣∣[x1]B̃∩X̃
∣∣∣

|[x1]B̃ |
=0.415,

∣∣∣[x2]B̃∩X̃
∣∣∣

|[x2]B̃ |
=0.453,

∣∣∣[x3]B̃∩X̃
∣∣∣

|[x3]B̃ |
=0.411,∣∣∣[x4]B̃∩X̃

∣∣∣
|[x4]B̃ |

=0.528,

∣∣∣[x5]B̃∩X̃
∣∣∣

|[x5]B̃ |
=0.515,

∣∣∣[x6]B̃∩X̃
∣∣∣

|[x6]B̃ |
=0.469.

Then the upper and lower approximations of the NB-SVP-DqRS model are expressed as

B̃∧(α,β,k)(X̃) ={x4,x5,x6},

B̃∧(α,β,k)(X̃) ={x4,x5}.

The corresponding positive region, negative region, upper boundary region, and lower boundary

region are derived as follows,

PosP (α,β,k)(X̃) ={x4,x5},

NegP (α,β,k)(X̃) ={x1,x2,x3,x6},

UbnP (α,β,k)(X̃) ={x6},

LbnP (α,β,k)(X̃) =∅.
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The objects x4,x5 belonging to the positive region indicates that they are qualified; the objects

x1,x2,x3,x6 belonging to the negative region indicates that their quality are unqualified; and

the product x6 belonging to the upper boundary region needs further inspection to determine

whether it is qualified or unqualified, but it is more likely to be qualified; and here products

belonging to the lower boundary domain don’t exist.

And the upper and lower approximations of the NB-SVO-DqRS model are expressed as

B̃∨(α,β,k)(X̃) ={x2,x3,x4,x5,x6}, B̃∨(α,β,k)(X̃) ={x4,x5}.

Its positive region, negative region, upper boundary region, and lower boundary region are as

follows,

PosO(α,β,k)(X̃) ={x4,x5},

NegO(α,β,k)(X̃) ={x1,x2,x3,x6},

UbnO(α,β,k)(X̃) ={x2,x3,x6},

LbnO(α,β,k)(X̃) =∅.

The products x4, x5 belonging to the positive region indicates that they are qualified; the

products x1, x2, x3, x6 belonging to the negative region indicates that they are unqualified;

and the products x2, x3, x6 belonging to the upper boundary region need further inspection to

determine whether it is qualified or unqualified, but they are more likely to be qualified; at here

no product belongs to the lower boundary region.

§5. Lower approximation reduction based on double-quantitative

rough set

In the previous section, two double-quantitative rough set models under the set-value

information system were constructed, and decision rules were obtained. In this section, the

lower approximation reduction methods of the two models will be discussed.

Definition 5.1. Let (U,A,V,f) be a set-valued information system, R is a fuzzy similarity

relationship based on this information system. Where B⊆A is an approximate reduction in a

set-valued information system, the following two conditions must be established:

(1) RB(X) =RA(X),

(2) For any b∈B, exist RB−{b}(X) 6=RA(X).

Definition 5.2. For a set-valued information system (U,A,V,f), its lower approximation

reduction always exists.

For any a∈A, if both exist RA−{a}(X) 6=RA(X), then A is a reduction. If a∈A, let

RA−{a}(X)=RA(X), then research B1 =A−{a}, for any b1∈B1, there is RB1−{b1}(X) 6=
RA(X), so B1 is a reduction, if exist b1∈B1, let RB1−{b1}(X)=RA(X), then research

B2 =B1−{b1}, and as so on. Since A is a finite set, the set B can always be found, let

RB(X) =RA(X), at this time, B is a reduction of the information system.
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Recalling the previous section, two rough set models have been constructed in the set-valued

information system, containing two lower approximation operators, namely B̃∧(α,β,k)(X̃) and

B̃∨(α,β,k)(X̃). The reductions of two models are all keep the lower approximation constant. In the

following part, we just take the lower approximation reduction algorithm of the NB-SVP-DqRS

model as an example to illustrate the two lower approximation reduction algorithms.

Algorithm 1: Lower approximation reduction based on invariance of B̃∨(α,β,k)(X̃)

Input : A set-valued decision information system SDS (U,A∪D,V,f) .

Output : The reduction A.

1 Step 1: Construct fuzzy similar relation B̃ and calculate the B̃∧
(α,β,k)(X̃) of SDS .

2 Step 2: A is the conditional attribute set, and only delete the attribute ai (ai∈A ) every time

on A, calculate the B̃∧
(α,β,k)(X̃) of(U,A−{ai}∪D,V,f), and compare with step 1.

3 Step 3: If B̃∧
(α,β,k)(X̃) changes, add ai to the array B; if B̃∧

(α,β,k)(X̃) doesnt change, add ai to

the array K, K is kernel element. Let i= i+1, determine whether there is an attribute ai in the

set A that has not been deleted. If true, go to step 3; if false, go to step 5.

4 Step 4: Follow a sequence to add the attributes aBi which stored in the set B to the kernel

element set K, calculate the B̃∧
(α,β,k)(X̃) of (U,K+{aBi}∪D,V,f), and compare with step 1, if

the result is the same, stop adding aBi to K, if the result is different, adding aBi to K .

5 Step 5: Return A .

The kernel idea of this algorithm is to obtain the non-kernel element set B at first, and then

sequentially add the attributes aBi which is stored in the set B to the kernel attribute set K,

aBi∈A−K, until the B̃∧(α,β,k)(X̃) of (U,A∪D,V,f) is same as the B̃∧(α,β,k)(X̃) of (U,A∪D,V,f).

At this time, K+{aBi} is the reduction. The complexity analysis of algorithm 1 is conducted

as follows.

Input a set-valued information system with m×n dimensions, the time complexity of

algorithm step 1 is O(m2n2). The time complexity of calculating fuzzy similarity relation B̃

is O(mn2), the time complexity of calculating B̃∧(α,β,k)(X̃) is O(m), the purpose of algorithm

steps 2 and 3 is to find the kernel elements, their time complexity are O(m), step 4 is to find the

reduction, the best situation is that the set B is an empty set, and the kernel itself is a reduction,

at this time the total time complexity is O(m2n2) ; the worst situation is that algorithm needs

to judge m− i times, at this time, the process of calculating B̃∧(α,β,k)(X̃) needs to be looped

m− i times, so at this time the total time complexity is O(m3n2) .

The calculation idea of space complexity is similar to time complexity. In Step 1, only one

array is needed in the construction of fuzzy similarity relationship B̃ and the calculation of

B̃∧(α,β,k)(X̃), their space complexity are both O(1) . The best situation is that the set B is an

empty set, and the kernel itself is a reduction, at this time the total space complexity is O(1);

the worst situation is that algorithm needs to judge m− i times, at this time, the process of

calculating B̃∧(α,β,k)(X̃) needs to be looped m− i times, so at this time the total space complexity

is O(m).
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In summary, at the best of times, the total time complexity is O(m2n2), and the total space

complexity is O(1); at the worst of times, the total time complexity is O(m3n2), and the total

space complexity is O(m).

The reduction algorithm ideas of the optimistic double-quantitative models are roughly the

same as the model based on the B̃∧(α,β,k)(X̃) invariant reduction algorithm. The difference is only

that the function of the lower approximation operator is different. We Only need to be replace

the lower approximation function in the above algorithm with optimistic double-quantitative

model’s lower approximation function, so we will not go into details at here.

In the following, we will combine an example to reduce the attributes of the four rough set

models proposed earlier in this paper, and explore the characteristics of each model.

Example 5.1. Given a target set-valued information system I= (U,A,V,D,F ) (Table 2). The

universe of discourse U ={x1,x2, ·· · ,x9}, the conditional attribute set A={a1,a2, ·· · ,a4}, Let

α=0.68, β=0.45, k= 0.72. We want to find the reduction results of the four rough set models in

the set-valued information system I.

Table 2 A decision set-valued information system

U a1 a2 a3 a4 d

x1 {19, 4.4} {3.2, 0.2} {1.3, 5} {1} {1}
x2 {28, 5.8} {2.7, 1.2} {3.9, 3} {1} {2}
x3 {4.5} {2.3, 0.3} {1.3, 5} {0.8} {1}
x4 {61, 7.1} {3.0, 2.1} {5.9, 0} {1} {3}
x5 {5.5} {2.3, 1.3} {4.0, 2, 0.1} {1} {2}
x6 {60, 59} {3.0, 1.8} {5.1, 1} {1.1} {3}
x7 {51, 7.0} {3.2, 1.4} {4.7, 0} {1} {2}
x8 {31, 4.8} {3.1, 0.2} {1.6, 5} {1} {1}
x9 {5.7} {3.0, 1.2} {4.2, 4} {0.8} {2}

Since the method of computing the lower approximation is the same to Example 4.1, we

will not go into details at here. According to the algorithm proposed, we separately calculate

the reductions for four models and obtain the results in Table 3.

Table 3 Calculation results of the degree of change

Model Lower approximation Kernel element Reduction

NB-SVP-SqRS {a2,a3,a4 } {a1,a2,a3,a4} {a1,a2,a3,a4}
NB-SVD-SqRS {x2,x3,x4,x7,x8} {a1,a2} {a1,a2,a4}
NB-SVO-DqRS {x2,x3,x4,x7,x8} ∅ {a2,a3,a4}
NB-SVP-DqRS {x2,x4,x7,x8} {a3,a4} {a2,a3,a4}

According to the results, the lower approximation under the set-valued information system

of these four models is {x2,x3,x4,x7,x8} or {x2,x4,x7,x8}. Though, those models which have
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same lower approximation results, their lower approximation reduction results are different, it

is due to the different constraints of four models. Comparing the NB-SVP-SqRS model with

the NB-SVD-SqRS model, the lower approximation and lower approximation reduction of these

two models are both different. The reason is that although the two models have introduced

quantitative information when they are constructed, the types of quantitative information are

different, the constraints the models are classified are also different. When the model is classified,

the former are focuses on relative quantitative information, while the latter are focuses more

on absolute quantitative information. Then Comparing the NB-SVP-SqRS model with the

NB-SVD-SqRS model, it is clear that the lower approximations of the two models are not the

same but the attribute reduction results are the same, this is caused by the introduction of

different logical operators in the two models. Compared with the optimistic double-quantitative

model, the logical operators introduced by the pessimistic double-quantitative model make the

lower approximation conditions of the model more stringent, so it has fewer elements, the lower

approximation of optimistic double-quantitative rough set model is a subset of the pessimistic

double-quantitative rough set model. Finally, compared with the NB-SVO-DqRS model and

the NB-SVD-SqRS model, when the two models have the same lower approximation, but the

reduction results are different. The reason is that, compared with the single-quantitative model,

the constraint conditions of the approximation operators are increased in the double-quantitative

model due to the introduction of logical operators, the requirements of the reduction are changed,

and the reduction results will also be affected.

§6. Analysis on the advantages and disadvantages of quantitative

rough set models

In order to clearly reflect the retention of the features contained in the original information

system after the reduction of the four models, in this section, we use three data sets of different

sizes as the background to calculate the lower approximation reduction results of the quantitative

rough set models. Combining with the KNN algorithm, we can obtain the classification accuracy

after reduction to reflect the classification ability of each model after reduction, and then we can

compare the advantages and disadvantages of each model. Table 4 gives some basic information

of the four experimental data tables.

Table 4 Basic information of the data sets

Name Attribute Object Classification

segmentation 9 210 7

audit 13 776 2

HCV 14 1385 4

K nearest neighbor algorithm (K-Nearest neighbor, KNN) is one of the relatively simple

and theoretically mature classification algorithms in machine learning. The basic idea is to
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first calculate the K neighbors in the training sample set which are closest to the sample to be

classified. If most of the K neighbor samples belong to a certain category, then the sample also

belongs to this category. Then we will use the idea of KNN algorithm and replace the distance

function of the traditional KNN classifier with the distance function constructed in Section 2.

Based on the traditional KNN classifier, we redefine the applicable KNN classifier under the

set-valued information system, short as KNN-SVIS. The data set is divided into training set

and test set according to the ratio of 7:3. We calculate the lower approximation reduction of

four models under each data set, then use the KNN-SVIS classifier to calculate the accuracy.

The calculation results are shown in the following Table 5.

Table 5 Calculation results of accuracy rate

Data set Model Degree of change

Attribute set before reduction 30.2%

NB-SVP-SqRS 25.4%

segmentation NB-SVD-SqRS 17.5%

NB-SVO-DqRS 14.3%

NB-SVP-DqRS 25.4%

Attribute set before reduction 94.4%

NB-SVP-SqRS 94.4%

audit NB-SVD-SqRS 94.8%

NB-SVO-DqRS 94.8%

NB-SVP-DqRS 94.4%

Attribute set before reduction 29.1%

NB-SVP-SqRS 29.1%

HCV NB-SVD-SqRS 26.0%

NB-SVO-DqRS 26.0%

NB-SVP-DqRS 29.1%

It can be seen from the calculation results shown in Table 5 that the performance of

the four models is different under different data sets. In the first information system, the

NB-SVP-SqRS model and NB-SVP-DqRS performed better, while the classification accuracy

rate of the NB-SVD-SqRS model reduction is significantly lower. In the second information

system, the NB-SVD-SqRS model and the NB-SVO-DqRS model performed better. In the third

information system, the NB-SVP-SqRS model and NB-SVP-DqRS model perform better. Due

to the different restriction conditions of the four models, the applicable models are different.

NB-SVP-SqRS model and NB-SVP-DqRS model are more suitable for data sets ”segmentation”

and ”HCV”, while NB-SVD-SqRS model and the NB-SVO-DqRS model are more suitable for

the data set ”audit”. By comparing the four models horizontally, the reduction results of the

NB-SVP-SqRS model and the NB-SVP-DqRS model have higher classification accuracy than

the NB-SVD-SqRS model and the NB-SVO-DqRS model under these three data sets, they have
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stronger ability to retain the characteristics of the original information system.

Fig. 1 The classification accuracy for different data sets.

It is clear from Figure 1 that except for the data set ”audit”, the classification accuracy

rates of the other two data sets are unsatisfactory, the classification accuracy rates of these

four models on the data sets ”segmentation” and ”HCV” are all lower than 30%. If only judge

the model from the calculation results of the accuracy rate, these four models are not suitable

for knowledge mining on the data sets ”segmentation” and ”HCV”, but such conclusions are

obviously one-sided, because the KNN-SVIS model has model errors, even the original attribute

set is not 100% accuracy when using the KNN-SVIS model for classification prediction, the

classification accuracy of the reduction result will also be affected by the model error. If only

the size of the accuracy rate calculation result is considered, it cannot truly reflect the feature

retention of the original information system by the attribute reduction result of the model.

In order to eliminate the influence of the KNN model error and truly reflect the change

of the information contained in the reduction result compared with the original information

system, the concept of the degree of change is proposed here.

Suppose PAis the accuracy rate of the original attribute set after KNN-SVIS model re-

construction, and Pa is the accuracy rate of a model reduction result after KNN-SVIS model

reconstruction, then define the degree of change, D= Pa−PA

PA
.

Obviously, D∈ (−1,1), the smaller D indicates that the reduction result retains the fewer

features of the original information system.

According to the above formula, the degree of change of the four models under the three

data sets are calculated respectively. The calculation results are shown in Table 6.

It can be seen from Table 6 that in the first information system, the attribute reduction

results of the NB-SVP-DqRS model and the NB-SVP-SqRS model are better to retain the

characteristics of the original information system, compared with the original information

system, in those model, only about 15% of the features are lost, while the reduction results of

the NB-SVD-SqRS model and the NB-SVO-DqRS model respectively lose about 42% and 53%
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Table 6 Calculation results of the degree of change

Data set Model Degree of change

NB-SVP-SqRS -0.1589

NB-SVD-SqRS -0.4205

NB-SVO-DqRS -0.5265
segmentation

NB-SVP-DqRS -0.1589

NB-SVP-SqRS 0

NB-SVD-SqRS 0.042

NB-SVO-DqRS 0.042
audit

NB-SVP-DqRS 0

NB-SVP-SqRS 0

NB-SVD-SqRS -0.1065

NB-SVO-DqRS -0.1065
HCV

NB-SVP-DqRS 0

of the features. In the second information system, the degree of change D of the NB-SVD-SqRS

model and the NB-SVO-DqRS model are both greater than 0, it indicates that the attribute

reduction can more accurately describe the characteristics of the information system than the

original attribute set, compared with the original information system, the characteristics of the

information system contained in the reduction results of the NB-SVP-DqRS model and the NB-

SVP-SqRS model remain unchanged. In the third information system, the attribute reduction

results of the NB-SVD-SqRS model and the NB-SVO-DqRS model retain the characteristics

of the original information system poorly, compared with the original information system that

only lost about 11% of the features, the reduction results of the NB-SVP-DqRS model and the

NB-SVP-SqRS model did not change the features of the information system contained in the

original information system.

Fig. 2 The degree of change under different data sets.
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It shows that these three information systems can all use the above rough set model for

knowledge mining, but due to the differences between different information systems, different

rough set models are applicable to different information systems. The data set segmentation and

HCV are more suitable to use NB-SVP-DqRS model and NB-SVP-SqRS model for knowledge

mining, and as to the data set audit, NB-SVD-SqRS model and NB-SVO-DqRS model are more

suitable.

In a word, for different information systems, the NB-SV-SqRS model and the NB-SV-

DqRS model show different advantages. Due to the different restriction conditions of the lower

approximation, the reductions of these four models also show different characteristics. When

processing data, we can choose the model according to actual needs.

§7. Concluding remarks

This paper proposes single-quantitative rough set models and double-quantitative rough set

models in the set-valued information system, and the related lower approximation reduction

algorithms for neighborhood-based set-valued double-quantitative rough set model are also

provided. Moreover, respective calculate the lower approximation reduction of probability

single-quantitative, degree single-quantitative, optimistic double-quantitative and pessimistic

double-quantitative rough set models are discussed based on the proposed quantitative rough

set models, and then the lower approximation reduction algorithms are carefully investigated.

Finally, the KNN algorithm was applied to evaluate the accuracy of the classification of the

proposed models after lower approximation reduction. In the future work, we will focus on

our model as a classifier, and compare it with other existing classical classifiers to obtain its

classification effect.
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