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Incremental Feature Selection Using a Conditional
Entropy Based on Fuzzy Dominance

Neighborhood Rough Sets
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Abstract—Incremental feature selection approaches can im-
prove the efficiency of feature selection used for dynamic datasets,
which has attracted increasing research attention. Nevertheless,
there is currently no work on incremental feature selection ap-
proaches for dynamic ordered data. Moreover, the monotonic
classification effect of ordered data is easily affected by noise, so
a robust feature evaluation metric is needed for feature selection
algorithm. Motivated by these two issues, we investigate incremen-
tal feature selection approaches using a new conditional entropy
with robustness for dynamic ordered data in this study. First, we
propose a new rough set model, i.e., fuzzy dominance neighborhood
rough sets (FDNRS). Second, a conditional entropy with robustness
is defined based on FDNRS model, which is used as evaluation
metric for features and combined with a heuristic feature selection
algorithm. Finally, two incremental feature selection algorithms
are designed on the basis of the above researches. Experiments
are performed on ten public datasets to evaluate the robustness
of the proposed metric and the performance of the incremental
algorithms. Experimental results verify that the proposed metric
is robust and our incremental algorithms are effective and efficient
for updating reducts in dynamic ordered data.

Index Terms—Dynamic ordered data, fuzzy dominance
neighborhood rough sets, incremental feature selection.

I. INTRODUCTION

F EATURE selection, as a common data preprocessing ap-
proach, has elicited widespread attention in data min-

ing [1]–[5]. This approach aims to remove redundant features
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from complex data and achieve the goals of reducing dimension-
ality, avoiding overfitting, thereby saving the time and space
cost of calculation. With the development of the information
age, feature selection methods have been continuously improved
and innovated as the complexity and diversity of data structures
increase. In real-life applications, datasets usually exhibit dy-
namic characteristics over time-evolving, i.e., dynamic datasets.
This promotes the development of incremental approaches for
feature selection [6]–[10]. Incremental mechanisms of updating
feature subset are widely studied, since they can effectively and
efficiently fulfil feature selection tasks for dynamic datasets.
However, the existing incremental approaches do not consider
the monotonous ordered relation of samples in dynamic datasets.
Motivated by this issue, this study focuses on investigating
incremental feature selection approaches for dynamic ordered
datasets.

Rough set theory (RST) proposed by Pawlak serves as an
effective mathematical tool for dealing with inconsistent and un-
certain information, which is a completely data-driven approach
and does not require any prior knowledge of data [11]. RST is an
important theoretical basis for feature selection [12]–[15]. How-
ever, in ordinal classification tasks, RST ignores the dominance
principle, which requires that objects with better descriptions
should not get worse labels. To offset this deficiency, Greco
et al. proposed dominance-based rough set approach
(DRSA) [16], which has been widely used in classification
and decision-making for datasets with preference-ordered re-
lation [17].

However, DRSA model is not robust because the knowl-
edge granules which are constructed by considering rigorous
preference-ordered relation between objects are easily affected
by noise. These knowledge granules are more sensitive to noise
when processing numerical data with ordered relation. In this
case, the little fluctuations brought by different uncertain ele-
ments in measure and record may easily change the relations
between objects, which may change the information granules
and eventually obstruct users to make a correct decision. Thus,
the monotonic classification and decision-making effects of
ordered data are easily affected by noise. Therefore, investi-
gating extended DRSA models to improve the robustness of
DRSA is an important research work. Dominance-based neigh-
borhood rough set (DNRS) [18] and fuzzy dominance rough
set (FDRS) [19] are two important extended DRSA models. In
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DNRS, a dominance relation with distance was given, which
qualitatively and quantitatively defines the preference-ordered
relation between objects in ordered data. But the change of the
consistency degree of objects ranking in ordered data cannot
be effectively reflected. Because the neighborhood dominance
relation followed by objects in DNRS model is a boolean
relation, the degree of preference between objects cannot be
obtained. FDRS model considers the preference degree between
objects, but the effect of noise cannot be considered. Therefore,
it is very meaningful to integrate the two models to process
ordered data with noise. Inspired by this, we propose the FDNRS
model, which comprehensively considers the preference degree
between objects and the negative effect of noise.

Uncertainty metrics play a key role in feature selection ap-
proaches to evaluate the importance of features and quantify the
inconsistency in data. Information entropy proposed by Shannon
and Weaver [20] has been widely concerned. Researches on
information entropy have been studied extensively in different
domains. For ordered data, Hu et al. proposed rank conditional
entropy and fuzzy rank conditional entropy [21], and then they
were applied to feature selection [22] and decision trees [23] for
monotonic classification tasks. These two metrics are used to
evaluate the consistency degree of the ordering of samples under
features and decisions in an ordered data. However, these two
metrics are sensitive to noise, which will reduce the performance
of feature selection algorithms. Therefore, it is necessary to in-
troduce a robust metric. To solve this issue, this study introduces
a fuzzy dominance neighborhood conditional entropy (FDNCE)
based on the proposed FDNRS model.

Feature selection methods based on DRSA have been exten-
sively studied in the past decades, and they are used to deal with
static ordered dataset [24]–[27]. Although these methods can
effectively remove redundant features from ordered data, they
ignore the dynamic property that the ordered data usually evolve
over time in real-life applications. For dynamic ordered datasets,
employing these existing approaches to compute reducts is very
time-consuming, since they need to recalculate knowledge from
scratch when the dataset changes slightly. This defect increases
the cost of calculation space and time. Accordingly, an effective
and efficient feature selection method is urgently requested to
process dynamic ordered datasets.

Incremental learning is an efficient approach, which can
quickly acquire new knowledge from dynamic datasets by utiliz-
ing previous knowledge [28]–[31]. In the past decade, scholars
have proposed numerous incremental learning algorithms for
feature selection, which mainly focus on the variations of object
sets, feature sets, and feature values in a dynamic information
table.

For the variation of object sets, Zhang et al. [32] developed a
fuzzy information entropy-based incremental feature selection
approach by using an active object screening strategy. Giang
et al. [33] proposed some new incremental attribute reduction
methods using the hybrid filter wrapper with fuzzy partition
distance. Yang et al. [34], [35] presented incremental updat-
ing feature subset approaches with an active object screen-
ing strategy and an incremental feature selection method for
dynamic heterogeneous data [36]. Shu et al. [37] introduced an

incremental feature selection algorithm for dynamic hybrid data.
For fused decision tables, Liu et al. [38] designed an incremental
updating feature subset method via using the pseudo value of dis-
cernibility matrix. Das et al. [39] proposed a group incremental
feature selection algorithm by using genetic algorithm. Sang
et al. [40] designed DNRS model-based heterogeneous feature
selection methods with incremental mechanism for dynamic
ordered data. Based on fuzzy rough set theory, Ni et al. [41]
developed an incremental feature selection method that consid-
ers a key instance set containing representative instances.

For the variation of feature sets, Chen et al. [42] proposed
a discernible relations-based incremental attribute reduction
method while adding attributes. Wang et al. [43] designed an in-
cremental feature selection algorithm via updating information
entropy when the feature set varies. For covering information
tables, Lang et al. [44] proposed dynamic updating feature
subset methods via using related families. Based on fuzzy rough
set, Zeng et al. [45] studied an incremental updating reducts
algorithm on heterogeneous information table.

For the variation of feature values, Wei et al. [46] introduced
an incremental updating feature subset algorithm via using
discernibility matrix, and then they developed an accelerating
incremental algorithm via using a kind of compressing decision
table [47]. Cai et al. [48] studied dynamic updating reducts
algorithms for a covering information table with time-evolving
feature values. Furthermore, Dong and Chen [49] designed
a novel RST-based incremental attribute reduction algorithm
for decision table with simultaneously increasing samples and
attributes.

It should be found that the aforementioned incremental fea-
ture selection algorithms rarely consider dynamic datasets with
a preference order relation. Thence, the existing incremental
feature selection algorithms are not suitable for dynamic or-
dered datasets, which motivates this study. Based on the above
discussions, this work proposes incremental feature selection
approaches for dynamic ordered datasets with time-evolving
objects under the framework of FDNRS model. Different
from [40], this article improves the DNRS model and proposes
a robust rough set model (i.e., FDNRS model). Then, a robust
feature evaluation metric and corresponding incremental feature
selection algorithms are proposed based on the FDNRS model.
The main difference between the literature [41] and this study
is that the former considers the similarity relation between sam-
ples, while this study considers the preference relation between
samples, that is, this study deals with datasets with preference
relation. The major contributions of this study are as follows.

1) We propose a new rough set model FDNRS, which com-
bines the advantages of DNRS and FDRS. The proposed
model is fault-tolerant for ordered data with noise, it can
not only describe the relation between objects qualitatively
and quantitatively, but also effectively quantify the degree
of preference between objects. The polices of this model
are consistent with human reasoning and meet the require-
ments of practical application.

2) In FDNRS model framework, we define a robust uncer-
tainty metric FDNCE, which is used to measure the degree
of ranking consistency of objects in an ordered data. The
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property of FDNCE is presented and proved. Then, feature
selection method based on FDNCE and heuristic feature
selection strategy is given.

3) Based on the above researches, we propose two incre-
mental feature selection algorithms, which are used to
accelerate the completion of feature selection tasks in
dynamic ordered datasets.

4) Comparison experiments are performed on public
datasets. The robustness of the proposed metric FDNCE,
and the effectiveness and efficiency of the proposed incre-
mental algorithms are verified by the experimental results.

The rest of this article is organized as follows. Section II
reviews preliminary knowledge on DNRS. In Section III, we
construct FDNRS model. Section VI proposes FDNCE and a
FDNCE-based heuristic feature selection (HFS) algorithm. In
Section V, two incremental approaches for feature selection
are introduced. The results of our experiments are reported
in Section VI. Finally, Section VII summarizes the study and
outlines the further work.

II. PRELIMINARIES

In this section, some basic concepts are introduced, which can
be found in literatures [11], [17], and [18].

A. Dominance-Based Neighborhood Rough Set

1) Ordered Decision System: Definition 1:
[11] Let S = 〈U,A ∪ {d}, V 〉 be a decision system, where
U = {x1, x2, . . . , xn} is a nonempty finite set of objects; A is
a nonempty finite set of conditional attributes, d is a decision
attribute; V =

⋃
Vak

(ak ∈ A ∪ {d}), Vak
= {v(xi, ak)|∀xi ∈

U}, and v(xi, ak) is the value of xi under attribute ak, also
denoted by vik.

Definition 2: [17] Let S� = 〈U,A ∪ {d}, V 〉 be an or-
dered decision system (ODS), for any ak ∈ A, Vak

is com-
pletely preordered by the relation �a:∀xi, xj ∈ U , xi �ak

xj ⇔ v(xi, ak) ≥ v(xj , ak) (i.e., an increasing preference) or
xi �ak

xj ⇔ v(xi, ak) ≤ v(xj , ak) (i.e., a decreasing prefer-
ence).

In real-world applications, decision-makers usually know the
order of criterion values according to their domain or prior
knowledge. Without any loss of generality, we only consider
criteria with increasing preferences.

2) Neighborhood Dominance Relation and Knowledge
Granules in ODS: Definition 3:
[18] Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆ A, the neigh-
borhood dominance relation N≺Bδ

on B is defined as

N≺Bδ
= {(xi, xj) ∈ U × U |dB(xi, xj) ≥ δ ∧ v(xi, ak) ≤

v(xj , ak), ∀ak ∈ B}
(1)

where dB(xi, xj) = minak∈B |v(xi, ak)− v(xj , ak)| is the dis-
tance between xi and xj under B, and δ ∈ (0, 1] is neigh-
borhood radius. Moreover, d is a classification attribute, and
the dominance relation on d is denoted as D�d = {(xi, xj) ∈
U × U |v(xi, d) ≤ v(xj , d)}.

Definition 4: [18] Given an ODS S� = 〈U,A ∪ {d}, V 〉,
∀B ⊆ A, the neighborhood dominating and neighborhood dom-
inated sets of xi ∈ U in terms of B are defined as

N+
Bδ

(xi) = {xj ∈ U |xiN
≺
Bδ

xj} (2)

N−Bδ
(xi) = {xj ∈ U |xjN

≺
Bδ

xi} (3)

which are called knowledge granules induced by N≺Bδ
.

In ODS, d is a classification attribute, U/d = {Clt|t ∈
{1, . . . , T}}(T ≤ |U |), where for each Clt be an equivalence
class, and ClT � · · · � Clt � · · · � Cl1. The upward and
downward unions in DNRS are expressed asCl�t =

⋃
Clt′(t

′ ≥
t) and Cl�t =

⋃
Clt′(t

′ ≤ t), where t, t′ ∈ {1, . . . , T}.
3) Approximations in DNRS: Definition 5: [18] Given an

ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆ A and t ∈ {1, . . . , T}, the
lower and upper approximations of the upward union Cl�t are
defined as

N≺Bδ
(Cl�t ) = {x ∈ U |N+

Bδ
(x) ⊆ Cl�t } (4)

N≺Bδ
(Cl�t ) = {x ∈ U |N+

Bδ
(x) ∩ Cl�t �= ∅}. (5)

Similarly, the approximates of the downward union Cl�t are
defined as

N≺Bδ
(Cl�t ) = {x ∈ U |N−Bδ

(x) ⊆ Cl�t } (6)

N≺Bδ
(Cl�t ) = {x ∈ U |N−Bδ

(x) ∩ Cl�t �= ∅}. (7)

From Definition 5, the lower approximation indicates that the
ranking of objects in N≺Bδ

(Cl�t ) (N
≺
Bδ

(Cl�t )) is consistent with

that of in Cl�t (Cl�t ), and the upper approximation indicates
that the ranking of objects in N≺Bδ

(Cl�t ) (N≺Bδ
(Cl�t )) is not

necessarily consistent with that of in Cl�t (Cl�t ).

B. Ranking Problems Exist in DNRS

In DRSA, the dependency reflects the consistency degree of
the ranking of objects in terms of conditional attributes and deci-
sion attribute. In [18], although the DNRS model was proposed,
the corresponding dependency was not given. In the following,
we propose DNRS-based dependencies.

Definition 6: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A, the DNRS-based dependency of Cl� with regard to P is
defined as

γBδ
(Cl�) =

∑|T |
t=1 |N≺Bδ

(Cl�t )|∑|T |
t=1 |Cl�t |

(8)

where | ∗ | represents the cardinality of set ∗. Similarly, we can
also define γBδ

(Cl�).
However, we found that the DNRS-based dependencies can-

not effectively reflect the changes in the consistency degree of
the objects ranking in ODS. Here, we give an example to show
this defect.

Example 1: Table I is a part of academic transcripts, where
a is a conditional attribute and it represents a course, d is a
decision attribute and it represents the students comprehensive
level (C ≺ B ≺ A), and x1, x2, . . . ,x10 represent 10 students.
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TABLE I
PART OF ACADEMIC TRANSCRIPT

Fig. 1. Student’s score ranking under course a.

Fig. 2. Revised student’s score ranking under course a.

To more intuitively reflect the inconsistency of the ranking of
objects with respect to a and d, we map these objects into an
axis, i.e., Fig. 1 , where�,©, and � stand for objects coming
from classes C, B, and A, respectively.

From Fig. 1, it is easy to find that the ranking of objects under
a and d is inconsistent, because x7 is assigned a relatively low
level. The consistency degree of Table I can be calculated by
(8) as γaδ

(Cl�) = 0.73 and γaδ
(Cl�) = 0.83, where δ = 0.1.

Suppose we, respectively, change the scores of objects x3 and
x7 under a from 0.4 to 0.5 and 0.78 to 0.84, and the ranking of
the revised objects is shown in Fig. 2 . By comparing Fig. 1 and
Fig. 2, we find that the degree of inconsistency in the ranking of
objects becomes greater. Thence, intuitively, the DNRS-based
dependencies should become smaller in this case. However, we
calculated the DNRS-based dependencies of the revised version
as γaδ

(Cl�) = 0.73 and γaδ
(Cl�) = 0.83, which are the same

as the previous results. Such a result is obviously inconsistent
with the logic of human reasoning.

The above analysis shows that DNRS model cannot effec-
tively reflect the change in the consistency degree of the objects
ranking in an ODS. The reason lies in that the neighborhood
dominance relation is a boolean relation which cannot reflect
the degree of preference between objects quantitatively. The
fuzzy set theory can quantify the degree of uncertainty of the
concept, which meets the requirements of practical application.
As pointed out by Zadeh [50], in human reasoning and concept
formation, the granules used are fuzzy rather than Boolean.
Therefore, we introduce fuzzy set theory into DNRS, which is
necessary and meaningful.

III. FUZZY DOMINANCE NEIGHBORHOOD ROUGH SETS

DNRS model provides a formal framework for studying or-
dered data with noise; however, it cannot quantify the degree
of preference for ordered data. In this section, we propose a
new model, called FDNRS model, to overcome this defect. The
relevant definitions are introduced as follows.

Fig. 3. Distribution of the values of fuzzy dominance relation.

A. Fuzzy Dominance Neighborhood Relation and Fuzzy
Knowledge Granules in ODS

Definition 7: [19] Given an ODS S� = 〈U,A ∪ {d}, V 〉,
∀ak ∈ A, andxi, xj ∈ U , the fuzzy dominance relation between
xi and xj on ak is defined as

D≺ak
(xi, xj) =

1

1 + e−k(v(xj ,ak)−v(xi,ak))
(9)

where k is a positive constant, and for anyB ⊆ A,D≺B(xi, xj) =
min
ak∈B
D≺ak

(xi, xj).

For convenience, D≺B(xi, xj) can be simplified to D≺B(i,j),
which indicates the extent of xj better than xi onB. Meanwhile,
a fuzzy dominance relation matrix can be formed byD≺B(i,j), i.e.,

D̃≺BU = [D≺B(i,j)]n×n.
From (9), it is easy to find that if v(xj , a) > v(xi, a), then

0.5 < D≺a(i,j) < 1; if v(xj , a) = v(xi, a), then D≺a(i,j) = 0.5; if
v(xj , a) < v(xi, a), then 0 < D≺a(i,j) < 0.5. The fuzzy prefer-
ence degree among objects calculated by using (9) is depicted
in Fig. 3, where the x-coordinate denotes objects and the y-
coordinate refers to the fuzzy dominance degree between other
objects and the object listed in x-coordinate. It is easy to observe
the distribution of fuzzy preference degree for each object.

From Fig. 3, we can easily find that the values of fuzzy
dominance relation in the area between α and β are very close
to 0.5. This indicates that these objects can be regarded as no
difference, because it may be caused by noise. In the process of
collecting data, there may be a certain perturbation (i.e., noise)
between the real data and the collected data, which is likely to
be caused by measurement tools or instruments. The knowledge
granules induced by fuzzy relations may be changed by data
perturbation in this case. Therefore, the definition of the fuzzy
dominance neighborhood relation is proposed by adopting the
strategy of neighborhood.

Definition 8: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A, and xi, xj ∈ U , the fuzzy dominance neighborhood relation
between xi and xj on B is defined as

N≺B (xi, xj) =

{
0.5, β ≤ D≺B(i,j) ≤ α

D≺B(i,j), otherwise
(10)
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where β ∈ [0.4, 0.5), α ∈ (0.5, 0.6].
Analogously, N≺B (xi, xj) can be simplified to N≺B(i,j), which

can derive a fuzzy dominance neighborhood relation matrix, i.e.,
Ñ≺BU = [N≺B(i,j)]n×n.

Definition 9: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A, the fuzzy dominating neighborhood set and fuzzy dominated
neighborhood set of xi ∈ U in terms of B are defined as

N+
B (xi) =

N≺B(i,1)

x1
+
N≺B(i,2)

x2
+ · · ·+

N≺B(i,n)

xn
(11)

N−B (xi) =
N≺B(1,i)

x1
+
N≺B(2,i)

x2
+ · · ·+

N≺B(n,i)

xn
(12)

which are called fuzzy knowledge granules induced by N≺B(i,j).

Property 1: Let C ⊆ B ⊆ A, then N+
B (xi) ⊆ N+

C (xi) and
N−B (xi) ⊆ N−C (xi).

B. Fuzzy Dominance Decision in ODS

To construct FDNRS model reasonably, below we define a
fuzzy dominance decision in ODS.

Definition 10: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀xi ∈
U , the fuzzy dominance decision of xi to Cl�t and Cl�t (t ∈
{1, . . . , T}) are defined as

Cl�t (xi) =
|Cl�t ∩D+

d (xi)|
|D+

d (xi)|
(13)

Cl�t (xi) =
|Cl�t ∩D−d (xi)|
|D−d (xi)| . (14)

The Cl�t and Cl�t are two fuzzy sets, which, respectively,
indicate the membership degree of xi to Cl�t and Cl�t .

C. Approximations in FDNRS

The upward and downward unions are then described ap-
proximately by comprehensively considering fuzzy dominance
decision and fuzzy dominance neighborhood relation. The def-
initions of approximations are given below.

Definition 11: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A and t ∈ {1, . . . , T}, the lower and upper approximations of
the upward union Cl�t under B are defined as

N≺B (Cl�t )(xi) = inf
xj∈U

max(1−N+
B (xi)(xj), Cl�t (xj)) (15)

N≺B (Cl�t )(xi) = sup
xj∈U

min(N−B (xi)(xj), Cl�t (xj)). (16)

Similarly, the approximates of the downward union Cl�t under
B are defined as

N≺B (Cl�t )(xi) = inf
xj∈U

max(1−N−B (xi)(xj), Cl�t (xj)) (17)

N≺B (Cl�t )(xi) = sup
xj∈U

min(N+
B (xi)(xj), Cl�t (xj)). (18)

D. Dependency Degree of Cl� in FDNRS

Definition 12: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A, the dependency degree of Cl� in FDNRS with regard to B

TABLE II
DEPENDENCIES BASED ON DNRS AND FDNRS

is defined as

γ̃B(Cl�) =

∑|T |
t=1

∑|U |
i=1N≺B (Cl�t )(xi)∑|T |

t=1

∑|U |
i=1 Cl�t (xi)

. (19)

Similarly, we can also define γ̃B(Cl�).
In the following, we verify whether the FDNRS-based depen-

dencies can effectively reflect the changes in the consistency of
the objects ranking in ODS.

Example 2: Continuing from Example 1. The calculation
results corresponding to the DNRS-based dependencies and
the FDNRS-based dependencies in Figs. 1 and 2 are shown in
Table II, respectively.

Although the inconsistency in Fig. 2 should become larger
than that of Fig. 1, from Table II, we find that there is no
difference in dependencies under DNRS model. In this case,
the dependencies under FDNRS model become smaller, which
is more reasonable and consistent with human reasoning.

The above analysis shows that FDNRS model can effectively
reflect the change in the consistency degree of the objects ranking
in an ODS. Because knowledge granules in FDNRS are induced
by the fuzzy neighborhood dominance relation, it can quantify
the degree of preference between objects. Therefore, FDNRS
model not only inherits the advantages of DNRS, but also is
consistent with human reasoning and meets the requirements of
practical application.

IV. CONDITIONAL ENTROPY BASED ON FDNRS AND

NONMONOTONIC FEATURE SELECTION

Information entropy is a common uncertainty measure, which
performs well in feature selection tasks. In this section, we
first propose a conditional entropy based on FDNRS, called
FDNCE, and analyze its monotonicity. Afterwards, we define a
nonmonotonic reduct search strategy via using FDNCE. Finally,
we introduce a HFS algorithm with the nonmonotone reduct
search strategy.

A. Fuzzy Dominance Neighborhood Conditional Entropy

In [21], Hu et al. successively proposed dominance condi-
tional entropy (DCE) and fuzzy dominance conditional entropy
(FDCE) for evaluating the consistency degree of the ranking of
objects under features and decisions in an ODS. Obviously, DCE
follows the dominance relation, which only reflects the domi-
nance relation between objects from the qualitative perspectives.
FDCE follows the fuzzy dominance relation (as Definition 7),
which reflects the dominance relation between objects from both
qualitative and quantitative perspectives. However, as we men-
tioned earlier, the fuzzy dominance relation does not consider
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the effects of noise. To make up for this defect, in the following,
we define the FDNCE in an ODS.

Definition 13: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A, the FDNCE of B relative to d is defined as

NE≺d|B(U) = − 1

|U |
n∑

i=1

log
|N+

B (xi) ∩D+
d (xi)|

|N+
B (xi)|

. (20)

Similarly, the neighborhood dominance relation-based con-
ditional entropy (NDCE) can also be defined as (20).

In (20), |N
+
B (xi)∩D+

d (xi)|
|N+

B (xi)| can be regarded as a variable, which

is the core part ofNE≺d|B(U). Intuitively, this variable measures
the consistency degree of the objects ranking in terms of the
conditional attribute set B and the decision d. It is easy to
find that the value of FDNCE is inversely proportional to this
variable, and NE≺d|B(U) is non-negative. When using FDNCE
to evaluate an attribute subset, it is expected that the ranking in-
formation provided by this attribute subset for the objects in ODS
is the same as the decision. Therefore, the more smaller value of

NE≺d|B(U) (or the larger value of variable |N
+
B (xi)∩D+

d (xi)|
|N+

B (xi)| ), the

more meaningful is of attribute subset B. Next, we prove that
FDNCE is nonmonotonicity.

Property 2: Let C ⊆ B ⊆ A, thenNE≺d|C(U) ≤ NE≺d|B(U)

or NE≺d|C(U) ≥ NE≺d|B(U) is indeterminate, namely, FDNCE
is nonmonotonic.

Proof : From (20), we have

� = NE≺d|B(U)−NE≺d|C(U)

=
1

|U |
n∑

i=1

(
log
|N+

C (xi) ∩D+
d (xi)|

|N+
C (xi)|

− log
|N+

B (xi) ∩D+
d (xi)|

|N+
B (xi)|

)
.

Assuming that g1(xi) =
|N+

C (xi)∩D+
d (xi)|

|N+
C (xi)| and g2(xi) =

|N+
B (xi)∩D+

d (xi)|
|N+

B (xi)| . It can be obtained that � =

1
|U |

∑n
i=1(log g1(xi)− log g2(xi)) =

1
|U |

∑n
i=1 log

g1(xi)
g2(xi)

.

Since |N+
C (xi) ∩D+

d (xi)| < |N+
C (xi)| and |N+

B (xi) ∩
D+

d (xi)| < |N+
B (xi)| hold, then 0 < g1(xi), g2(xi) < 1

holds. Hence, g1(xi)
g2(xi)

> 1 ( g1(xi)
g2(xi)

< 1) is uncertain. So � > 0

(� < 0) is indeterminate. Therefore, FDNCE is nonmonotonic.

B. Evaluation of Attributes in ODS

Definition 14: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀Q ⊆
A, we say Q is a reduct of A relative to d if Q satisfies

1) NE≺d|Q(U) ≤ NE≺d|A(U)

2) ∀ak ∈ Q, NE≺d|(Q−{ak})(U) > NE≺d|Q(U).
The first item guarantees that the selected attribute subset

Q can provide correct objects ranking information that is not
worse than that of raw attribute set A. The second item requires
no redundant attributes in the selected attribute subset Q.

According to Definition 14, we define the inner and outer
significance of an attribute as follows.

Definition 15: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A and ∀a ∈ B, the inner significance of a relative toB is defined
as

sigUinner(a,B, d) = NE≺d|(B−{a})(U)−NE≺d|B(U). (21)

Definition 16: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆
A, and ∀a ∈ (C −B), the outer significance of a relative to B
is defined as

sigUouter(a,B, d) = NE≺d|B(U)−NE≺d|(B∪{a})(U). (22)

The matrix representation of knowledge is an intuitive and
effective way for processing complex data, and the calculation
of the matrix can be easily implemented via using a computer.
Thence, it is necessary to present a method for computing
FDNCE by using relation matrices. In what follows, we define
some operations on relation matrices.

Definition 17: Let B1, B2 ⊆ A ∪ {d}, RB1

U = [rB1

(i,j)]n×n
and RB2

U = [rB2

(i,j)]n×n are two relation matrices under attribute
sets B1 and B2, respectively, then the “∧” and “∗” operations
between them are defined as

RB1

U ∧RB2

U = [min{rB1

(i,j), r
B2

(i,j)}]n×n (23)

RB1

U ∗RB2

U = [rB1

(i,j) × rB2

(i,j)]n×n. (24)

Definition 18: Let B ⊆ A ∪ {d}, RB
U = [rB(i,j)]n×n be a re-

lation matrix, and its diagonal matrix is defined as R̂B
U =

[r̂B(i,j)]n×n, where

r̂B(i,j) =

{∑n
l=1 r

B
(i,l), i, j ∈ [1, n], i = j

0, i, j ∈ [1, n], i �= j.
(25)

Moreover, the determinant and inverse matrix of R̂B
U are denoted

as |R̂B
U | = Πn

i=j=1r̂
B
(i,j) and (R̂B

U )
−1 = [1/r̂B(i,j)]n×n, respec-

tively.
Corollary 1: Given an ODS S� = 〈U,A ∪ {d}, V 〉, ∀B ⊆

A, the formula for calculating FDNCE using matrices is ex-
pressed as

NE≺d|B(U) = − 1

|U | log |
̂

Ñ≺B∪{d}U ∗ (̂Ñ≺BU )−1| (26)

where Ñ≺B∪{d}U = Ñ≺BU ∧D�dU = [N≺B∪{d}(i,j) ]n×n.
Proof : According to (26), we can get that

NE≺d|B(U) = − 1

|U | log Π
n
i=j=1

N̂ ≺B∪{d}(i,j)

N̂ ≺B(i,j)

= − 1

|U | log
Πn

i=j=1N̂ ≺B∪{d}(i,j)

Πn
i=j=1N̂ ≺B(i,j)

= − 1

|U | log
Πn

i=1(
n∑

l=1

N≺B∪{d}(i,l) )

Πn
i=1(

n∑
l=1

N≺B(i,l))
=

− 1

|U | log
Πn

i=1|N+
B∪{d}(xi)|

Πn
i=1|N+

B (xi)|
=
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Algorithm 1: FDNCE-HFS Algorithm.

Input: An ODS S� = 〈U,A ∪ {d}, V 〉, parameters α
and β.

Output: A reduct RedU .
1: Initialize RedU ← ∅;
2: Calculate FDNCE NE≺d|A(U) via using (26);
3: for k = 1 to |A| do
4: Calculate sigUinner(ak, A, d) by Definition 15;
5: if sigUinner(ak, A, d) > 0 then
6: RedU ← RedU ∪ {ak};
7: end if
8: end for
9: Let Q← RedU ;

10: while NE≺d|Q(U) > NE≺d|A(U) do
11: for l = 1 to |A−Q| do
12: Calculate sigUouter(al, Q, d) by Definition 16;
13: end for
14: Select a0 = max{sigUouter(al, Q, d), al ∈ (A−Q)};
15: Q← Q ∪ {a0}
16: end while
17: for each a ∈ Q do
18: Calculate FDNCE NE≺d|(Q−{a})(U) via using (26);
19: if NE≺d|(Q−{a})(U) ≤ NE≺d|Q(U) then
20: Q← Q− {a};
21: end if
22: end for
23: RedU ← Q;
24: return RedU ;

− 1

|U | log
Πn

i=1|N+
B (xi) ∩D+

d (xi)|
Πn

i=1|N+
B (xi)|

=

− 1

|U |
n∑

l=1

log
|N+

B (xi) ∩D+
d (xi)|

|N+
B (xi)|

.

From this, we can conclude that the results of computing FDNCE
via using (20) and (26) are equal.

C. Heuristic Feature Selection Algorithm

In this subsection, we design an FDNCE-based HFS al-
gorithm (FDNCE-HFS) according to Definition 14, and then
analyze its time complexity.

1) FDNCE-HFS Algorithm (See Algorithm 1): In algorithm
FDNCE-HFS, Step 2 is to calculate FDNCE under raw attribute
set A. Steps 3–9 are to add attributes with inner significance
greater than zero to RedU , and let Q = RedU . Steps 10–16 are
to insert the attribute with the highest outer significance from
remaining attribute subset A−Q into Q until Step 10 does
not hold. Steps 17–22 are to delete redundant attributes from
attribute subset Q. Steps 23–24 are to output the final reduct.

2) Time Complexity: The time complexity of the main steps
in algorithm FDNCE-HFS is listed in Table III.

The HFS method is a common feature selection strategy.
Therefore, analogously, HFS algorithms based on DCE, NDCE,

TABLE III
TIME COMPLEXITY OF ALGORITHM FDNCE-HFS

and FDCE can also be designed. In experiments, these algo-
rithms are compared with FDNCE-HFS.

V. INCREMENTAL APPROACHES FOR FEATURE SELECTION

WITH THE VARIATION OF MULTIPLE OBJECTS

For dynamic ODS with objects change, employing the
FDNCE-HFS algorithm to compute a reduct is very time-
consuming, especially in large data. This algorithm retrains
the changed ODS as a new one, which needs to recalculate
knowledge from scratch. To improve efficiency, this section
presents two incremental algorithms for feature selection on the
basis of FDNCE-HFS algorithm.

A. Updating Mechanism of FDNCE When Adding Objects

Uncertainty metric is an important part of feature selection
algorithms, and its calculation speed determines the efficiency
of the algorithms. Thence, this subsection presents an incre-
mental update mechanism that is used to quickly compute the
new FDNCE when adding objects to an ODS. From (26), we
can easily find that the pivotal step in the process of updating
FDNCE is to calculate the corresponding diagonal matrix in an
incremental manner. In what follows, the principle for updating
the diagonal matrix is presented.

Proposition 1: Given an ODSS� = 〈U,A ∪ {d}, V 〉, adding
object set Uad = {xn+1, xn+2, . . . , xn+n′ } to S�, then the
changed object set is U ′ = U ∪ Uad. Let ∀B ⊆ A, known

the previous diagonal matrix is ̂Ñ≺BU = [N̂ ≺B(i,j)]n×n, which is

updated to ̂Ñ≺BU ′ = [N̂ ′≺B
(i,j)](n+n′)×(n+n′) after adding objects,

where

N̂ ′≺B
(i,j)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N̂ ≺B(i,j) +

n+n′∑
l=n+1

N≺B(i,l), i, j ∈ [1, n], i = j

n+n′∑
l=1

N≺B(i,l), i, j ∈ [n+ 1, n+ n′], i = j

0, i, j ∈ [1, n+ n′], i �= j

(27)

where N̂ ≺B(i,j) is known,
∑n+n′

l=n+1N≺B(i,l) and
∑n+n′

l=1 N≺B(i,l) need
to be calculated by (10).

Proof : According to Definition 18, we know that all nondi-

agonal elements in matrix ̂Ñ≺BU ′ are zero, that is, ∀i, j ∈ [1, n+

n′] and i �= j, N̂ ′≺B
(i,j) = 0 always holds. Then, ∀i, j ∈ [1, n]

and i = j, we have N̂ ′≺B
(i,j) =

∑n+n′
l=1 N≺B(i,l) =

∑n
l=1N≺B(i,l) +∑n+n′

l=n+1N≺B(i,l) = N̂ ≺B(i,j) +
∑n+n′

l=n+1N≺B(i,l), where N̂ ≺B(i,j) is

known, and
∑n+n′

l=n+1N≺B(i,l) needs to be calculated by

(10). Furthermore, ∀i, j ∈ [n+ 1, n+ n′] and i = j, N̂ ′≺B
(i,j) =
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Algorithm 2: FDNCE-IFSA Algorithm.

Input: An original ODS S� = 〈U,A ∪ {d}, V 〉, and its
reduct Q, parameters α, β, original diagonal matrices
̂Ñ≺AU ,

̂

Ñ≺A∪{d}U , ̂Ñ≺QU ,
̂

Ñ≺Q∪{d}U , and
Uad = {xn+1, xn+2, . . . , xn+n′ };

Output: A new reduct RedU ′ on U ∪ Uad.
1: Add object set U ′ ← U ∪ Uad;

2: Update the diagonal matrices ̂Ñ≺AU →̂Ñ≺AU ′ ,
̂

Ñ≺A∪{d}U → ̂

Ñ≺A∪{d}U ′ , ̂Ñ≺QU → ̂Ñ≺QU ′ ,
̂

Ñ≺Q∪{d}U → ̂

Ñ≺Q∪{d}U ′ by Proposition 1;
3: Calculate the new FDNCE NE≺d|A(U ′) and
NE≺d|Q(U ′) via using (26);

4: if NE≺d|Q(U ′) ≤ NE≺d|A(U ′) then
5: turn to step 15;
6: else
7: turn to step 9;
8: end if
9: For each a ∈ (A−Q), calculate sigU

′
outer(a,Q, d) via

using (22), then ranking these attributes with respect to
descending order of their outer significance, and
record the results as {a1,′ a2,′ . . . , a′|A−Q|};

10: while NE≺d|Q(U ′) > NE≺d|A(U ′) do
11: for h = 1 to |A−Q| do
12: select Q← Q ∪ {a′h} and calculate NE≺d|Q(U ′);
13: end for
14: end while
15: for each a ∈ Q do
16: Calculate FDNCE NE≺d|(Q−{a})(U ′) via using (26);
17: if NE≺d|(Q−{a})(U ′) ≤ NE≺d|Q(U ′) then
18: Q← Q− {a};
19: end if
20: end for
21: RedU ′ ← Q;
22: return RedU ′ ;

∑n+n′
l=1 N≺B(i,l) also needs to be calculated by (10). In summary,

based on the previous diagonal matrix ̂Ñ≺BU , we calculate new

knowledge to obtain an updated diagonal matrix ̂Ñ≺BU ′ , where
N̂ ′≺B

(i,j) is denoted as (27).

Analogously, the diagonal matrix
̂

Ñ≺B∪{d}U ′ can also be up-
dated by Proposition 1. Therefore, according to (26), we can
directly compute the new FDNCE via using the updated matrices
̂Ñ≺BU ′ and

̂

Ñ≺B∪{d}U ′ .

B. Incremental Algorithm When Adding Objects

Based on FDNCE-HFS algorithm, this subsection introduces
an incremental feature selection algorithm when adding objects
(FDNCE-IFSA), and then analyze its time complexity.

TABLE IV
TIME COMPLEXITY OF ALGORITHM FDNCE-IFSA

TABLE V
COMPARISON OF THE TIME COMPLEXITY OF ALGORITHMS

FDNCE-HFS AND FDNCE-IFSA

1) FDNCE-IFSA Algorithm (See Algorithm 2): In
Algorithm 2, Step 1 is to add the object set to the original
ODS. Step 2 is to update the original diagonal matrices by
Proposition 1. Step 3 is to calculate the new FDNCE via using
(26). Steps 4–8 are to determine whether the new FDNCE
under the previous reduct Q is equal to or less than that of
under the raw attribute set A; if so, then keep the previous
reduct unchanged. Steps 9–14 are to construct a descending
sequence for the remaining attributes, and incrementally update
the selected attribute subset until Step 10 does not hold. Steps
15–20 are to remove redundant attributes from the selected
attribute subset. Steps 21–22 are to output the final reduct.

2) Time Complexity of FDNCE-IFSA Algorithm: The time
complexity of the main steps in this algorithm is listed in
Table IV.

3) Comparison of Time Complexity: We list the time com-
plexity of algorithms FDNCE-HFS and FDNCE-IFSA in Ta-
ble V for intuitive comparison.

From Table V, we can easily find that the time complex-
ity of FDNCE-IFSA algorithm is usually much less than that
of FDNCE-HFS algorithm. Because FDNCE-HFS algorithm
computes a new reduct from scratch, it ignores the previously
acquired knowledge. By contrast, FDNCE-IFSA algorithm uses
the previous knowledge for accelerating the acquisition of a
new reduct. Thence, compared with FDNCE-HFS algorithm,
FDNCE-IFSA algorithm saves time cost.

C. Updating Mechanism of FDNCE When Deleting Objects

In this subsection, we introduce an incremental update mech-
anism for calculating the new FDNCE when objects are deleted
from an ODS.

Proposition 2: Given an ODS S� = 〈U,A ∪ {d}, V 〉, delet-
ing object set Ude = {xq1 , xq2 , . . . , xqn′ } from S�, then the
changed object set is U ′ = U − Ude. Let ∀B ⊆ A, known the
previous relation matrix Ñ≺BU = [N≺B(i,j)]n×n and its diagonal

matrix ̂Ñ≺BU = [N̂ ≺B(i,j)]n×n, where the diagonal matrix is up-

dated to ̂Ñ≺BU ′ = [N̂ ′≺B
(i,j)](n−n′)×(n−n′) after deleting objects,
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where

N̂ ′≺B
(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N̂ ≺B(i+k−1,j+k−1) −
n′∑
t=1
N≺B(i+k−1,qt)

i, j ∈ [qk−1 − k + 2, qk − k + 1), i = j

N̂ ≺B(i+n,′j+n′) −
n′∑
t=1
N≺B(i+n,′qt)

i, j ∈ [qn′ − n′ + 1, n− n′], i = j
0, i, j ∈ [1, n− n′], i �= j

(28)
where 1 ≤ k ≤ n′.

Proof : When the object set Ude is deleted, the raw object

set becomes U ′ = {x1, x2, . . . , xn−n′ }. In ̂Ñ≺BU ′ , the elements
on the off-diagonal lines are all zero, i.e., ∀i, j ∈ [1, n− n′]
and i �= j, N̂ ′≺B

(i,j) = 0 always holds. According to Definition 18,

for elements on the diagonal, we have N̂ ′≺B
(i,j) =

∑n
l=1N≺B(i,l) −∑n′

t=1N≺B(i,t) = N̂ ≺B(i,j) −
∑n′

t=1N≺B(i,t), and its position has two

changes in ̂Ñ≺BU ′ . One for any i, j ∈ [qk−1, qk) and i = j,
the row and column coordinates of N̂ ≺B(i,j) should be shifted
forward by k − 1 positions at the same time. After that, we
can get that for any i, j ∈ [qk−1 − k + 2, qk − k + 1) and i =

j, N̂ ′≺B
(i,j) = N̂ ≺B(i+k−1,j+k−1) −

∑n′
t=1N≺B(i+k−1,qt) holds. On the

other hand, for any i, j ∈ [qn′ − n′ + 1, n− n′] and i = j, the
row and column coordinates of N̂ ≺B(i,j) should be shifted for-

ward by n′ positions simultaneously. Then, we have N̂ ′≺B
(i,j) =

N̂ ≺B(i+n,′j+n′) −
∑n′

t=1N≺B(i+n,′qt)
holds. To sum up, based on the

previous relation matrix Ñ≺BU and its diagonal matrix ̂Ñ≺BU ,
we delete the corresponding knowledge to obtain an updated

diagonal matrix ̂Ñ≺BU ′ .

Analogously, the diagonal matrix
̂

Ñ≺B∪{d}U ′ can also be up-
dated by Proposition 2. Hence, according to (26), we can directly

compute the new FDNCE via using the updated matrices ̂Ñ≺BU ′

and
̂

Ñ≺B∪{d}U ′ .

D. Incremental Algorithm When Deleting Objects

Based on FDNCE-HFS algorithm, this subsection designs an
incremental feature selection algorithm when deleting objects
(FDNCE-IFSD), and then analyzes its time complexity.

1) FDNCE-IFSD Algorithm (See Algorithm 3): In
Algorithm 3, Step 1 is to delete the object set. Step 2 is
to update the original diagonal matrices by Proposition 2. Step
3 is to compute the new FDNCE via using (26). Steps 4–8
are to determine whether the new FDNCE under the original
reduct is not higher than that of under the entire attribute set; if
so, then keep the original reduct unchanged. Steps 9–14 are to
construct a descending sequence for the remaining attributes,
and incrementally update the selected feature subset until
Step 10 does not hold. Steps 15–20 are to remove redundant
attributes from the selected attribute subset. Steps 21 and 22 are
to output the final reduct.

Algorithm 3: FDNCE-IFSD Algorithm.

Input: An original S� = 〈U,A ∪ {d}, V 〉 and its reduct
Q, parameters α, β, original relation matrices Ñ≺AU ,

Ñ≺A∪{d}U ,

Ñ≺QU , Ñ≺Q∪{d}U , and their diagonal matrices ̂Ñ≺AU ,
̂

Ñ≺A∪{d}U ,
̂Ñ≺QU ,

̂

Ñ≺Q∪{d}U , and Ude = {xq1 , xq2 , . . . , xqn′ };
Output: A new reduct RedU ′ on U − Ude.

1: Delete object set U ′ ← U − Ude;

2: Update the diagonal matrices ̂Ñ≺AU →̂Ñ≺AU ′ ,
̂

Ñ≺A∪{d}U → ̂

Ñ≺A∪{d}U ′ , ̂Ñ≺QU → ̂Ñ≺QU ′ ,
̂

Ñ≺Q∪{d}U → ̂

Ñ≺Q∪{d}U ′ by Proposition 2;
3: Calculate the new FDNCE NE≺d|A(U ′) and
NE≺d|Q(U ′) via using (26);

4: if NE≺d|Q(U ′) ≤ NE≺d|A(U ′) then
5: turn to step 15;
6: else
7: turn to step 9;
8: end if
9: For each a ∈ (A−Q), calculate sigU

′
outer(a,Q, d) via

using (22), then construct a descending sequence of
attributes, and record the results as
{a1,′ a2,′ . . . , a′|A−Q|};

10: while NE≺d|Q(U ′) > NE≺d|A(U ′) do
11: for h = 1 to |A−Q| do
12: select Q← Q ∪ {a′h} and calculate NE≺d|Q(U ′);
13: end for
14: end while
15: for each a ∈ Q do
16: compute FDNCE NE≺d|(Q−{a})(U ′) via using (26);
17: if NE≺d|(Q−{a})(U ′) ≤ NE≺d|Q(U ′) then
18: Q← Q− {a};
19: end if
20: end for
21: RedU ′ ← Q;
22: return RedU ′ ;

TABLE VI
TIME COMPLEXITY OF FDNCE-IFSD ALGORITHM

2) Time Complexity of FDNCE-IFSD Algorithm: The time
complexity of the main steps in this algorithm is listed in
Table VI.

3) Comparison of Time Complexity: The time complexity
of algorithms FDNCE-HFS and FDNCE-IFSD is shown in
Table VII for intuitive comparison.
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TABLE VII
COMPARISON OF THE TIME COMPLEXITY OF ALGORITHMS FDNCE-HFS AND

FDNCE-IFSD

TABLE VIII
SUMMARY OF DATASETS

From Table VII, obviously, the time complexity of FDNCE-
IFSD algorithm is much lower than that of FDNCE-HFS al-
gorithm. The main reason is that FDNCE-IFSD algorithm uses
the previous knowledge when calculating the new reduct, while
FDNCE-HFS algorithm calculates a new reduct from scratch,
which does not use the previous knowledge. So FDNCE-HFS
algorithm is very time-consuming for calculating a new reduct.

VI. EXPERIMENTS AND ANALYSIS

In this section, we perform a series of experiments to test
the robustness of the proposed metric and evaluate the per-
formance of the proposed feature selection algorithms. The
configuration of computer used for experiments is as follows:
CPU is Intel(R) Core(TM) i7-8700. Clock Speed is 3.20 GHz.
Memory is 16.0 GB. Operation system is 64-bit Windows 10.
The algorithms are coded by Java. We downloaded 10 datasets
from the UCI machine learning repository, and a summary of
them is given in Table VIII.

Before conducting the experiments, we preprocess these
datasets. For categorical features, we use integers instead of
symbols, and define order relation of the integers in accordance
with semantics of the features. These datasets are normalized
via using

v̂ik =
vik −min(Vak

)

max(Vak
)−min(Vak

)
. (29)

These preprocessed datasets are saved in the GitHub homepage.1

To evaluate the effectiveness of feature selection algorithms,
two classifiers, K-nearest neighbor (KNN, K=3) and support
vector machine (SVM), are applied to the datasets after reduc-
tion to verify the effectiveness of feature selection methods.
A 10-fold cross-validation is adopted in classification. The ex-
perimental process is repeated 10 rounds on each dataset, and
the mean and standard deviation of classification accuracy are

1Online. [Available]: https://github.com/binbinsang/Incremental-FS-
FDNRS-dataset-R1.git

Fig. 4. Comparison of robustness of metrics at different noise levels. (a)
WPBC. (b) Germ. (c) Mice. (d) Card.

recorded and compared. For dynamic data, the reduct obtained
by running the feature selection algorithm may be different in
different runs. Therefore, the average of reduct sizes in 10 runs
is adopted as the reduct size.

A. Robustness Evaluations of Metric FDNCE

In this subsection, we randomly select four datasets in Ta-
ble VIII to test the robustness of metrics DCE, FDCE, NDCE,
and FDNCE. For each dataset, we choose different proportions
of data to add random noise. These datasets with noise are
obtained via using

v̂ij =

{
v̂ij + rij , 0 ≤ v̂ij + rij ≤ 1
v̂ij , otherwise

(30)

where rij ∈ [0, 1]. Then, these four metrics are calculated for
different levels of noise datasets. The experimental results are
presented in Fig. 4, where the histogram in each subgraph shows
the variance of the conditional entropy under different noise
levels.

Fig. 4 indicates that the fluctuation of FDNCE curve is rel-
atively small as the noise level increases. Moreover, in each
subfigure, we also show the variance of the calculation result of
each metric. From these histograms, we can intuitively observe
that the variance of FDNCE is the minimum one. Therefore, we
can conclude that the robustness of metric FDNCE is the best
one compared with other three metrics.

B. Effectiveness Evaluations of FDNCE-HFS Algorithm

This subsection compares the classification performance of
the reducts obtained via HFS based on DCE, NDCE, FDCE,
and FDNCE, respectively. Table IX shows the results of the
experiment, where “raw” is the classification accuracy of the
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TABLE IX
CLASSIFICATION ACCURACY OF REDUCTS OBTAINED VIA ALGORITHM HFS WITH DIFFERENT METRICS (%)

TABLE X
CLASSIFICATION ACCURACY OF GENERATED REDUCT VIA USING DIFFERENT

ALGORITHMS (%)

1The size of the reduct is the average of the reducts generated by running the algorithm
ten times.

TABLE XI
CLASSIFICATION ACCURACY OF GENERATED REDUCT VIA

DIFFERENT ALGORITHMS (%)

1The size of the reduct is the average of the reducts generated by running the algorithm
ten times.

raw feature set. The optimal classification accuracies is in bold-
face. Note that in Table IX, the number in bracket after each
classification accuracy result indicates the size of the generated
reduct. In the following subsections, the structure of Tables X
and XI is similar to Table IX.

From Table IX, it is evident that the classification accuracy of
the reducts obtained via FDNCE-HFS algorithm in most datasets
is not only higher than that of the raw feature set, but also
higher than that of HFS algorithm using the other three metrics.
The average value of classification accuracy of FDNCE-HFS
algorithm is the highest one. Hence, the reduct generated by
using FDNCE-HFS algorithm is better. It is concluded that

FDNCE-HFS algorithm can precisely remove redundant at-
tributes in ordered data and improve classification performance.

C. Performance Evaluations of FDNCE-IFSA Algorithm

In this subsection, we evaluate the performance of algorithm
FDNCE-IFSA in terms of effectiveness and efficiency. In terms
of effectiveness, we compare algorithms FDNCE-IFSA and
FDNCE-HFS from two aspects: reduct size and its classification
performance. In terms of efficiency, we compare algorithms
FDNCE-IFSA and FDNCE-HFS from two aspects: computa-
tional time and speed-up ratio.

1) Effectiveness Evaluations: The dynamic datasets are sim-
ulated by the following way. For each preprocessed dataset,
50% of the objects are randomly sampled as an initial object
set U , and the all remaining objects are treated as an added
object set Uad. Algorithms FDNCE-IFSA and FDNCE-HFS are
conducted to obtain a new reduct when Uad is added to U . Then,
the classification accuracy of the reducts obtained by these two
algorithms is verified and compared. The experimental results
are presented in Table X.

From Table X, we can see that the classification perfor-
mance of the reducts obtained by algorithms FDNCE-IFSA and
FDNCE-HFS is almost equal in most datasets. Moreover, the
size of the reducts generated by these two algorithms is equal
or very close in most datasets. This finding proves that the
reducts obtained by algorithms FDNCE-IFSA and FDNCE-HFS
have almost the same classification performance. Hence, we can
conclude from Table X that FDNCE-IFSA algorithm is effective.

2) Efficiency Evaluations: In the previous experiment, we
have divided each preprocessed data into the initial object
set U and the added object set Uad. The dynamic change of
datasets is simulated in the following way. Different ratios of
objects sampled randomly from Uad are added to U to obtain
dynamic datasets for testing (i.e., 10%, 20%, 30%, 40%, and
50% of the objects from Uad are randomly sampled and added
to U ). The time consumption of algorithms FDNCE-IFSA and
FDNCE-HFS are compared by using dynamic testing sets. The
experimental results are presented in Fig. 5.

From Fig. 5, each subfigure shows that the computational
time of FDNCE-IFSA algorithm is remarkably less than that of
FDNCE-HFS algorithm. Furthermore, as the size of the added
object set increases, the growth trend of the time consumed via
FDNCE-IFSA algorithm is slower than that via FDNCE-HFS
algorithm. For datasets Derm, Libras, and Mice with larger
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Fig. 5. Computational time of different algorithms versus different ratios of
adding objects. (a) WPBC. (b) Derm. (c) Libras. (d) Aust. (e) Germ. (f) Mice.
(g) Car. (h) Card. (i) Wave. (j) Nurs.

feature numbers, the time-consumption of the incremental algo-
rithm is also significantly lower than that of the nonincremental
algorithm. Moreover, for datasets Wave and Nurs with larger
sample numbers, the computational efficiency of the incremental
algorithm is also observably higher than that of the nonincremen-
tal algorithm. This finding proves that FDNCE-IFSA algorithm
can efficiently obtain a reduct when adding objects. In particular,

Fig. 6. Speed-up ratio of algorithm FDNCE-IFSA.

compared with nonincremental algorithms, its computational
efficiency is not affected by the feature set and sample set size
of the dataset.

Subsequently, we again demonstrate the efficiency of
FDNCE-IFSA algorithm again by speed-up ratio, which is
calculated as S = TFDNCE−HFS/TFDNCE−IFSA, T∗ is the
computational time of ∗ algorithm. Based on the results shown
in Fig. 5, the speed-up ratio of each dataset is calculated. The
experimental results are shown in Fig. 6.

As shown in Fig. 6, algorithm FDNCE-IFSA is at least nearly
two times or more faster than FDNCE-HFS algorithm on all
the datasets except dataset Car. It is worth pointing out that for
dataset Mice with larger features, FDNCE-IFSA algorithm is
at least six times faster than FDNCE-HFS algorithm, and for
datasets Wave with larger sample set, FDNCE-IFSA algorithm
is approximately four times faster than FDNCE-HFS algorithm.
The experimental results again prove that the efficiency of
FDNCE-IFSA algorithm.

3) Summary: From the evaluations of effectiveness and effi-
ciency of FDNCE-IFSA algorithm, a conclusion can be drawn
that the computational time required to obtain a feasible reduct
via FDNCE-IFSA algorithm is considerably shorter than that
required via FDNCE-HFS algorithm. Therefore, when adding
multiple objects to an ODS, the proposed incremental algorithm
FDNCE-IFSA can efficiently generate a feasible reduct without
reducing the classification performance.

D. Performance Evaluations of Algorithm FDNCE-IFSD

This subsection evaluates the performance of FDNCE-IFSD
algorithm in terms of effectiveness and efficiency. Algorithms
FDNCE-IFSD and FDNCE-HFS are compared in the same
scheme as the previous subsection.

1) Effectiveness Evaluations: The dynamic datasets are sim-
ulated in the following way. Naturally, each preprocessed dataset
is taken as an initial object set U , and then 50% of the objects
are randomly sampled as a deleted object set Ude. Algorithms
FDNCE-IFSD and FDNCE-HFS are used to calculate a new
reduct when objects are deleted. Then, the classification accu-
racy of the reducts obtained by these two algorithms is compared.
The experimental results are presented in Table XI.
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Fig. 7. Computational time of different algorithms versus different ratios
deleting objects. (a) WPBC. (b) Derm. (c) Libras. (d) Aust. (e) Germ. (f) Mice.
(g) Car. (h) Card. (i) Wave. (j) Nurs.

From Table XI, we find that the size of the reducts generated
by these two algorithms are equal or very close in most datasets.
It is worth noting that the classification performance of the
reducts obtained by algorithms FDNCE-IFSD and FDNCE-HFS
is nearly equal in most datasets. This finding proves that the
reducts obtained by algorithms FDNCE-IFSD and FDNCE-HFS

Fig. 8. The speed-up ratio of algorithm FDNCE-IFSD.

have almost the same classification performation. Hence, the
experimental results indicate that algorithm FDNCE-IFSD is
effective.

2) Efficiency Evaluations: The dynamic change of datasets
is simulated in the following way. For each preprocessed dataset,
different ratios of objects are randomly sampled from the initial
object set U as deleting objects (i.e., 10%, 20%, 30%, 40%,
and 50% of U are, respectively, deleted to construct testing
sets). Then, the running time of algorithms FDNCE-IFSD and
FDNCE-HFS on testing sets are recorded. The change trend
lines of these two algorithms are shown in Fig. 7.

Fig. 7 clearly shows that as the size of deleted object set
increases, the running time of algorithms FDNCE-IFSD and
FDNCE-HFS decreases. Notably, the running time of FDNCE-
IFSD algorithm is remarkably less than that of FDNCE-HFS
algorithm. This proves that FDNCE-IFSD algorithm is more
efficient than FDNCE-HFS algorithm. It is worth noting that for
datasets Derm, Libras, and Mice with large feature scales, the
time cost of algorithm FDNCE-IFSD is much lower than that
of algorithm FDNCE-HFS. Furthermore, for datasets Wave and
Nurs with a large sample set, the time-consumption of algorithm
FDNCE-IFSD is also significantly lower than that of algorithm
FDNCE-HFS. In addition, we can conclude from the above
two points that the computational efficiency of the incremental
algorithm FDNCE-IFSD does not change linearly with the size
of the feature set or sample set.

Afterwards, the efficiency of FDNCE-IFSD algorithm is ver-
ified again by calculating the speed-up ratio of the running algo-
rithms. Similarly, the speed-up ratio of each dataset is calculated
according to the results in Fig. 7. The results of the experiment
are shown in Fig. 8.

Fig. 8 indicates that FDNCE-IFSD algorithm is at least
nearly two times or more faster than FDNCE-HFS algorithm
for all datasets. Especially for datasets Mice with larger feature
numbers, algorithm FDNCE-IFSD is at least ten times faster
than algorithm FDNCE-HFS, and for datasets Wave with larger
sample set, algorithm FDNCE-IFSD is at least four times faster
than FDNCE-HFS algorithm. The experimental results again
testify that FDNCE-IFSD algorithm has higher efficiency than
FDNCE-HFS algorithm.
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3) Summary: After experimental analysis, it can be con-
cluded that FDNCE-IFSD algorithm not only decreases the
computational time, but also does not lessen the classification
performance. Accordingly, compared with FDNCE-HFS algo-
rithm, FDNCE-IFSD algorithm can quickly generate a satisfying
reduct when deleting multiple objects from an ODS.

VII. CONCLUSION

Feature selection is an effective information preprocessing
technology, which can effectively remove redundant attributes
and improve classification performance. However, with the
development of the information age, different types of data
have different requirements for feature selection methods. This
study investigates incremental feature selection approaches for
dynamic ordered data with time-evolving objects under FDNRS
model framework. Experiments are performed on ten public
datasets. The findings from the experimental results are as
follows: 1) The metric FDNCE is more robust for ordered data
with noise. 2) The classification ability of the reducts obtained
via FDNCE-HFS algorithm is not only higher than that of the
raw feature set, but also higher than that of HFS algorithm using
other metrics. 3) The proposed incremental feature selection
algorithms can efficiently calculate an effective reduct from
dynamic ordered data with time-evolving objects.

In this study, the developed incremental feature selection
approaches are suitable for dynamic ordered data with the vari-
ation of objects. Nevertheless, dynamic ordered data with the
multisided variation is closer to reality, which inspires our further
research. In future work, based on the current research results,
we will investigate incremental feature selection approaches for
dynamic ordered data with multisided variation.
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