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Abstract—Fuzzy C-Means (FCM) is a clustering algorithm
based on partition of the universe. However, the partition gener-
ated by an equivalence relation is strict in practical application
and exhibits relatively poor fault-tolerant mechanism. In this
paper, a novel binary relation based on improved FCM with the
principle of refined justifiable granularity is presented. Different
expressions of the proposed binary relation under different
values of weight parameter are discussed, and the changes of
the properties of the binary relation under different parameter
values are provided. By measuring the significance of attributes
in the feature space, a feature selection method, called forward
heuristic feature selection (FHFS), is designed to construct the
low-dimension feature space based on maximizing the original
data and information retention through the defined degrees of
aggregation and dispersion. It is shown how the results of feature
selection and classification performance vary when the values of
the weight factor locate in different ranges. To illustrate the supe-
riority and effectiveness of the proposed FHFS algorithm, nine
high-dimensional datasets and eight image datasets from UCI
repository are used and compared with other feature selection
methods, respectively. The results of experimental evaluation and
the significance test show that the proposed learning mechanism
is a superior algorithm.

Index Terms—Feature selection; Granular computing; Infor-
mation granularity; Justifiable granularity

I. INTRODUCTION

FEATURE selection is a process to select important fea-
tures (or remove redundant and irrelevant features) from
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original target feature space to improve the accuracy and
simplify learning tasks [1]–[3]. When the size of datasets is
extraordinarily large, it can significantly save the storage space
and computational overhead of data analysis from the feature
selection procedure. The significance measures of features and
selection criteria are important to feature selection, influencing
the effectiveness and classification performance of the reduc-
tion sets [4]–[7].

The existence of uncertainty brings difficulties and chal-
lenges to data processing. From the viewpoint of granular
computing (GrC), uncertainty associates with a kind of rep-
resentation of information at different levels of information
granularity [8]. Zadeh first explored the concept of GrC
and coined an informal yet highly descriptive notion of an
information granule [9]. In general, by information granule,
one regards a collection of elements drawn together by their
closeness (resemblance, proximity, functionality, etc.), articu-
lated in terms of some useful spatial, temporal, or functional
relationships. GrC is about to represent, construct, and process
information granules. Many excellent achievements regard to
GrC have been reported in references [10]–[13].

It is worth stressing that information granules, as encoun-
tered in natural language, are implicit in their nature, and
information granules permeate human endeavors. No matter
which problem is taken into consideration, we usually set it up
in a certain conceptual framework composed of some generic
and conceptual meaningful entity information granules, which
we regard to be of relevance to the problem formulation,
further problem solving, and a way in which the findings
are communicated to the community. Information granules are
formalized in many different ways [14]. Clustering delivers a
natural mechanism to construct information granules in the
presence of numeric data. As a matter of fact, a main agenda
of clustering is to reveal a structure of data, namely, from a
collection of clusters-information granules. There is a genuine
diversity of clustering algorithms. Depending upon the method
used, the results arise information granules expressed in terms
of sets, fuzzy sets, rough sets, and so forth.

Clustering is to divide a dataset into different classes or
clusters according to a specific standard (such as distance
criterion), so that the similarity of objects in the same cluster
is as large as possible, and the differences of objects not
in the same cluster are as prominent as possible. Cluster-
ing usually does not need to use labelled training data for
learning and unsupervised learning [15]–[19]. As a typical
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clustering method of unsupervised learning, Fuzzy C-Means
(FCM) based clustering algorithm has been widely used in
feature selection and image processing [20]–[25]. However,
algorithms from the above literatures define clustering as the
largest set of density connected points, searching clusters of
arbitrary shapes in noisy spatial datasets, but the effect is not
obvious when dealing with datasets with uneven density. The
essential reason of this induced limitation is that these methods
do not consider the requirements of intra-class compactness
and between-class sparsity. It is found that after introducing
the principle of justifiable granularity [8], [11]–[14], [26]–[28],
this issue can be solved to a certain extent.

Based on the above analysis, in this paper, we establish
a novel FCM-based feature selection approach with wider
application range compared with traditional basic FCM. This
novel method mainly relaxes the limitation of partition of
universe, improves FCM algorithm for clustering, and then
uses the principle of justifiable granularity to formulate feature
selection rules. Meanwhile, we apply the proposed algorithm
to the practical application scenario of the image feature
extraction. Through the comparison of common evaluation
indicators, one notes that the method presented in this paper
exhibits better experimental results and application results of
image features. The main contents and innovations of this
paper are summarized as follows.

1) The binary relation based on improved FCM with the
principle of refined justifiable granularity is defined to
overcome the limitation of the traditional FCM-based
partition. The proposed method exhibits better perfor-
mance in the process of image segmentation. Meanwhile,
the novel justifiable granularity based binary relation can
change the properties by adjusting the parameter value,
which has adaptive characteristics, and is suitable for
wider circumstances compared with the traditional FCM-
based binary relation.

2) A novel criterion based on the degrees of aggregation and
dispersion for measuring the importance of attributes is
developed. The newly defined significance measurement
not only exhibits interpretability, but also reduces the
amount of computation and effectively improves the
operation efficiency of the heuristic attribute importance
traversal algorithm. The proposed of attribute importance
measurement criteria has guiding significance for estab-
lishing a set of mature feature selection criteria.

3) Rules of improved FCM-based forward heuristic feature
selection (FHFS) with justifiable granularity are present-
ed, and the related algorithms for achieving refinement of
information granularity and FHFS are derived to improve
the computational efficiency and recognition accuracy of
big data processing in different scenarios.

4) Nine publicly available high-dimensional datasets are
utilized for experimental evaluation, and the experimental
results show the superiority of the proposed algorithm.
Experiments related to image processing are also de-
signed to show that the proposed method has significant
effects and advantages in image feature selection after
image segmentation.

This paper designs a feature selection algorithm based on

improved FCM by using the principle of refined justifiable
granularity, and verifies its performance through utilizing the
data dimensionality reduction and image feature extraction.
Fig. 1 describes the flow chart of the entire work. The
paper is organized as follows. Some necessary and important
concepts about FCM-based clustering and optimal information
granularity with the literature survey are introduced in Section
II, and the motivation of this paper is recalled. In Section III,
the construction method of BRIG is defined and its important
properties are further investigated. In Section IV, we mainly
design the related algorithm to derive the feature selection
approach based on improved FCM with principle of refined
justifiable granularity. In Section V, the corresponding experi-
mental testing is conducted by nine datasets from UCI datasets
to test the advantage of FHFS, and the specific application in
image processing is proposed and verified. Finally, Section VI
covers some conclusions.

TABLE I: TERMINOLOGY NOTATION

Terminology Explanation

G(xi) The decision function of samples
dp(x1, x2) Minkowski distance

xk n-dimensional vectors
ϕk ∈ {1, 2, ..., c} The index of class

νi Centroid vector of i-th cluster
µik The membership degree
Ωi The i-th information granularity
ρi Size of information granularity Ωi

cov(Ωi) Coverage of Ωi

spec(Ωi) Specificity of Ωi

H(Ωi) Homogeneity of Ωi

V (Ωi) Optimal information granularity index
BRIG Binary relation based on information granularity
DA Degree of aggregation
DD Degree of dispersion

GDAB DA of the fuzzy decision system under B
DSB Separability of the fuzzy decision system under B
SIG Significance of attributes
FHFS Forward heuristic feature selection

II. BASIC CONCEPTS AND RECENT LITERATURE REVIEW

In this section, some basic concepts of clustering and
the principle of justifiable granularity are briefly reviewed.
Necessary symbolic notations are explained in Table I.

A fuzzy subset X of U is defined as a membership
function assigning to each element x of U a certain degree
of membership. The value X(x) ∈ [0, 1] is referred to as the
membership degree of x to the fuzzy set X .

Definition 2.1: An information system is a tuple
(U,C, V, f), where U = {x1, x2, · · · , xn} is a non-empty and
finite set of objects; C = {a1, a2, · · · , am} is a non-empty
and finite set of attributes; f = {fl|U → Vl, l ≤ m}, fl is the
value of al on x ∈ U , Vl is the domain of al, al ∈ C.

A decision information system is I = (U,C ∪ D,V, f),
where C ∩ D = ∅, C and D are the condition and decision
attribute set, respectively. A decision information system is
called a fuzzy decision system, if all attribute values are fuzzy.

A. Clustering

The objective of clustering is to divide the dataset into
several disjoint subsets. Given a m-dimensional sample dataset
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Fig. 1: The schematic flow chart.

X = {x1, x2, ..., xn}, and xi ∈ Rm. Suppose that a criteri-
on (not unique) can be found so that each sample can be
associated with a specific group according to its special char-
acteristics. The overall structure of the dataset gk = G(xi),
k = {0, 1, 2, ..., t}, where gk refers to the decision attribute
value of each sample. G(xi) indicates the decision function
of samples about decision attributes. In general, each group is
called a cluster, and the process of finding the function G is
called clustering.

Definition 2.2: Let X = {x1, x2, ..., xn} be a sample
dataset, xi ∈ Rm. The Minkowski distance of dp(x1, x2) is

dp(x1, x2) = (
∑
j

|xj1 − x
j
2|p)

1
p , (1)

where p is any real number greater than or equal to 1.
dp(xi, xj) is called the Manhattan distance if p = 1, the
Euclidean distance if p = 2, and the Tchebychev distance
if p =∞. Most of the clustering algorithms use the Euclidean
distance. When dp(xi, xj) is larger, it means that the distance
between xi and xj is larger, indicating that the similarity
between them is smaller.

The distance formula provides a specific calculation method
for the measurement of membership in Fuzzy C-Means (FCM)
algorithm and the measurement of coverage in the refinement
of information granularity algorithm.

B. FCM

Let the dataset compose of a collection of ordered pairs
(xk, ϕk), where xk (k = 1, 2, ..., N) are n-dimensional vectors
and ϕk ∈ {1, 2, ..., c} denotes the index of the corresponding
class of input instance xk. The prototype set {ν1, ν2, ..., νc}
denotes the centroid vector of all clusters and each cluster has
a corresponding prototype.

The FCM (Algorithm 1) can be summarized as follows.
First, the prototypes {ν1, ν2, ..., νc} of the clusters are initial-
ized randomly. Then, the distance dik between instance xk and
prototype νi will be calculated as the Euclidean distance. For
each instance xk, it will be distributed to the specific cluster
whose corresponding prototype νi shows the shortest distance

to xk. Next, the membership degrees of instance xk to the i-th
cluster µik are updated as follows

µik =
1

c∑
j=1

( dikdjk )
2

m−1

, (2)

where m(m > 1.0) denotes the fuzzification coefficient which
has an influences on the geometry of the membership functions
generated by the algorithm. The membership degree measures
the proximity of the instance xk to the i-th cluster. When the
distance between the instance xk and the i-th cluster is far,
that is, when the dik is large, the membership degree of the
instance xk with respect to the i-th cluster is small.

At the same time, the prototypes are updated in an iterative
manner through the minimization of the value of loss function
J until the changes of J lane lower than some predefined
value. The expression of J and updated νi are defined as

J =

c∑
i=1

N∑
k=1

µmikd
2
ik (3)

and

νi =

∑N
k=1 µ

m
ikxk∑N

k=1 µ
m
ik

. (4)

When the membership degree of the instance xk to the i-
th cluster is large and the distance is large, that is, the loss
function J is large at this time, which means that the cluster
formed by the FCM algorithm still does not form an effective
cluster structure, and the algorithm needs to be optimized.
Meanwhile, the cluster center νi can be regarded as the
weighted sum of each instance in the cluster, and the weight of
each instance is proportional to the membership degree of the
instance relative to the cluster. When the membership degree
is large, the weight is large, indicating that the current instance
provides a large proportion to the formation of cluster center.

C. Justifiable granularity

Information granularity exhibits a rigorous data represen-
tation with the clusters formed by FCM, and it is closely
combined with data expression methods.
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Algorithm 1 FCM
Input: A collection of ordered pairs D = (xk, ϕk).
Output: Clusters of data.
1: Initialize: Prototypes {ν1, ν2, ..., νc}.
2: t⇐ 1.
3: J(0) ⇐ 0.
4: ε⇐ 0.001.
5: while true do
6: for each xk ∈ {x1, x2, ..., xN}, νi ∈ {ν1, ν2, ..., νc} do
7: Compute dik;
8: Find the nearest νi from xk, and distribute xk to the

corresponding cluster;
9: Compute µik;

10: Update the prototypes {ν1, ν2, ..., νc};
11: end for
12: Compute loss function J(t);
13: if |J(t) − J(t−1)| ≤ ε then
14: break;
15: end if
16: t⇐ t+ 1;
17: end while
18: return Clusters and new prototypes {ν1, ν2, ..., νc};

Definition 2.3: (Information granularity) Let I = (U,C ∪
D,V, f) be a decision information system, if ∀P ⊆ C
has a real number G(P ) correspondence and satisfies: (1)
Nonnegativity: G(P ) ≥ 0; (2) Invariance: ∀P,Q ⊆ C, if
P ≈ Q, then G(P ) = G(Q); (3) Monotonicity: ∀P,Q ⊆ C, if
P ≺ Q, then G(P ) < G(Q), then G is called the information
granularity of I .

Based on the principle of justifiable granularity, the re-
finement of each information granularity should fulfill some
requirements. (1) Integrity of information. The information
granularity should reflect the existing experimental data as
much as possible. (2) High specificity. The information gran-
ularity should be as specific as possible to make sure that
smaller and more distinguishable information granularity is
formed. (3) Homogeneity measure. To improve the similarity
and homogeneity of data in the same information granularity,
the diversity of data instances covered by the information
granularity is quantified in terms of the entropy criterion.

Obviously, criteria (1) and (2) are conflicting. To meet the
granularity requirements in terms of information coverage, we
introduce the basic concepts of entropy and granularity into
the framework of information coverage.

Definition 2.4: (Coverage) The n-dimensional vector xk ∈
{x1, x2, ..., xN}(k = 1, 2, ..., N). The νi ∈ {ν1, ν2, ..., νc}
denotes the prototype of the i-th clusters, µik denotes the
membership degrees of instance xk to the i-th cluster, the
coverage of information granularity Ωi can be expressed as

cov(Ωi) =
1

N

∑
xk:||xk−νi||2≤nρ2i

µik, (5)

where ρi denotes the size of information granularity Ωi.
The cov(Ωi) represents the reflection degree of the current

particle size Ωi on the existing experimental data. When the
size ρi of the granularity is larger, the more instances the
granularity Ωi can accommodate, and the higher the degree of
response of the granularity Ωi to the original data information.

Definition 2.5: (Specificity) The specificity is concerned
with the interpretation semantics of information granularity.
It is expressed as follows

spec(Ωi) = 1− ρi, ρi ∈ [0, 1]. (6)

Since the size of ρi is proportional to coverage, the specifici-
ty of the above definition is inversely proportional to coverage.

Definition 2.6: Let Nik be the number of instances belong-
ing to class k, k = 1, 2, ..., p, covered by information granu-
larity Ωi, i = 1, 2, ..., c, and the overall number of instances

within the current information granularity is Ni =
p∑
k=1

Nik.

The entropy function defined over the distribution of instances
in each information granularity is defined as follows

H(Ωi) = −
p∑

k=1,Nik 6=0

Nik
Ni

log(
Nik
Ni

). (7)

When the granularity Ωi contains more categories of in-
stances, it means that the homogeneity of the granularity is
lower and the degree of confusion is higher, and the amount
of information contained is greater.

Theorem 2.1: (1) When all the instances in the current
information granularity fall in the same category, the value
of entropy criterion is equal to 0. (2) The maximum value of
entropy Hmax is attained when there is a uniform distribution
of categories of instances (which is equal to 1/p), i.e.

Hmax = −
p∑
k=1

log(
1

p
)/p. (8)

Proof. (1) It is easy to verify H(Ωi) = (−1)Ni

Ni
log(Ni

Ni
) =

(−1)log(1) = 0.

(2) Let Nik

Ni
= tk, then H(Ωi) = −

p∑
k=1,Nik 6=0

tklog(tk), and

p∑
k=1

tk−1 = 0. From Lagrange multiplier, G(t1, t2, ..., tp, λ) =

−
p∑
k=1

tkln(tk) + λ(
∑
k=1

ptk − 1). Take the derivatives of tk

and λ respectively, then ∂G
∂tk

= −ln(tk) − 1 + λ = 0, and
p∑
k=1

tk − 1 = 0. Therefore, tk = eλ−1, which means tk is

independent of the value of k. So Hmax is attained when
there is a uniform distribution of categories of instances, and

Hmax = −
p∑
k=1

log( 1
p )/p. �

This means that when the instances included in the gran-
ularity Ωi belong to different categories, the entropy of the
granularity is the largest. To determine the optimal size of the
information granularity, an objective function is constructed to
seek the optimal size of information granularity by combining
the above three mentioned criteria.

Definition 2.7: The optimal information granularity index
of Ωi is expressed as

V (Ωi) = cov(Ωi) · spec(Ωi)α · (1−H(Ωi)/Hmax), (9)

and the optimal value of ρ of Ωi is determined as

ρi−opt = argmaxρiV (Ωi), (10)
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where the non-negative weight factor α (α ≥ 0) indicates
the balance between the coverage and specificity criteria,
and the weight of specificity criteria varies with the change
of the value of α. With the increase of the values of α,
the produced information granularity becomes more specific.
ρi−opt represents the corresponding size when the granularity
is optimal.

The optimal information granularity index reflects the level
of coverage criterion, specificity criterion, entropy criteri-
on at the same time, which makes information granularity
more explanatory and justifiable. When V (Ωi) reaches the
maximum, the information granularity described by V (Ωi)
has high cohesiveness and homogeneity. It indicates that the
information granularity can better satisfy the three criteria
above in this case. At the same time, the corresponding size
of information granularity is extremely optimal. The purpose
of this index is to reach the optimization goal in refinement
of information granularity algorithm.

D. Brief literature review

From a general point of view, basic clustering techniques
can be categorized into hierarchical methods [2], [5], [13],
[15]–[18] and partitional methods [3], [19], [25], [26]. The task
for partitional clustering algorithms is to partition the dataset
into several clusters so that the samples in one cluster will find
the largest difference from samples in other clusters. The latest
researches show that various clustering algorithms have been
developed to solve practical problems encountered in pattern
recognition [5], [16], [18], machine learning [12], [15], data
mining [2], [3], and bio-informatics [17], [19], [24]. Among
these algorithms, the K-means algorithm [19] is considered as
a partitional clustering, and can be extended into FCM in case
each sample performs as a member of multiple clusters which
has membership value indicating a soft assignment.

FCM requires two basic parameters, namely the number
of clusters and the flexible parameter of the algorithm. The
outputs of the algorithm are prototypes and a fuzzy partition
matrix. This matrix represents membership degree of object
belonging to each cluster. Different FCM-based clustering
algorithms have been put forward to meet different criteria and
task intentions. For example, Lei et al. proposed an improved
FCM algorithm based on morphological reconstruction and
membership filtering that is significantly faster and more
robust than the basic FCM [24]. Parker et al. introduced a
geometric progressive FCM and minimum sample estimate
random FCM to accelerate the basic FCM algorithm [25]. Nie
et al. proposed an unsupervised linear method to construct
anchor-based similarity matrix and then performs spectral
analysis [19]. Based on the basic characteristics of FCM,
the FCM-based clustering have been successfully applied to
feature selection, which is closely related to the research of
this paper.

GrC concentrates on processing information granules. With
the aid of principle of justifiable granularity, scholars have
comprehensively discussed the formation and visualization
process of information granules. Among them, Zhu et al.
elaborated on the detailed realization of hierarchically struc-

tured granular models [11], and designed a collection of easily
interpretable ellipsoidal information granules by engaging the
principle of justifiable granularity [14]. Nguyen et al. con-
structed interval membership values for each class prediction
from the meta-data of observation by using information gran-
ule [12]. Hu et al. come up with some strategy to address the
fuzzy rule-based model by utilizing the structural information
granules [26]. Lu et al. developed the formation of input
hyper-box information granules through performing the hyper-
box iteration granulation algorithm governed by justifiable
granularity [27]. Ju et al. proposed a Dempster-Shafer theory-
based rough granular description model based on the justifiable
granularity [28].

The method of classical FCM-based granularity only dis-
cusses the potential structure information of elements, which
can not show the internal relationship between elements in a
visual and intuitive modality. At the same time, the parameter
α will directly affect the construction effect of information
granularity, and the process of parameter debugging increases
the workload of constructing justifiable granularity. Inspired
by the FCM-based clustering and the principle of justifiable
granularity, in this paper, we want to build a unified rule
to describe the way of justifiable granularity construction in
different situations, and provide the corresponding geometric
representation, so as to further discover the potential regularity
of constructing information granularity.

III. CONSTRUCTION OF NOVEL BINARY RELATION BASED
ON INFORMATION GRANULARITY

In this section, we construct a novel binary relation based
on improved information granularity principle. Algorithm 2
describes the improved construction method of justifiable
granularity. In order to utilize the unified rules to describe the
construction mode and regularity of information granularity
in different cases, we propose a novel binary relation with the
principle of justifiable granularity combined with Algorithm
2, and discuss the specific expression of the binary relation
through the parameter α in different cases, so as to further
reflect the relationship between samples in different cases by
means of visualization.

In order to better characterize the structure and internal
relationship between samples, we need to introduce a new
binary relation based on information granularity (BRIG).

Definition 3.1: Let xk ∈ {x1, x2, ..., xN}(k = 1, 2, ..., N)
be n-dimensional vector, Ω = {Ω1,Ω2, ...,Ωc} be the set of
information granularity induced by the improved FCM. The
BRIG is defined as RG = {< xi, xj > |∃xk s. t.(xi ∈ Ωm ∧
xk ∈ Ωm) ∧ (xk ∈ Ωn ∧ xj ∈ Ωn)or(xi ∈ Ωm ∧ xj ∈ Ωm)}.

Theorem 3.1: BRIG satisfies the property of symmetry.
Proof. ∀xi, xj ∈ {x1, x2, ...xN}, if < xi, xj >∈ RG, then

∃xk((xi ∈ Ωm ∧ xk ∈ Ωm) ∧ (xk ∈ Ωn ∧ xj ∈ Ωn)) or
xi ∈ Ωm ∧ xj ∈ Ωm, which means xk((xj ∈ Ωm ∧ xk ∈
Ωm) ∧ (xk ∈ Ωn ∧ xi ∈ Ωn)) or xj ∈ Ωm ∧ xi ∈ Ωm, then
< xj , xi >∈ RG. �

Theorem 3.2: When α lies in a specific range (the range
varies according to the datasets), BRIG satisfies the reflexivity,
vice versa.
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Algorithm 2 Refinement of information granularity
Input: Clusters of data.
Output: Justifiable granularity.
1: Initialize: P = {0.01, 0.02, ..., 1.00}, V = ∅,Ω = ∅.
2: for each νi ∈ {ν1, ν2, ..., νc} do
3: Ωi = ∅,max v = 0, temp = 0;
4: for each ρt ∈ P do
5: Ωt = ∅;
6: for each xk ∈ {x1, x2, ..., xN} do
7: if ||xk − νi||2 ≤ nρ2i then
8: Ωt ⇐ Ωt ∪ {xk}
9: end if

10: end for
11: Compute cov(Ωt), spec(Ωt), H(Ωt);
12: Compute V (Ωt);
13: if V (Ωt) > max v then
14: max v = V (Ωt);
15: temp = t;
16: end if
17: end for
18: Ωi = Ωtemp;
19: Ω⇐ Ω ∪ Ωi;
20: end for
21: return Ω;

Proof. If α in a specific range, then xi belongs to one
granularity, i.e. ∀xi ∈ {x1, x2, ..., xN}, xi ∈ Ωm(i =
1, 2, ..., N,m = 1, 2, ...,M). It means xi ∈ Ωm ∧ xi ∈ Ωm,
then < xi, xi >∈ RG. �

Theorem 3.3: The classical FCM-based binary relation is
an equivalence relation.

Proof. It is easy to prove that this relation satisfies the
reflexivity, symmetry and transitivity. �

The equivalence classes formed by FCM constitute a parti-
tion of universe. However, equivalence relation-based partition
is so strict in practical application and possesses relatively poor
fault-tolerant mechanism. For example, in image segmentation,
because the pixel values are continuously changing values
(non-discrete values), the recognition accuracy and robustness
of the algorithm are rather limited. We need to overcome the
defect of the poor fault tolerance caused by using equiva-
lence relations through constructing non-equivalence relations
(similarity relation or binary relation with only symmetry) to
replace equivalence relation and improve the anti-interference
ability of noise points in the process of sample clustering. It
can exhibit a better fault-tolerant mechanism. The description
of BRIG with different value of weight factor α is represented
in Fig. 2. As shown in Fig. 2 (a)-(c), the BRIG from Defini-
tion 3.1 is more general, and better information granularity
construction could be achieved by adjusting the parameter α.

IV. FEATURE SELECTION BASED ON MEASUREMENT OF
ATTRIBUTE IMPORTANCE

In this section, the degree of aggregation (DA) and the
degree of dispersion (DD), which intuitively describe the
structure of the data from the perspective of the intra-class
compactness and the between-class sparsity, will be first
introduced.

Definition 4.1: Let I = (U,C∪D,V, f) be a fuzzy decision
system, Dk ∈ U/D and the attribute subset B ⊆ C, the DA
of the decision class Dk under B is defined as

DAB(Dk) =

∑
xi∈Dk

µik

|Dk|
=

∑
xi∈Dk

µB(xi, Dk)

|Dk|
, (11)

where the µik and µB(xi, Dk) are the membership grades of
object xi with respect to the decision class Dk under B.

The DA is reflected by the membership degree of the
instance under the current attribute subset and the decision
class Dk. When the sum of membership degrees of an instance
under the current attribute subset is large, it indicates that the
considered attribute similarity is high and DA is high. The
expression (11) indicates that the membership has a negative
correlation with the distance, the lager DAB is, the closer the
intraclass objects are.

Theorem 4.1: Let B ⊆ C and Dk ∈ U/D, then 0 ≤
DAB(Dk) ≤ 1.

Proof. ∀xi ∈ Dk, we obtain 0 ≤ µik ≤ 1, such that 0 ≤∑
xi∈Dk

µik ≤ |Dk|. Thus, 0 ≤ DAB(Dk) ≤ 1. �
Definition 4.2: Let I = (U,C∪D,V, f) be a fuzzy decision

system, B ⊆ C, the DD of the fuzzy decision system under
B is defined as

DDB(I) =

K∑
k=1

dB(C,Ck)

|U/D|
, (12)

where U represents the universe, D represents decision at-
tribute set, ai represents the i-th value in attribute set B, ck(ai)
indicates the i-th component of the center in the k-th cluster
center, and C = (c(a1), c(a2), ..., c(a|B|)) is the center of all
class centers under B, namely

c(ai) = (1/K)

K∑
i=1

ck(ai), (13)

where c(ai) represents the i-th component in the mean vector
of all class centers, Ck is the center of the k-th cluster, and
the dB(C,Ck) denotes the distance from the C to Ck under
the B.

The DD is reflected by the sum of the distances from the
centers of each cluster to the total centers of all instances
under the current attribute, indicating that the dispersion is
proportional to the distance between instances.

Theorem 4.2: Let I = (U,C ∪D,V, f) be a fuzzy decision
system, if B1 ⊆ B2 ⊆ C, then DDB1(I) ≤ DDB2(I).

Proof. If B1 ⊆ B2 ⊆ C, we obtain that (
∑

ai∈B1

(c(ai) −

ck(ai))
2 +

∑
ai∈B2−B1

(c(ai) − ck(ai))
2)1/2 ≤ dB1

(C,Ck).

Thus, DDB1
(I) ≤ DDB2

(I). �
It can be shown that DDB(S) is the sparsity measure of

between-class objects under B. The larger DDB(S) is, the
more scattered the between-class objects are.

DA and DD indicate the intra-class compactness and
between-class sparsity, respectively. They are used to compute
the significance of attribute is the following content.
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Fig. 2: (a) RG does not satisfy reflexivity; (b) RG satisfies reflexivity; (c) RG satisfies reflexivity, symmetry and transitivity.

Definition 4.3: Let I = (U,C∪D,V, f) be a fuzzy decision
system, B ⊆ C, the DA of the fuzzy decision system under
B is defined as

GDAB(I) =

∑
Dk∈U/D

DAB(Dk)

|U/D|
, (14)

where I denotes the fuzzy decision system.
The GDAB(I) calculates the dispersion of all instances

under attribute B by calculating the average value of different
categories of DA.

Theorem 4.3: Let B ⊆ C and Dk ∈ U/D, then 0 ≤
GDAB(Dk) ≤ 1.

Proof. Straight obtained. �
Formula (14) indicates that GDAB(Dk) is an index of the

intra-class compactness of all decision classes under B.
Definition 4.4: Let GDAB(I) and DDB(I) are the degrees

of aggregation and dispersion of I under B, the separability
of the fuzzy decision system under B is defined as

DSB(I) = GDAB(I) ·DD(I). (15)

Let DSB(I) = 0 when B = ∅.
This definition states that DSB(S) is an index describing

the significance of the conditional attribute subset relative
to the decision based on the intra-class compactness and
between-class sparsity.

Definition 4.5: Let I = (U,C∪D,V, f) be a fuzzy decision
system and B ⊆ C,a ∈ C −B, b ∈ B.

(1) If DSB∪a(I) ≤ DSB(I), then a is a redundant attribute
for B.

(2) If DSB−b(I) < DSB(I), then b is an indispensable
attribute in B.

(3) If B satisfies DSB∪a(I) ≤ DSB(I), DSB−b(I) <
DSB(I), then B is a reduction of condition C with respect
to decision D in I .

Definition 4.6: Let I = (U,C∪D,V, f) be a fuzzy decision
system, B ⊆ C, a ∈ C −B, the significance of an attribute is
defined as

SIG(a,B,D) = DSB∪a(I)−DSB(I). (16)

SIG(a,B,D) is an index which describes the significance
of attribute a with respect to B under decision D. Then the
FHFS based on the significance measurement is provided in
Algorithm 3. When the SIG(a,B,D) is larger, the attribute
a is more important in the attribute subset B.

Let us explain the Algorithm 3 as follows. First, we initialize
an empty set AT to act as a collection used to deposit

selected attributes. Then, the difference set C − AT could
be traversed, each attribute ai in which will be computed
the separability DSB∪{ai}(S) and the significance of attribute
SIG(ai, AT,D). Next, the attribute ak, which corresponds to
the maximum value of SIG(ak, AT,D) in the difference set
C −AT , will be deposited in the AT set. The process above
as a loop will be a continued until the difference set C −AT
changes in to an empty set or the cardinality of AT is greater
than the value of δ, which is a termination parameter and
should be set in advance. How to set δ is a significant issue,
which will be discussed in detail in the experimental part.

Algorithm 3 Forward heuristic feature selection (FHFS)
Input: A fuzzy decision system I and its justifiable granularity.
Output: Attribute set AT .
1: Initialize: AT ⇐ ∅.
2: while C −AT 6= ∅ ∧ |AT | ≤ δ do
3: for each ai ∈ C −AT do
4: Compute the degree of aggregation DAB∪{ai}(I), the

degree of dispersion DDB∪{ai}(I), and the degree of aggrega-
tion of I under B: GDAB∪{ai}(I);

5: Compute the separability DSB∪{ai}(I) and attribute
SIG(ai, AT,D);

6: end for
7: Find ak with maximum value of SIG(ak, AT,D);
8: AT ⇒ ak;
9: end while

10: return AT ;

V. EXPERIMENTAL ANALYSIS

In this section, we conduct a series of experiments to
show the accuracy and effectiveness of the proposed feature
selection algorithm. The FHFS is compared with one recent
technique (denoted as EFSF) from reference [29], and three
traditional techniques, namely principal component analysis
(PCA) [30], nonnegative matrix factorization (NMF) [31],
factor analysis (FA) [32], on nine public high-dimensional
datasets. Four kinds of measurement indicators, namely pre-
cision, recall, f1-score, and accuracy, are utilized to show
the performance of different comparison algorithms. Then,
FHFS and other feature selection algorithms are compared in
image feature selection through precision, recall, f1-score and
accuracy. Moreover, the novel BRIG is applied to the process
of image segmentation, and the influence of the value of α on
the BRIG is discussed in detail. All algorithms are executed
in Python 3.7 and run in a hardware environment with Intel
Core i5-7200 CPU @2.50 and 2.70 GHz with 4-GB RAM.
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Significance tests are designed for algorithms to verify
whether the FHFS is better than other algorithms. In these
tests, reasonable original assumptions and alternative assump-
tions are formulated as follows: (1) Original hypothesis (h0).
As algorithm is not superior to other algorithms in feature
selection. (2) Alternative hypothesis (h1). As algorithm is
superior to other algorithms in feature selection. Moreover,
we set the one-tail test with significance level α = 0.05. The
standard deviation of the corresponding performance of each
algorithm is calculated by formula s =

√∑n
i=1(xi−x)2

(n−1) , where
n means the freedom degree of data, and standard deviation of

each group of data is expressed as SE(x1−x2) =
√

σ2
1

n1
+

σ2
2

n2
.

Here, the assumption of deviation is made between algorithm
performance presents t-distribution, that is, t = x1−x2

SE . In
the formula above, x indicates the average, σ expresses the
standard deviation.

A. Experimental design for high-dimensional datasets
In order to verify the advantages and superiority of the algo-

rithm of FHFS, the comparisons about performance between
FHFS and other algorithms (PCA, NMF, FA, EFSF) are made
by using nine UCI datasets. Detailed description of the nine
datasets are shown in Table II.

TABLE II: DATASET DESCRIPTION

High-dimensional datasets Instances Features Classes

Seed 15,287 68 8
House 14,784 87 16
Sensor 4,107,458 128 6
Skin 145,298 107 8

Synthesis 43,897,238 847 6
Website 130,245 1013 7
Stock 12,878 973 2
Plants 11,848 2183 3

Segmentation 159,876 3012 2

Each group of data is normalized to avoid the influence
caused by the difference of value, and the five algorithms,
namely PCA, NMF, FA, EFSF and FHFS are used to conduct
the process of feature selection. Then, classification algo-
rithms, including KNN, decision tree (DT), and Bayes, are
used to finish the task of classification. In KNN, weighted
voting method are used to find the nearest five samples of the
tested sample to predict its label according to the Euclidean
distance. In DT, the feature partition samples selection criteria
is set to random. In Bayes, the assumption of conditional
probability distribution of each attribute satisfying the gaussian
distribution is made before the process of classification.

Among this experiment, we use the ten-fold cross validation
method to randomly and evenly divide each group of data
samples into ten parts, and take turns to use nine of them to
train the model and one to test precision, recall, f1-score and
accuracy of the model. The calculated results are expressed
in the form of µ ± σ, where µ represents the mean value
of different indexes and σ represents the standard deviation
of each index. The experimental results and related data of
different datasets are shown in Tables III-V.

From the results displayed in Tables III-V, the FHFS
algorithm has strong robustness and rationality compared

with other algorithms in the process of high-dimension data
preprocessing during classification tasks. For example, in the
Skin dataset, after using FHFS algorithm for feature selection,
the classifiers based on different classification algorithms
perform all better than other feature selection algorithms in
the indexes of precision, recall, f1-score and accuracy. In
the KNN classifier, the classification accuracy of the data
processed by FHFS is improved by 6% compared with the
raw data and 2% compared with the EFSF algorithm. In the
DT classifier, the classification accuracy of the data processed
by FHFS is improved by 5% compared with the raw data
and 2% compared with the EFSF algorithm. In the Bayes
classifier, the classification accuracy of the data processed by
FHFS is improved by 16% compared with the raw data and
4% compared with the NMF algorithm.

As for other datasets, although the classification perfor-
mance after using FHFS algorithm is not completely superior
to other algorithms in the indexes of precision, recall, f1-score
and accuracy, the classification performance after using FHFS
is still at a high level. For example, in the dataset of Seed
with DT, the classification accuracy after using FHFS is 2%
lower than that after using PCA, but it is still better than that
after using other algorithms. These experimental results also
indicate that performance of classifiers can be improved by
using FHFS algorithm to process high-dimensional datasets.
The performances of feature selection algorithms above in the
KNN, DT and Bayes are shown in the Fig. 3-Fig. 11.

The value of function J in the process of clustering is
decreased significantly with the increase of number of itera-
tions of the algorithm. High convergence rate can be obtained
originally, and the value of J can tend to be stable gradually.
After the [45, 50] epochs of algorithm operation, the value of
J hardly changes, and extraordinary results of clustering will
be obtained when the termination factor ε is set at the range
of [10−6, 10−4]. The change trend of the value J is shown
in the Fig. 12. The value J converges to a stable value when
the epoch of iteration is less than fifty. It means that FCM
algorithm has fast convergence speed, which also shows that
the clustering results are reliable.

Fig. 12: Values of J in successive iteration.

From the result of significance test (n = 38) on high
dimensional datasets shown in Table VI, FHFS is not superior
to other feature selection algorithms (less than 0.05), which
indicates that the original hypothesis (h0) is not tenable.
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TABLE III: EXPERIMENTAL RESULTS FOR DIFFERENT DATASETS (I)

Classifier Method Seed House Sensor

precision recall f1-score accuracy precision recall f1-score accuracy precision recall f1-score accuracy

KNN

Raw data 0.84 ± 0.03 0.81 ± 0.01 0.83 ± 0.01 0.81 ± 0.03 0.86 ± 0.02 0.82 ± 0.01 0.85 ± 0.01 0.83 ± 0.03 0.79 ± 0.02 0.78 ± 0.03 0.78 ± 0.04 0.75 ± 0.02
PCA 0.81 ± 0.03 0.80 ± 0.01 0.78 ± 0.04 0.81 ± 0.01 0.78 ± 0.02 0.80 ± 0.01 0.82 ± 0.02 0.78 ± 0.03 0.79 ± 0.02 0.83 ± 0.02 0.81 ± 0.04 0.80 ± 0.02
NMF 0.87 ± 0.04 0.85 ± 0.03 0.87 ± 0.02 0.88 ± 0.02 0.85 ± 0.02 0.88 ± 0.01 0.86 ± 0.01 0.87 ± 0.03 0.83 ± 0.01 0.80 ± 0.01 0.85 ± 0.02 0.80 ± 0.02
FA 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.02 0.90 ± 0.02 0.87 ± 0.04 0.87 ± 0.02 0.89 ± 0.01 0.86 ± 0.02 0.79 ± 0.01 0.78 ± 0.03 0.81 ± 0.01 0.78 ± 0.04

EFSF 0.84 ± 0.02 0.87 ± 0.04 0.88 ± 0.02 0.89 ± 0.04 0.85 ± 0.03 0.86 ± 0.04 0.92 ± 0.01 0.88 ± 0.03 0.83 ± 0.02 0.80 ± 0.01 0.86 ± 0.01 0.82 ± 0.01
FHFS 0.93 ± 0.02 0.91 ± 0.02 0.91 ± 0.04 0.93 ± 0.03 0.92 ± 0.02 0.92 ± 0.04 0.90 ± 0.01 0.93 ± 0.02 0.85 ± 0.01 0.86 ± 0.02 0.89 ± 0.01 0.80 ± 0.03

DT

Raw data 0.87 ± 0.01 0.87 ± 0.03 0.86 ± 0.01 0.86 ± 0.03 0.88 ± 0.01 0.88 ± 0.01 0.88 ± 0.02 0.87 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 0.89 ± 0.01 0.89 ± 0.01
PCA 0.93 ± 0.03 0.91 ± 0.04 0.92 ± 0.04 0.92 ± 0.03 0.87 ± 0.03 0.88 ± 0.04 0.89 ± 0.01 0.87 ± 0.02 0.87 ± 0.03 0.86 ± 0.02 0.88 ± 0.02 0.89 ± 0.01
NMF 0.87 ± 0.01 0.87 ± 0.01 0.89 ± 0.03 0.84 ± 0.01 0.86 ± 0.04 0.87 ± 0.03 0.82 ± 0.01 0.88 ± 0.03 0.89 ± 0.04 0.86 ± 0.01 0.88 ± 0.03 0.90 ± 0.04
FA 0.89 ± 0.01 0.88 ± 0.03 0.89 ± 0.04 0.88 ± 0.04 0.88 ± 0.02 0.90 ± 0.03 0.86 ± 0.02 0.87 ± 0.04 0.81 ± 0.01 0.77 ± 0.02 0.80 ± 0.02 0.75 ± 0.02

EFSF 0.86 ± 0.02 0.90 ± 0.01 0.90 ± 0.03 0.86 ± 0.02 0.90 ± 0.02 0.89 ± 0.03 0.87 ± 0.01 0.86 ± 0.04 0.88 ± 0.01 0.86 ± 0.02 0.86 ± 0.04 0.89 ± 0.02
FHFS 0.91 ± 0.03 0.92 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.91 ± 0.03 0.89 ± 0.04 0.90 ± 0.02 0.89 ± 0.03 0.91 ± 0.02 0.89 ± 0.03 0.91 ± 0.03 0.92 ± 0.03

Bayes

Raw data 0.78 ± 0.03 0.79 ± 0.02 0.76 ± 0.01 0.78 ± 0.02 0.78 ± 0.03 0.78 ± 0.03 0.77 ± 0.04 0.80 ± 0.01 0.80 ± 0.02 0.75 ± 0.02 0.79 ± 0.02 0.80 ± 0.03
PCA 0.92 ± 0.01 0.89 ± 0.02 0.88 ± 0.02 0.91 ± 0.04 0.88 ± 0.03 0.81 ± 0.03 0.85 ± 0.04 0.85 ± 0.03 0.84 ± 0.04 0.83 ± 0.03 0.84 ± 0.01 0.84 ± 0.01
NMF 0.76 ± 0.02 0.75 ± 0.01 0.79 ± 0.03 0.78 ± 0.02 0.82 ± 0.03 0.82 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.77 ± 0.02 0.84 ± 0.04 0.83 ± 0.03 0.78 ± 0.02
FA 0.85 ± 0.01 0.88 ± 0.04 0.87 ± 0.01 0.88 ± 0.04 0.86 ± 0.01 0.84 ± 0.03 0.85 ± 0.04 0.85 ± 0.04 0.79 ± 0.03 0.77 ± 0.02 0.78 ± 0.01 0.82 ± 0.01

EFSF 0.85 ± 0.01 0.83 ± 0.03 0.85 ± 0.04 0.83 ± 0.02 0.81 ± 0.03 0.88 ± 0.02 0.85 ± 0.01 0.85 ± 0.02 0.82 ± 0.03 0.88 ± 0.03 0.84 ± 0.03 0.81 ± 0.03
FHFS 0.90 ± 0.02 0.93 ± 0.03 0.89 ± 0.02 0.94 ± 0.03 0.92 ± 0.03 0.90 ± 0.03 0.90 ± 0.01 0.93 ± 0.03 0.90 ± 0.04 0.91 ± 0.02 0.90 ± 0.03 0.91 ± 0.04

TABLE IV: EXPERIMENTAL RESULTS FOR DIFFERENT DATASETS (II)

Classifier Method Skin Synthesis Website

precision recall f1-score accuracy precision recall f1-score accuracy precision recall f1-score accuracy

KNN

Raw data 0.82 ± 0.01 0.80 ± 0.02 0.83 ± 0.04 0.83 ± 0.03 0.88 ± 0.02 0.89 ± 0.01 0.89 ± 0.01 0.87 ± 0.04 0.89 ± 0.04 0.88 ± 0.03 0.89 ± 0.03 0.87 ± 0.03
PCA 0.85 ± 0.02 0.84 ± 0.02 0.80 ± 0.04 0.84 ± 0.04 0.84 ± 0.02 0.83 ± 0.04 0.85 ± 0.03 0.83 ± 0.03 0.85 ± 0.03 0.80 ± 0.03 0.85 ± 0.02 0.82 ± 0.04
NMF 0.82 ± 0.03 0.83 ± 0.04 0.82 ± 0.02 0.84 ± 0.04 0.88 ± 0.01 0.87 ± 0.01 0.87 ± 0.03 0.85 ± 0.02 0.84 ± 0.03 0.83 ± 0.01 0.86 ± 0.04 0.87 ± 0.02
FA 0.84 ± 0.01 0.84 ± 0.01 0.82 ± 0.04 0.84 ± 0.02 0.87 ± 0.02 0.88 ± 0.03 0.88 ± 0.02 0.85 ± 0.01 0.87 ± 0.03 0.86 ± 0.04 0.84 ± 0.04 0.82 ± 0.04

EFSF 0.86 ± 0.02 0.81 ± 0.02 0.85 ± 0.01 0.84 ± 0.04 0.83 ± 0.03 0.80 ± 0.03 0.85 ± 0.01 0.83 ± 0.04 0.86 ± 0.01 0.81 ± 0.02 0.83 ± 0.03 0.83 ± 0.03
FHFS 0.88 ± 0.03 0.93 ± 0.02 0.90 ± 0.02 0.92 ± 0.02 0.91 ± 0.03 0.93 ± 0.01 0.93 ± 0.04 0.92 ± 0.04 0.90 ± 0.01 0.89 ± 0.03 0.90 ± 0.04 0.89 ± 0.02

DT

Raw data 0.86 ± 0.04 0.85 ± 0.02 0.89 ± 0.03 0.88 ± 0.01 0.87 ± 0.01 0.89 ± 0.03 0.86 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.86 ± 0.03 0.88 ± 0.03 0.87 ± 0.04
PCA 0.88 ± 0.03 0.88 ± 0.03 0.86 ± 0.01 0.84 ± 0.03 0.88 ± 0.01 0.84 ± 0.04 0.88 ± 0.01 0.85 ± 0.02 0.84 ± 0.03 0.85 ± 0.01 0.84 ± 0.04 0.87 ± 0.04
NMF 0.87 ± 0.01 0.86 ± 0.02 0.89 ± 0.01 0.87 ± 0.04 0.87 ± 0.02 0.88 ± 0.04 0.84 ± 0.02 0.84 ± 0.03 0.84 ± 0.02 0.87 ± 0.04 0.84 ± 0.02 0.88 ± 0.04
FA 0.85 ± 0.04 0.89 ± 0.02 0.84 ± 0.03 0.86 ± 0.01 0.84 ± 0.03 0.86 ± 0.02 0.87 ± 0.02 0.84 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 0.86 ± 0.02 0.84 ± 0.03

EFSF 0.89 ± 0.01 0.89 ± 0.04 0.86 ± 0.04 0.84 ± 0.03 0.88 ± 0.03 0.84 ± 0.03 0.87 ± 0.01 0.84 ± 0.02 0.85 ± 0.04 0.87 ± 0.03 0.84 ± 0.01 0.84 ± 0.03
FHFS 0.91 ± 0.02 0.91 ± 0.01 0.94 ± 0.02 0.93 ± 0.04 0.93 ± 0.03 0.91 ± 0.02 0.93 ± 0.01 0.92 ± 0.02 0.91 ± 0.02 0.91 ± 0.03 0.93 ± 0.01 0.92 ± 0.01

Bayes

Raw data 0.76 ± 0.03 0.77 ± 0.01 0.80 ± 0.04 0.77 ± 0.04 0.79 ± 0.04 0.79 ± 0.01 0.75 ± 0.01 0.81 ± 0.02 0.78 ± 0.01 0.81 ± 0.01 0.76 ± 0.03 0.75 ± 0.04
PCA 0.83 ± 0.02 0.78 ± 0.02 0.83 ± 0.02 0.82 ± 0.04 0.83 ± 0.01 0.82 ± 0.02 0.81 ± 0.04 0.79 ± 0.01 0.81 ± 0.03 0.82 ± 0.04 0.84 ± 0.04 0.84 ± 0.01
NMF 0.76 ± 0.03 0.82 ± 0.02 0.81 ± 0.02 0.79 ± 0.02 0.84 ± 0.02 0.88 ± 0.04 0.81 ± 0.03 0.82 ± 0.01 0.85 ± 0.02 0.79 ± 0.01 0.83 ± 0.01 0.86 ± 0.03
FA 0.87 ± 0.01 0.80 ± 0.01 0.82 ± 0.03 0.84 ± 0.01 0.83 ± 0.03 0.83 ± 0.02 0.86 ± 0.03 0.78 ± 0.01 0.82 ± 0.04 0.79 ± 0.02 0.84 ± 0.01 0.82 ± 0.02

EFSF 0.88 ± 0.02 0.80 ± 0.03 0.85 ± 0.03 0.84 ± 0.03 0.80 ± 0.03 0.85 ± 0.02 0.83 ± 0.02 0.82 ± 0.02 0.82 ± 0.03 0.85 ± 0.01 0.87 ± 0.01 0.87 ± 0.02
FHFS 0.92 ± 0.04 0.90 ± 0.01 0.91 ± 0.01 0.93 ± 0.03 0.94 ± 0.02 0.91 ± 0.04 0.92 ± 0.02 0.93 ± 0.02 0.90 ± 0.01 0.93 ± 0.03 0.90 ± 0.03 0.91 ± 0.03

TABLE V: EXPERIMENTAL RESULTS FOR DIFFERENT DATASETS (III)

Classifier Method Stock Plants Segmentation

precision recall f1-score accuracy precision recall f1-score accuracy precision recall f1-score accuracy

KNN

Raw data 0.83 ± 0.03 0.82 ± 0.02 0.81 ± 0.04 0.84 ± 0.02 0.80 ± 0.03 0.81 ± 0.01 0.82 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.80 ± 0.02 0.82 ± 0.04 0.83 ± 0.04
PCA 0.83 ± 0.02 0.82 ± 0.01 0.82 ± 0.03 0.81 ± 0.04 0.84 ± 0.02 0.81 ± 0.04 0.81 ± 0.04 0.81 ± 0.02 0.84 ± 0.04 0.80 ± 0.02 0.80 ± 0.01 0.80 ± 0.03
NMF 0.82 ± 0.03 0.82 ± 0.03 0.84 ± 0.01 0.83 ± 0.03 0.81 ± 0.04 0.82 ± 0.02 0.82 ± 0.01 0.81 ± 0.04 0.84 ± 0.02 0.80 ± 0.01 0.82 ± 0.02 0.81 ± 0.01
FA 0.82 ± 0.02 0.84 ± 0.02 0.83 ± 0.01 0.83 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.84 ± 0.01 0.81 ± 0.01 0.83 ± 0.03 0.81 ± 0.04 0.82 ± 0.03 0.82 ± 0.03

EFSF 0.82 ± 0.03 0.83 ± 0.01 0.79 ± 0.02 0.78 ± 0.01 0.84 ± 0.00 0.80 ± 0.01 0.84 ± 0.02 0.83 ± 0.01 0.82 ± 0.03 0.81 ± 0.01 0.85 ± 0.00 0.84 ± 0.02
FHFS 0.94 ± 0.02 0.92 ± 0.03 0.94 ± 0.02 0.94 ± 0.04 0.89 ± 0.01 0.92 ± 0.01 0.91 ± 0.02 0.93 ± 0.03 0.91 ± 0.04 0.89 ± 0.02 0.93 ± 0.01 0.94 ± 0.02

DT

Raw data 0.81 ± 0.04 0.80 ± 0.02 0.77 ± 0.02 0.81 ± 0.04 0.82 ± 0.03 0.83 ± 0.03 0.78 ± 0.01 0.81 ± 0.01 0.84 ± 0.03 0.85 ± 0.01 0.84 ± 0.01 0.81 ± 0.02
PCA 0.87 ± 0.02 0.88 ± 0.01 0.89 ± 0.01 0.89 ± 0.03 0.87 ± 0.00 0.86 ± 0.03 0.87 ± 0.03 0.88 ± 0.03 0.88 ± 0.02 0.89 ± 0.00 0.88 ± 0.02 0.89 ± 0.01
NMF 0.86 ± 0.03 0.89 ± 0.00 0.87 ± 0.02 0.88 ± 0.01 0.86 ± 0.02 0.86 ± 0.00 0.85 ± 0.02 0.87 ± 0.03 0.89 ± 0.00 0.89 ± 0.03 0.92 ± 0.01 0.90 ± 0.01
FA 0.86 ± 0.04 0.83 ± 0.04 0.85 ± 0.01 0.84 ± 0.03 0.86 ± 0.02 0.79 ± 0.03 0.79 ± 0.02 0.85 ± 0.02 0.86 ± 0.03 0.89 ± 0.03 0.87 ± 0.01 0.82 ± 0.01

EFSF 0.88 ± 0.02 0.80 ± 0.01 0.84 ± 0.02 0.82 ± 0.04 0.86 ± 0.04 0.83 ± 0.01 0.84 ± 0.04 0.84 ± 0.03 0.85 ± 0.02 0.81 ± 0.04 0.82 ± 0.02 0.84 ± 0.02
FHFS 0.91 ± 0.02 0.88 ± 0.02 0.93 ± 0.03 0.91 ± 0.04 0.91 ± 0.01 0.92 ± 0.02 0.94 ± 0.03 0.90 ± 0.02 0.90 ± 0.04 0.88 ± 0.03 0.91 ± 0.02 0.91 ± 0.04

Bayes

Raw data 0.82 ± 0.01 0.81 ± 0.03 0.83 ± 0.01 0.82 ± 0.02 0.81 ± 0.02 0.80 ± 0.03 0.81 ± 0.02 0.81 ± 0.03 0.79 ± 0.03 0.82 ± 0.02 0.83 ± 0.04 0.85 ± 0.01
PCA 0.79 ± 0.01 0.81 ± 0.04 0.80 ± 0.02 0.79 ± 0.02 0.80 ± 0.03 0.79 ± 0.02 0.83 ± 0.02 0.78 ± 0.02 0.80 ± 0.04 0.79 ± 0.01 0.85 ± 0.01 0.78 ± 0.04
NMF 0.80 ± 0.03 0.84 ± 0.02 0.84 ± 0.03 0.79 ± 0.03 0.83 ± 0.03 0.82 ± 0.02 0.85 ± 0.04 0.80 ± 0.02 0.84 ± 0.03 0.80 ± 0.03 0.82 ± 0.01 0.79 ± 0.01
FA 0.85 ± 0.01 0.78 ± 0.03 0.81 ± 0.01 0.85 ± 0.03 0.79 ± 0.03 0.83 ± 0.01 0.80 ± 0.02 0.83 ± 0.03 0.83 ± 0.04 0.80 ± 0.03 0.84 ± 0.02 0.84 ± 0.04

EFSF 0.85 ± 0.03 0.80 ± 0.01 0.79 ± 0.03 0.85 ± 0.02 0.83 ± 0.02 0.85 ± 0.01 0.80 ± 0.01 0.83 ± 0.03 0.79 ± 0.03 0.79 ± 0.01 0.80 ± 0.04 0.79 ± 0.04
FHFS 0.89 ± 0.02 0.88 ± 0.02 0.93 ± 0.01 0.91 ± 0.03 0.92 ± 0.02 0.93 ± 0.02 0.91 ± 0.01 0.91 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.90 ± 0.01 0.92 ± 0.02

Fig. 3: Performance of different feature selection algorithms on Seed dataset.
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Fig. 4: Performance of different feature selection algorithms on House dataset.

Fig. 5: Performance of different feature selection algorithms on Sensor dataset.

Fig. 6: Performance of different feature selection algorithms on Skin dataset.

Fig. 7: Performance of different feature selection algorithms on Synthesis dataset.

Fig. 8: Performance of different feature selection algorithms on Website dataset.
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Fig. 9: Performance of different feature selection algorithms on Stock dataset.

Fig. 10: Performance of different feature selection algorithms on Plants dataset.

Fig. 11: Performance of different feature selection algorithms on Segmentation dataset.

TABLE VI: T-SCORES FOR HIGH DIMENSIONAL
DATASETS

Classifier Raw data PCA NMF FA EFSF FHFS

KNN 4.39 3.93 3.92 3.76 3.74 3.96
DT 3.86 3.44 3.31 3.30 3.36 3.34

Bayes 4.13 3.40 3.42 3.31 3.34 3.36

B. Experimental design about image datasets
We collect animal image datasets from the UCI, each image

is composed of 1024 × 1024 pixels. Detailed description of
these image datasets is shown in the Table VII. Then, the
algorithm of FCM and refinement of information granularity
criterion is used to fulfill the process of image segmentation.
Furthermore, comparisons among FHFS, algorithms from [33]
(FCBF), [34] (CMIM), [35] (RFS), [36] (MIFS), [37] (m-
RMR), [38] (Relief-f), are conducted in the process of image
feature selection.

At the same time, four classifiers, namely KNN, Decision
Tree (DT), Bayes, Convolutional Neural Network (CNN) are
used to realize image recognition. In KNN, weighted voting
method is used to find the nearest five samples of the tested

sample to predict its label according to the Euclidean distance.
In DT, the feature partition samples selection criteria is set to
random. In Bayes, the assumption of conditional probability
distribution of each attribute satisfying gaussian distribution is
made before the process of machine learning. In CNN, the
model of LeNet-5, including input layer, three convolution
layers, two lower sampling layers and full connection layer
is utilized. In this experiment, we also use the ten-fold cross
validation method. The calculated results are expressed in the
form of µ± σ. The experimental results are shown in Tables
VIII-IX.

From the results displayed in in Tables VIII-IX, after using
FHFS, the image classification performance is improved com-
pared with other algorithms. We have the following analysis:
(1) In the classifiers KNN and DT, after using FHFS algo-
rithm for feature selection, the classifiers based on different
classification algorithms perform all better than other feature
selection algorithms in the indexes of precision, recall, f1-
score and accuracy. In the KNN classifier, the classification
accuracy of the data processed by FHFS is improved by 19%
compared with the raw data and 2% compared with the RFS
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Fig. 14: Significance of each pixel.

algorithm. (2) In the classifiers Bayes and CNN, although
the classification performance after using FHFS algorithm is
not completely superior to other algorithms in the indexes
of precision, recall, f1-score and accuracy, the classification
performance after using FHFS is still at a high level. The
classification f1-score after using FHFS is 1% lower than that
after using RFS, but it is still better than that after using other
algorithms in other index.

TABLE VII: DESCRIPTION OF IMAGE DATASETS

Dataset Number of training set Number of testing set Quantity

cat 478 120 598
dog 485 122 607

elephant 4913 1229 6142
horse 5616 1405 7021
panda 4786 1197 5983
bear 8171 2043 10214
tiger 10001 2501 12502
lion 14427 3607 18034

Total 48877 12224 61101

In Fig. 13, red area in the images indicates unselected pixels
as the results of feature selection. It is easy to observe that
after applying the FHFS method to the feature screening in
image segmentation, almost all the important features could
be retained. However, other methods will lose some important
features more or less. The FHFS performs better than other
algorithms in the process of feature extraction. In fact, FHFS
algorithm can select more valuable feature to support image
recognition. Moreover, this algorithm is good for reducing the
response time of image recognition. Moreover, high precision
and accuracy of image recognition can be easily obtained by
FHFS method.

As shown in Fig. 14, the pixels of image are nearly divided
into three parts according to the measurement of significance.
Almost 55% of pixels are attached to high significance, 40%
of pixels are accompanied with low significance, and 5%
of pixels are situated in the mutation region of significance.
Based on plenty of experimental results, we can obtained that
when we select high pixels to conduct the process of image
recognition, excellent performance of feature selection and
recognition can be obtained.

TABLE X: T-SCORES FOR IMAGE DATASETS

Classifier Raw data MIFS Relief-f mRMR FCBF CMIM RFS

KNN 4.11 3.14 3.01 3.28 3.86 3.11 3.21
DT 4.04 3.15 3.02 3.14 3.37 3.26 3.37

Bayes 3.82 3.75 3.44 3.67 3.17 3.12 3.64
CNN 4.89 6.94 3.57 4.04 6.09 5.74 6.15

From the results of significance test (n = 14) on the image
dataset shown in Table X, the FHFS algorithm is not superior
to other feature selection algorithms (less than 0.05), which
indicates that the original hypothesis (h0) is not tenable.

C. Discussion of parameter

A positive weight factor α (α ≥ 0) is an important
parameter which primarily effects the BRIG, and can be
reflected in the process of image segmentation. In this part, the
effects of weight factor α assuming values in different range
will be discussed, and performance of changed α is shown on
the results of image segmentation and image recognition.

From Fig. 15 and Fig. 16, effects of weight factor on
image segmentation and information granularity can be re-
flected, and the regularity of BRIG can also be comprehend-
ed by the experimental results. When α ∈ [0.1, 0.5] , the
BRIG just satisfies symmetry, but does not satisfy reflexivity,
because in this range, some pixels do not belong to any
of the information granules. Moreover, some pixels belong
to multiple information granules at the same time. When
α ∈ (0.5,+∞), BRIG satisfies symmetry and reflexivity
simultaneously, because in this range, all pixels belong to one
or more of these information granules. Therefore, information
granularity which are already generated can constitute the
coverage of the universe. In this case, BRIG is a kind of
similarity relation. Furthermore, when α ∈ [1.2, 1.5], just 5%
pixels belong to multiple information granularity at the same
time, information granularity can constitute the partition of
the universe approximately. In this case, BRIG is almost an
equivalence relation, and the results of image segmentation
and recognition is excellent under this condition.

Based on the discussion of weight factor, the experiment
of image recognition is conducted about cat dataset with
different value of α, and the algorithm FHFS is used in the
process of preprocessing. From Fig. 17, when α ∈ [1.2, 1.5],
measurements of image recognition can be maintained in a
high range. It indicates that the value of α and different BRIG
can lead to performance of image recognition directly.

Fig. 17: Image recognition with different weight factors
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Fig. 13: Results of image segmentation and feature selection

Fig. 15: Different performance of image segmentation with different weight factor

Fig. 16: Results of justifiable information granularity with different weight factor
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TABLE VIII: RESULTS FOR IMAGE RECOGNITION WITH DIFFERENT CLASSIFIERS (I)

Algorithm of
feature selection

KNN DT

precision recall f1-score accuracy precision recall f1-score accuracy

Raw data 0.60 ± 0.01 0.63 ± 0.03 0.64 ± 0.02 0.64 ± 0.01 0.60 ± 0.03 0.64 ± 0.02 0.61 ± 0.03 0.60 ± 0.03
MIFS 0.68 ± 0.02 0.63 ± 0.04 0.63 ± 0.03 0.62 ± 0.04 0.64 ± 0.01 0.68 ± 0.01 0.65 ± 0.02 0.62 ± 0.01

Relief-f 0.63 ± 0.04 0.62 ± 0.03 0.66 ± 0.02 0.68 ± 0.01 0.65 ± 0.03 0.65 ± 0.01 0.67 ± 0.03 0.64 ± 0.03
mRMR 0.64 ± 0.02 0.62 ± 0.01 0.68 ± 0.04 0.65 ± 0.04 0.66 ± 0.04 0.63 ± 0.03 0.65 ± 0.04 0.64 ± 0.02
FCBF 0.63 ± 0.04 0.64 ± 0.02 0.64 ± 0.04 0.66 ± 0.04 0.61 ± 0.04 0.68 ± 0.02 0.67 ± 0.02 0.69 ± 0.02
CMIM 0.68 ± 0.01 0.72 ± 0.03 0.71 ± 0.01 0.71 ± 0.03 0.72 ± 0.02 0.73 ± 0.01 0.67 ± 0.03 0.68 ± 0.02
RFS 0.77 ± 0.03 0.76 ± 0.01 0.74 ± 0.04 0.77 ± 0.02 0.74 ± 0.01 0.73 ± 0.01 0.73 ± 0.01 0.79 ± 0.01

FHFS 0.79 ± 0.02 0.77 ± 0.02 0.78 ± 0.01 0.79 ± 0.04 0.80 ± 0.02 0.82 ± 0.03 0.79 ± 0.01 0.78 ± 0.03

TABLE IX: RESULTS FOR IMAGE RECOGNITION WITH DIFFERENT CLASSIFIERS (II)

Algorithm of
feature selection

Bayes CNN

precision recall f1-score accuracy precision recall f1-score accuracy

Raw data 0.68 ± 0.03 0.70 ± 0.01 0.75 ± 0.03 0.74 ± 0.01 0.78 ± 0.02 0.77 ± 0.03 0.78 ± 0.03 0.72 ± 0.04
MIFS 0.73 ± 0.03 0.70 ± 0.04 0.73 ± 0.01 0.71 ± 0.01 0.84 ± 0.04 0.84 ± 0.01 0.83 ± 0.02 0.85 ± 0.02

Relief-f 0.77 ± 0.02 0.78 ± 0.02 0.79 ± 0.01 0.77 ± 0.02 0.88 ± 0.02 0.88 ± 0.03 0.86 ± 0.02 0.88 ± 0.02
mRMR 0.71 ± 0.02 0.72 ± 0.03 0.71 ± 0.03 0.76 ± 0.01 0.83 ± 0.01 0.88 ± 0.02 0.84 ± 0.02 0.87 ± 0.03
FCBF 0.76 ± 0.03 0.74 ± 0.01 0.76 ± 0.04 0.72 ± 0.03 0.77 ± 0.01 0.76 ± 0.01 0.75 ± 0.04 0.81 ± 0.01
CMIM 0.72 ± 0.03 0.70 ± 0.03 0.74 ± 0.03 0.71 ± 0.02 0.83 ± 0.02 0.83 ± 0.03 0.83 ± 0.04 0.82 ± 0.02
RFS 0.74 ± 0.02 0.77 ± 0.01 0.81 ± 0.02 0.80 ± 0.02 0.85 ± 0.02 0.86 ± 0.02 0.91 ± 0.02 0.91 ± 0.02

FHFS 0.81 ± 0.01 0.84 ± 0.04 0.82 ± 0.03 0.87 ± 0.03 0.91 ± 0.02 0.91 ± 0.02 0.90 ± 0.03 0.93 ± 0.03

D. Time complexity analysis and comparison
For step 7 in Algorithm 1, the time complexity for comput-

ing the distance between samples is O(d). Step 10 compute the
updated prototypes {ν1, ν2, ..., νc}, and the time complexity is
O(dc). The time complexity of steps 6-11 is O(ndc2), where
data elements and clusters are traversed. In summary, the time
complexity of Algorithm 1 is O(ndc2t), where n indicates
the number of samples, d indicates the dimension of the data,
c indicates the number of clusters, t represents the number
of convergence iterations of the algorithm. For Algorithm
2, the time complexity of steps 6-10, 4-17 are respectively,
O(n), O(tn). In summary, the time complexity of Algorithm
2 is O(cpn), where c indicates the number of clusters, p
indicates the number of the set P , n represents the number of
samples. As to Algorithm 3, for the (i+1)th traversal, the time
complexity from step 3 to step 6 is O(|C| − i). In summary,
the time complexity of Algorithm 3 is O(|C|2 + |C|).

Then the total time complexity of our method including
Algorithms 1-3 is O(ndc2t + cpn + |C|2 + |C|). The time
complexity comparison between the proposed method and
other feature selection algorithms is shown in Table XI.

TABLE XI: ALGORITHMS COMPLEXITY

Algorithm Time Complexity

PCA O(nd2 + d3)
NMF O(tdnk + n2d+ d2)
FA O(dn2)

EFSF O(nd2)
MIFS O(n2)

Relief-f O(tnd2)
mRMR O(ndk2)
FCBF O(nd3)
CMIM O(nd2)
RFS O(nd2log(d))

Our method O(ndc2t+ cpn+ |C|2 + |C|)

E. Robustness analysis
Based on the above experiments, we analyze the robustness

of the proposed FHFS algorithm as follows. We randomly add

noise to the data and delete the data to make the original
data set change. Meanwhile, we directly use the classification
algorithm and the classification algorithm after using FHFS
to calculate the classification accuracy of the obtained data.
Repeat the above operation for ten times and calculate the
standard deviation. From Fig. 18 and Fig. 19, we intuitively
observe that the data after processing of the FHFS exhibits
better robustness than the original data, and the FHFS does
not change the distribution of the original data.

Fig. 18: Robustness of FHFS on high-dimensional dataset.

Fig. 19: Robustness of FHFS on image dataset.
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VI. CONCLUSIONS

Based on the improved FCM algorithm and justifiable
information granularity, a novel binary relation called BRIG
is proposed to improve the limitations of the traditional FCM
method. The new BRIG delivers a significant way to conduct
the process of data-preprocessing during the task of machine
learning, image recognition, and data mining. Meanwhile,
criteria based on the degrees of aggregation and dispersion
for measuring the importance of attributes are developed.
Different effects and results can be obtained by resetting
the weight factor, which has been displayed obviously in
the process of image segmentation. Furthermore, rules of
improved FCM-based FHFS with justifiable granularity are
provided, and the related algorithm for FHFS is derived. The
FHFS exhibits extraordinary performance during data dimen-
sionality reduction compared with other algorithms in the same
category. The selection based on the measurement of attribute
importance is good for selecting valuable and important at-
tributes, which is performed significantly in processing high
dimensional information system and image feature extraction.
The generalization ability of the feature selection algorithm
proposed in this paper is mainly reflected by testing different
datasets and studying the variance in the test results. This paper
mainly focuses on improving the FCM clustering through
the principle of justifiable granularity, in the future work,
we will take into account the different clustering algorithms,
focus on the variant of the proposed algorithm, and study the
feature selection methods for heterogeneous data with different
justifiable granularity classifiers.
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