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With the increasing diversification and complexity of information and data, it is crucial 
to monitor and process data and information from multiple perspectives. There is a 
general consensus that dominance-based rough set approaches are the most effective 
methods for ordered information system research. Regardless, limitations and irrationality 
still exist in dominance relations because they cannot reflect the different emphases of 
data under different feature sets, nor can they meet the requirements for describing data 
information in the real world. To enable the dominance relation rough set model to be 
more effectively applied to practical problems in line with human cognition, our work 
focuses on developing adjustable-perspective dominance relations by fusing three different 
dominance relations in an intuitionistic fuzzy ordered decision table. On this basis, we 
construct a single-perspective rough set (SPRS) model to realize knowledge mining and 
rule extraction from various perspectives. Additionally, we present two types of different-
perspective rough sets (DPRS) that reduce the restriction of single-perspective evaluation 
data in realistic problems and discuss rule extraction. Additionally, we compare SPRS and 
DPRS to other dominance-based rough set models from the perspectives of the ordinal 
classification, roughness, and dependence degree. Finally, we analyze eight UCI datasets 
and present a series of comparative experiments to demonstrate the effectiveness and 
rationality of the proposed model.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

As science and technology develop, the number and frequency of data are increasing at an unprecedented rate. It is 
worth noting that there are many uncertainty phenomena in massive data, which have significant value for the research of 
uncertainty theory. As a powerful tool for handling uncertainty, the rough set theory (RST) proposed by Pawlak [1] focuses 
on lower and upper approximations, and characterizes uncertain information based on known information. For handling 
different data types in information systems, scholars have proposed various extended models such as the neighborhood 
rough set [2], interval-valued rough set [3], fuzzy rough set [4,5], decision-theoretic rough set [6,7]. Considering the degree 
of information quantification and level of decision risk, Xu et al. applied three-way decision and double-quantitative rough 
set models to decision analysis [8,9]. To derive effective rules from data, the novel rough set models proposed by Guo et al. 
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Table 1
The review and comparison of the proposed methods in IFIS.

Year Authors Researches Methods

2002 Greco et al. Rough approximation by dominance relations [20] DRSA
2007 Xu et al. IFPR and their application in group decision making [25] IFPR
2013 Xu et al. Intuitionistic fuzzy ordered information system [24] IFOIS
2013 Bing et al. Dominance-based rough set model in IFIS [21] IF-DRSA
2014 Huang et al. Intuitionistic fuzzy multigranulation rough sets [18] MGRS
2017 Zhang et al. Generalized dominance rough set models for the dominance IFIS [22] GDRSA
2019 Huang et al. DRSA in multi-scale intuitionistic fuzzy decision tables [23] MSRS
2022 Zhang et al. A novel rough set method based on different-perspective in IFOIS SPRS

Table 2
The selection for cadres.

A1 A2

Support Negative Abstain Support Negative Abstain

X1 15 3 7 18 5 2
X2 18 5 2 13 3 9
X3 13 5 7 10 0 15
X4 13 10 2 13 10 2
X5 18 5 2 15 5 5
X6 20 5 0 20 3 2

maintain a particular position in relation to rule extraction [10,11]. Dai et al. presented a variety of feature selection [12,13]
methods based on fuzzy rough sets to reduce dimensionality and remove redundant features. Overall, research based on 
RST is becoming an academic hot spot.

In 1986, Atanassov proposed the intuitionistic fuzzy set (IFS) [14] to characterize the vagueness of objects accurately. 
Unlike a traditional fuzzy set, an IFS considers the membership degree, non-membership degree, and hesitation degree 
when processing fuzzy information, and contains more complete and comprehensive information than traditional fuzzy sets 
when processing fuzziness and uncertainty. An IFS significantly enhances the description of the characteristics of objects, 
making the characterization of the objects more accurate and specific. Therefore, the combination of IFSs and RST has 
become another research hot spot [15,16]. Many researchers have presented important studies in this area. Lu and Lei 
[17] designed an attribute-reduction algorithm based on intuitionistic fuzzy rough sets (IFRS). Huang et al. [18] integrated 
IFRS with the concept of multi-granulation to form multi-granulation IFRS models. Additionally, in real-world applications, 
numerous information tables based on intuitionistic fuzzy environments are referred to as intuitionistic fuzzy information 
systems (IFIS) [19].

There is a binary relation called the equivalence relation in classical intuitionistic fuzzy information tables, but many 
problems do not satisfy the equivalence relation in practical applications. To overcome this limitation, Greco et al. presented 
the dominance-based rough set approach (DRSA) [20]. The DRSA replaces binary relations with dominance relations in 
information tables. The resulting intuitionistic fuzzy information tables are known as intuitionistic fuzzy ordered information 
systems (IFOIS). As shown in Table 1, since the DRSA was first proposed, scholars have performed numerous studies on the 
combination of IFS and DRSA. Bing et al. proposed a dominance-based rough set model for IFIS [21]. Zhang et al. extended 
the dominance-based rough set model to generalized dominance-based rough set models for IFIS [22]. Huang et al. used 
DRSA to research multi-scale intuitionistic fuzzy decision tables [23].

The ranking problem of IFS is involved in the process of combining IFS with DRSA. Xu et al. considered dominance 
relations from the perspective of comparing membership degrees and non-membership degrees, but ignored the general-
ization of data ranking [24]. Subsequently, Xu et al. proposed the construction of a scoring function and accuracy function 
to obtain intuitionistic fuzzy partial order relations [25]. In this paper, we propose a novel dominance relation based on the 
triangular norm and uncertainty metrics to reveal the different focuses of intuitionistic fuzzy data ranking. We were moti-
vated by the fact that the membership and non-membership of IFS are not equally important in most practical problems 
or considered comprehensively. Additionally, existing sorting methods fail to represent the potential preferences of intu-
itionistic fuzzy data. Consider the selection of cadres as an example. In Table 2, it is assumed that there are six candidates 
{X1, X2, X3, X4, X5, X6} and 25 voters involved in the selection process. The evaluation index A1 represents ability and A2
denotes morality. Each of the 25 voters can support or oppose a candidate, or abstain. For the indicator of ability A1 , if a 
person exhibits a moderately high or extremely high level of ability, then they will likely receive favorable votes. In contrast, 
if a person only demonstrates a moderate level of ability, then they may receive opposing votes. However, it is unreasonable 
to completely deny the ability of such an individual. As a result, in most cases, experts focus on the number of votes in 
favor of candidates considering the ability index A1 during the selection process, where a greater number of supporting 
votes indicates a better candidate. In contrast, regarding the indicator of morality A2, when a person has good or excellent 
moral character, they will likely receive supporting votes from everyone. When a person’s moral performance is average or 
they have made no significant mistakes, most people will give them support votes. However, if a person has bad morals or 
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Table 3
The intuitionistic fuzzy information table.

U X1 X2 X3 X4 X5 X6

A1 (0.6,0.1) (0.7,0.2) (0.5,0.2) (0.5,0.4) (0.7,0.2) (0.8,0.2)
A2 (0.7,0.2) (0.5,0.1) (0.4,0.0) (0.5,0.4) (0.6,0.2) (0.8,0.1)

commits major mistakes, then they will almost certainly receive opposing votes. Therefore, in most cases, experts are likely 
to care more about the number of votes against candidates based on the moral indicator A2 . Additionally, we know that the 
purpose of voting is to allow everyone to express their opinions and views, but there may be some scenarios in which many 
people abstain from voting and choose a neutral position, which defeats the purpose of voting. The number of abstentions is 
also a factor that experts must consider. Limiting the number of abstentions will ensure that a vote is meaningful. However, 
existing sorting methods cannot reflect different focuses on supporting votes, opposing votes, or abstentions.

The essence of this example can be transformed into the IFIS in Table 3. Supporting and opposing votes respectively rep-
resent for the degree of membership and non-membership in the IFS, and abstentions represent for the degree of hesitation 
in the IFS. Representing different concerns in the IFS using a novel sorting method is one of the main motivations of this 
study. Based on the discussion above, this paper defines strong, weak, and hesitant dominance relations according to the 
triangular norms, which respectively focus on the consideration of the membership degree, non-membership degree, and 
hesitation degree.

Different sorting methods correspond to different dominance relations, so each feature can be used to determine an 
optimal dominance relation [26] according to the connections between the ranking of objects and decision results. Therefore, 
evaluating the quality of each feature object ranking is an inevitable problem. It is well known that uncertainty measures 
play a vital role in rough set theory for assessing the importance of attributes and quantifying the inconsistency of data. 
The incorporation of information entropy [27] has significantly enhanced the development of uncertainty measurement and 
has been applied in various fields, such as information fusion [28], feature selection [29,30], and data classification [31,32]. 
Hu et al. investigated ranking mutual entropy and ranking conditional entropy in ordinal classification [33]. These indicators 
reflect the consistency degree of sample ranking under different features and decisions, meaning they serve as indexes for 
evaluating the monotonic consistency of ordinal classification. Inspired by this concept, we use the information entropy of 
different features to evaluate which sorting method is more suitable for a given feature.

Based on the methods described above, we propose adjustable-perspective dominance relations and construct a corre-
sponding IFRS model. Considering the different connections between diverse features and decisions, the optimal dominance 
relations selected under different feature sets are distinct. Some features represent the attribute sets of dominance relations 
that focus on membership degree, some features represent the attribute sets of dominance relations that revolve around 
the non-membership degree, and others represent the attribute sets of dominances relation that focus on the hesitation 
degree. Based on these three attribute sets representing different perspectives, we investigated the different-perspective 
rough sets (DPRS) approach in IFOIS while considering both loose and strict conditions. Based on the MGRS [34] concept 
proposed by Qian, the attribute set of each perspective can be considered as one granulation. Therefore, DPRS is a method 
for exploring information from a single perspective or multiple perspectives while emphasizing the analysis of problems 
from dissimilar angles. Additionally, for the attribute sets corresponding to each perspective, we can further incorporate the 
concept of multi-granulation to mine data information from different emphases and multiple levels to consistently obtain 
more comprehensive and reasonable problem solutions.

Inspired by the concepts described above, this paper defines three dominance relations based on the triangular norm and 
explores the adjustable-perspective dominance relation presented in Fig. 1. Based on this adjustable-perspective dominance 
relation, we design a new model for the single-perspective rough set (SPRS) in IFOIS. Additionally, the attribute set of IFOIS 
can be divided into the strong dominance relation attribute set A1, weak dominance relation attribute set A2, and hesitant 
dominance relation attribute set A3 based on adjustable-perspective dominance relations. Subsequently, we present two 
types of DPRS based on the three dominance relation sets and study their related properties. Additionally, we present a se-
ries of experiments to illustrate the superiority, applicability, and scalability of the proposed models. The main contributions 
of this paper can be summarized as follows.

• A novel relation called the adjustable-perspective dominance relation is constructed, which both retains the reduc-
tion effect of unreasonable information in intuitionistic fuzzy data and the evaluation impact of features from different 
perspectives.

• Based on the adjustable-perspective dominance relation, we established a novel SPRS model. This model not only 
represents the preference relations between objects, but also reflects the emphasis of data ranking under different features. 
It follows that the strategy of this model is more in line with the needs of practical applications.

• Regarding the adjustable-perspective dominance relation, the attribute set can be divided into three parts with different 
emphases. As a result, we define the loose different-perspective rough set model (LDPRS) and strict different-perspective 
rough set model (SDPRS) according to variant restrictions.

• To investigate the two types of DPRS models further, we explore related properties and rule induction. Additionally, 
several algorithms for computing the ordinal classification consistency, roughness, and dependence degree of the proposed 
models are designed.
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Fig. 1. The motivations of proposed approaches.

• The experimental results demonstrate that the adjustable-perspective dominance relation improves the ordinal clas-
sification accuracy, approximate accuracy, and approximate quality of the dominance-based rough set model compared to 
other dominance relations. Additionally, SPRS improves the rough set model from three perspectives, namely rationality, 
applicability, and accuracy, which is verified on eight public datasets.

The remainder of this paper is organized as follows. To aid in comprehension, the main motivations and contributions 
of this study are illustrated in Fig. 1. In Section 2, some basic concepts related to DRSA and triangular norms are reviewed 
got IFOIS. Section 3 defines the adjustable-perspective dominance relation and establishes the SPRS model. Additionally, 
this section presents two types of DPRS in IFOIS and further explores the corresponding theorems. In Section 4, a series of 
experiments are presented based on 8 UCI datasets to verify the effectiveness of the proposed method. Section 5 summarizes 
and concludes the paper.

2. Preliminaries

In this section, we review some basic concepts related to IFOIS and approaches to comparisons between intuitionistic 
fuzzy elements.

2.1. IFOIS

Compared to fuzzy sets, the IFS proposed by Atanassov [14] emphasizes the concepts of the non-membership degree 
and hesitation degree to improve the accuracy of description of the objective world. As a more rigorous structure, an IFS 
reflects the degree of recognition and disapproval of experts when evaluating objects, which is more consistent with human 
cognition in terms of solving practical problems.

Let U be a non-empty finite universe set. Then, an IFS on U can be defined as

A = {< x,μA(x), νA(X) >| X ∈ U },
where the functions μA : U → [0, 1], νA : U → [0, 1] represent the membership degree and non-membership degree of 
x in A, respectively, and comply with 0 ≤ μA(x) + νA(x) ≤ 1. Furthermore, ωA(x) = 1 − μA(x) − νA(x) corresponds to 
the hesitation degree of x belonging to A. The score function of A is s(x) = μA(x) − νA(x) and its accuracy function is 
h(x) = μA(x) + νA(x).

Because an IFS can reveal the ambiguity and uncertainty of a dataset more intuitively, some scholars have established 
IFIS by introducing an IFS into classical information systems. An IFIS can be defined by the following quadruple:

Ĩ = (U , AT , V = { Va j

∣∣a j ∈ AT }, f = { fa j

∣∣a j ∈ AT }),
where U = {x1, x2, ..., xm} represents a non-empty, finite universe set, AT = (a1, a2, ..., an) is a set of conditional attributes, 
Va j is a set of non-empty intuitionistic fuzzy numbers with attributes a j ∈ AT , which is also called the domain of attribute 
a j , and fa j : U → Va j represents a function that maps an object in U to an accurate intuitionistic fuzzy number in Va j . 
Specifically, fa(x) = (μa(x), νa(x)) for any x ∈ U , a ∈ AT .
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In real-world applications, there is typically an increasing partial order and decreasing partial order in an IFIS. If the do-
main of a conditional attribute is ordered by a decreasing or increasing preference, then that attribute can be considered as 
a criterion. If all attributes are criteria, then an IFIS is an IFOIS. For simplicity, an IFOIS can be denoted as ̃I≥ = (U , AT , V , f )
[24].

2.2. Ranking problems in IFOIS

For an IFOIS, research on representing the preference relations between objects is the key concept for processing an 
IFS. Many scholars have proposed methods for comparing two intuitionistic numbers. In this subsection, we will review 
comparison methods for IFS. Additionally, we highlight the ranking problems in existing approaches.

Definition 2.1. [24] Let ̃ I≥ = (U , AT , V , f ) be an IFOIS, where ∀x, y ∈ U , A ⊆ AT . The dominance relation R̂≥ on A can be 
defined as

R̂≥
A = { (x, y) ∈ U × U |μa(x) ≤ μa(y), νa(x) ≥ νa(y),∀a ∈ A},

where R̂≥
A satisfies the reflective, transitive, and asymmetry conditions. [̂x]≥A = {y ∈ U |(x, y) ∈ R̂≥

A } denotes the object sets 
that dominate x with respect to A.

We found that many previous studies are limited because they use this dominance relation to rank objects, meaning 
conditions are too strict for comparing numerous objects. For example, objects such as (0.5,0.2), (0.4,0.0), and (0.7,0.3) are 
incomparable when considering the dominance relation R̂≥

A .
To overcome this limitation, Xu et al. proposed an effective method for measuring the preference relations between 

objects using a scoring function and accuracy function based on IFS theory [25]. This method has improved applicability 
compared to the original dominance relation because all objects can be compared. Next, we will review the concept of 
general dominance relations based on scoring functions and accuracy functions. Suppose the intuitionistic fuzzy number 
of an object x under the attribute a ∈ AT can be expressed as xa = f (x, a) = (μa(x), νa(x)) and that its scoring function 
and accuracy function are s(x) = μa(x) − νa(x) and h(x) = μa(x) + νa(x), respectively. Then, the following definition for 
comparing two intuitionistic fuzzy numbers can be obtained.

Definition 2.2. [25] Let f (x, a) = (μa(x), νa(x)) and f (y, a) = (μa(y), νa(y)) be two intuitionistic fuzzy numbers. If s(x) <
s(y) holds, then x < y. If both s(x) = s(y) and h(x) < h(y) hold, then x < y. If h(x) = h(y), then we have x = y.

By applying Definition 2.2 to an IFOIS, we can derive the following general dominance relation for IFOIS.

Definition 2.3. [25] Let ̃ I≥ = (U , AT , V , f ) be an IFOIS, where ∀x, y ∈ U , A ⊆ AT . The general dominance relation R̃≥ on A
can be defined as

R̃≥
A = { (x, y) ∈ U × U | f (x,a) ≤ f (y,a),∀a ∈ A},

where f (x, a) and f (y, a) respectively represent the intuitionistic fuzzy numbers of two objects. Additionally, we derive 
that the dominance class [̃x]≥A = { y ∈ U | (x, y) ∈ R̃≥

A } is comprised of objects dominating x. R̃≥
A still satisfies the reflective, 

transitive, and asymmetry conditions. Additionally, the dominance relation under the decision attribute d can be expressed 
as R̃≥

d = { (x, y) ∈ U × U | f (x, d) ≤ f (y, d)}.
Based on the dominance relation and corresponding dominance class described above, we will present a dominance 

rough set model for IFOIS.

Definition 2.4. Let ̃ I≥ = (U , AT , V , f ) be an IFOIS, where for X ⊆ U , A ⊆ AT . The lower and upper approximations of X
with respect to the dominance relation R̃≥

A are defined as follows:

R̃≥
A (X) =

{
x ∈ U

∣∣∣[̃x]≥A ⊆ X)
}

,

R̃≥
A (X) =

{
x ∈ U

∣∣∣[̃x]≥A ∩ X 
= ∅)
}

.

R̃≥
A (X) and R̃≥

A (X) are a pair of approximation operators. If R̃≥
A (X) = R̃≥

A (X), then X is a definable set. Otherwise, it is a 

rough set. The three regions of X are denoted as P O S(X) = R̃≥
A (X), N EG(X) =∼ R̃≥

A (X), and BN D(X) = R̃≥
A (X) − R̃≥

A (X).

Definition 2.5. Let ̃ I≥ = (U , AT , V , f ) be an IFOIS, where for ∀X ⊆ U , A ⊆ AT . The roughness of X under the dominance 
relation R̃≥

A is defined as

ρ≥
A (X) = 1 −

∣∣∣R̃≥
A (X)

∣∣∣∣∣∣R̃≥
A (X)

∣∣∣ .
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Table 4
Comprehensive assessment of students.

U a1 a2 a3 d

x1 (0.8,0.1) (0.3,0.0) (0.7,0.2) A
x2 (0.4,0.2) (0.3,0.5) (0.5,0.0) C
x3 (0.5,0.3) (0.7,0.2) (0.6,0.2) B
x4 (0.5,0.4) (0.6,0.3) (0.4,0.3) B
x5 (0.6,0.4) (0.7,0.0) (0.9,0.1) A
x6 (0.4,0.1) (0.3,0.4) (0.2,0.4) C

Fig. 2. The ranking of students under attributes a1 and a2.

The roughness ρ≥
A (X) is adopted to express the degree of incomplete knowledge of X . When R̃≥

A (X) = ∅, it is accepted 
that ρ≥

A (X) = 1. Clearly, the accuracy of X can be denoted as α≥
A (X) = 1 − ρ≥

A (X).
For an intuitionistic fuzzy ordered decision information system (IFODIS), the decision attribute d determines the partition 

of U , which is denoted as U/d = { Di | i ∈ {1, 2, ..., N}(N ≤ |U |)}, where Di is an equivalence class. Then, there is a preference 
relationship between each decision class Di , D1 ≺ · · · · · · ≺ D j · · · · · · ≺ D N . The upward and downward unions of the decision 
classes can be denoted as D+

i = ∪D j( j ≥ i) and D−
i = ∪D j( j ≤ i), respectively The quality of approximation, which is also 

called the degree of dependence, plays an important role in reflecting the consistency degree of object rankings in terms of 
conditional attributes and decision attributes. Next, we introduce the concepts of dependency.

Definition 2.6. Given an IFODIS ̃ I≥ = (U , AT ∪ d, V , f ), A ⊆ AT , the dependence degree of D is defined as

γA(D+) =

|N|∑
i=1

∣∣∣R̃≥
A (D+

i )

∣∣∣
|N|∑
i=1

∣∣D+
i

∣∣
,

where D+
i represents classes that dominate Di and |∗| denotes the cardinality of set ∗.

One can see that a dependence degree based on the general dominance relation cannot reflect the consistency of object 
rankings in an IFOIS. The following example illustrates this limitation.

Example 2.1. Table 4 summarizes the comprehensive achievements of students. There are six students U = {x1, x2, x3, 
x4, x5, x6} and three evaluation criteria AT = {a1, a2, a3} in this evaluation. a1 represents the performance of students, a2
represents the psychological health of students, and a3 represents participation in extracurricular activities. The decision 
attribute d represents the total level (C ≺ B ≺ A) of students in this evaluation.

In this comprehensive evaluation, it should be noted that experts are more inclined toward the membership degree of 
student performance and non-membership degree of student psychological health, and focus on the hesitation degree of 
student extracurricular activities. According to the general dominance relation, we can obtain a ranking of students under 
attributes a1, a2, a3 and map the results onto coordinate axes, as shown in Fig. 2, where ©, �, and � represent objects in 
classes C, B, and A, respectively.
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Fig. 2 clearly reveals that the ranking of students under attributes a1 and d has a high degree of inconsistency. x2 and 
x6 in grade C are assigned to a relatively high level, whereas x4 in grade B and x5 in grade A are assigned to a relatively 
low level. The degree of consistency under attribute a1 is γa1 (D+) = 0.67. There are also inconsistencies in the ranking 
of students between attributes a2 and d. It is clear that x1 in grade A is assigned a relatively low level and the degree 
of consistency under attribute a2 is γa2 (D+) = 0.92. Furthermore, in the ranking of students under a3, x2 is assigned a 
relatively high level. The degree of consistency under attribute a3 is γa3 (D+) = 0.83. These sorting results clearly do not
conform to the expert judgment logic.

Analysis revealed that the ranking of objects under the general dominance relation cannot express the characteristics 
of experts paying more attention to the membership degree, non-membership degree, or hesitation degree under a certain 
attribute. This is because the general dominance relation fails to judge and reflect the emphases of attributes. Therefore, the 
general dominance relation cannot explore the connotations of data deeply and comprehensively. In real-world applications, 
there are many intuitionistic fuzzy cases in which the degree of membership and non-membership are not equally impor-
tant. Such problems require the dominance relation to describe the order relations of objects from different perspectives to 
mimic the logic of human cognition.

To overcome this limitation, we introduce triangular norms and conorms (also called t-norms and t-conorms). As impor-
tant concepts in set theory, triangular norms and conorms play a vital role in the comparison of fuzzy sets and other set 
fields. We now recall some basic concepts of triangle norms.

• Let N be a mapping N : [0, 1] × [0, 1] → [0, 1] for ∀μ, ν ∈ [0, 1]. If N satisfies the following conditions:

(1) Boundary conditions: N(0) = 1, N(1) = 0,
(2) Monotonicity: If μ ≤ ν , then N(μ) ≥ N(ν),

then the mapping N is called a fuzzy complement mapping. If there is a continuous and strictly decreasing complement, 
then the fuzzy negation is strictly a fuzzy complement. Additionally, the fuzzy complement mapping Ns is called a standard 
fuzzy complement operator if and only if Ns(μ) = 1 − μ holds for ∀μ ∈ [0, 1].
• Let T be a mapping T : [0, 1] × [0, 1] → [0, 1] for ∀μ, ν, t ∈ [0, 1]. If T satisfies the following conditions:

(1) Commutativity: T (μ, ν) = T (ν, μ),
(2) Associativity: T (μ, T (ν, t)) = T (T (μ, ν), t),
(3) Boundary condition: ∀μ ∈ [0, 1], T (μ, 1) = μ,
(4) Monotonicity: If μ ≤ ν , then T (t, μ) ≤ T (t, ν),

then the mapping T is called a triangular norm or t-norm for short.

• Let S be a mapping S : [0, 1] × [0, 1] → [0, 1] for ∀μ, ν, t ∈ [0, 1]. If S satisfies the following conditions:

(1) Commutativity: S(μ, ν) = S(ν, μ),
(2) Associativity: S(μ, S(ν, t)) = S(S(μ, ν), t),
(3) Boundary condition: ∀x ∈ [0, 1], S(x, 1) = x,
(4) Monotonicity: If μ ≤ ν , then S(t, μ) ≤ S(t, ν),

then the mapping S is called a fuzzy union or t-conorm for short.

Considering the above definitions, it can be obtained that the triangular norm (t-norm) and fuzzy union (t-conorm) 
are both in effect with respect to the fuzzy complement operator N when N(T (μ, ν)) = S(N(μ), N(ν)) or N(S(μ, ν)) =
T (N(μ), N(ν)) hold for ∀μ, ν ∈ [0, 1]. Let (T , S, N) be a dual triple, where the t-norm and t-conorm are in effect with 
regard to N . Then, the min-max dual triple function can be defined as

Min − Max : F (x) = (min (μx, νx) ,max (μx, νx) , N) ,

where T (μ, v) = min (μx, νx), S(μ, v) = max (μx, νx). It should be noted that N(T (μ, v)) = 1 − min (μx, νx) = max (1 − μx,

1 − νx) = S(N(μ), N(v)) and N(S(μ, v)) = 1 − max (μx, νx) = min (1 − μx,1 − νx) = T (N(μ), N(v)) if and only if the oper-
ators T and S are both in effect.

In accordance with the min-max dual triple, three different types of dominance relations can be derived.

3. SPRS and DPRS in IFOIS

This section will focus on a novel relation called the adjustable-perspective dominance relation based on the triangular 
norms. We investigate the SPRS and DPRS based on this relation.
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3.1. SPRS in IFOIS

We wish to overcome the limitations of object ranking based on a simple scoring function and accuracy function. 
Therefore, we utilize the triangular norm operator to establish the adjustable-perspective dominance relation, which more 
precisely reflects the different emphases of object ranking in practical problems.

Definition 3.1. Let ̃ I≥ = (U , AT , V , f ) be an IFOIS ∀x, y ∈ U , A ⊆ AT . In combination with the triangular norm operators in 
the min-max dual triple, the dominance relation R̃G≥ under attribute A can be defined as

R̃G≥
A = { (x, y) ∈ U × U | G(x,a) ≤ G(y,a),∀a ∈ A},

where G(x, a) ∈ {T (x, a), S(x, a), H(x, a)}, and T (x, a) = T (μa(x), N(νa(x))) = min (μa(x),1 − νa(x)), S(x, a) = S(μa(x),
N(νa(x))) = max(μa(x), 1 − νa(x)), H(x, a) = (T (μa(x), N(νa(x)) − S(μa(x), N(νa(x))) = (min(μa(x), 1 − νa(x)) − max(μa(x),
1 − νa(x))). We respectively call R̃ T ≥

A , R̃ S≥
A , and R̃ H≥

A the strong dominance relation, weak dominance relation and hesitant 
dominance relation when G(x, a) is taken as T (x, a), S(x, a), H(x, a). Here, R̃ T ≥

A indicates that attribute A focuses on the 
membership degree in the object ranking. R̃ S≥

A indicates that A emphasizes non-membership during object ranking. R̃ H≥
A

indicates that A focuses on the hesitation degree.
The corresponding dominance classes can be defined as

[̃x]G≥
A = { y ∈ U | (x, y) ∈ R̃G≥

A .

Similarly, [̃x]G≥
A refers to [̃x]T ≥

A , [̃x]S≥
A , and [̃x]H≥

A when G(x, a) is taken as T (x, a), S(x, a), and H(x, a), respectively. Clearly, 
[̃x]G≥

A satisfies the reflective, transitive, and asymmetry conditions.
During the ranking process of intuitionistic fuzzy data, existing dominance relations are often evaluated from a general 

and unified level, meaning only the difference and sum values between the membership degree and non-membership de-
gree are considered. In reality, based on the complex and biased evaluations of humans, membership and non-membership 
are not typically equally important. Accordingly, a general dominance relation alone is not sufficient to summarize and 
synthesize the ranking considerations of humans. Therefore, we aim to establish three types of dominance relations R̃ T ≥

A , 
R̃ S≥

A , and R̃ H≥
A to represent the process of object ranking from different perspectives, which makes the ranking results of 

intuitionistic fuzzy data more intelligent and comprehensive.

Example 3.1. There are various street interviews every year. Assuming that there are six candidates on a street interview, 
an expert’s assessment with six people answering mathematics questions can be expressed as (0.7,0.1), (0.3,0.2), (0.4,0.3), 
(0.6,0.4), (0.4,0.5), (0.5,0.1). Conforming to aforementioned the dominance relation of Definition 3.1. The dominance relations 
of these six candidates can be computed as follows:

T (x1,a) = 0.7 S(x1,a) = 0.9 H(x1,a) = −0.2
T (x2,a) = 0.3 S(x2,a) = 0.8 H(x2,a) = −0.5
T (x3,a) = 0.4 S(x3,a) = 0.7 H(x3,a) = −0.3
T (x4,a) = 0.6 S(x4,a) = 0.6 H(x4,a) = 0.0
T (x5,a) = 0.4 S(x5,a) = 0.5 H(x5,a) = −0.1
T (x6,a) = 0.5 S(x6,a) = 0.9 H(x6,a) = −0.4
T : x2 ≤ x3 = x5 ≤ x6 ≤ x4 ≤ x1; S : x5 ≤ x4 ≤ x3 ≤ x2 ≤ x6 = x1; H : x2 ≤ x6 ≤ x3 ≤ x1 ≤ x5 ≤ x4.

The results of our evaluations reveal that the three dominance relations mentioned above represent different prefer-
ences on data. The strong dominance class [̃x]T ≥

A focuses on the membership degree of data, the weak dominance class 
[̃x]S≥

A focuses on the non-membership degree, and the hesitation dominance class [̃x]H≥
A focuses on the hesitation degree. 

In the Example 3.1, the membership degree of the evaluation results represents the accuracy of answering mathematical 
questions, the non-membership degree represents the error rate, and the hesitation degree represents the time required to 
answer questions. Distinctly, all of these factors can be considered as important evaluation indicators for experts to measure 
object rankings. However, the general dominance relation only focuses on the difference and sum between membership and 
non-membership while ignoring these important research factors, which leads to insufficient information extraction and 
inaccurate approximation results. The three dominance relations proposed in this paper are able to extract information from 
different perspectives and comprehensively evaluate ranking indexes so that ranking results are more in line with actual 
needs.

Considering the complex and varied features of practical problems, deriving a dominance relation adapted to each feature 
is essential. Hu et al. [33] proposed using the dominance conditional entropy (DCE) and dominance mutual entropy (DME) to 
measure the consistency of datasets between features and decisions in an ordered information system. The dominance class 
induced by the dominance relation is the core element of DCE, and the ranking consistency of the conditional dominance 
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classes and decision dominance classes of different dominance relations vary. Therefore, we combine the three aforemen-
tioned dominance relations with DCE and employ multi-dominance conditional entropy (MDCE) to evaluate the consistency 
of object ranking from multiple perspectives. This not only maintains the values of attributes, but also reduces the impact 
of unreasonable information contained in data. Additionally, this evaluation process deeply reflects the connections between 
the order of features and decisions from different perspectives, meaning the sorting results are more applicable and reliable.

Definition 3.2. Given an IFODIS ̃ I≥ = (U , AT ∪ d, V , f ), where A ⊆ AT , the intuitionistic fuzzy MDCE of A relative to d is 
defined as

R̃C
G≥
d|A(U ) = − 1

|U |
m∑

j=1

log

∣∣∣[̃x j]G≥
A ∩ D+

d (x j)

∣∣∣∣∣D+
d (x j)

∣∣ ,

where [̃x j]G≥
A indicates three dominance classes and |[̃x j ]G≥

A ∩D+
d (x j)|

|D+
d (x j)| can be considered as the core of R̃C

G≥
d|A . If the value of 

|[̃x j ]G≥
A ∩D+

d (x j)|
|D+

d (x j)| is higher when [̃x j]G≥
A takes the form of one of [̃x j]T ≥

A , [̃x j]S≥
A , and [̃x j]H≥

A , then the dominance relations corre-

sponding to [̃x j]T ≥
A , [̃x j]S≥

A , or [̃x j]H≥
A are the relations that make the ranked objects have the highest degree of consistency 

under the considered features and decisions. Therefore, the greater the value of 

∣∣∣[̃x j ]G≥
A ∩D+

d (x j)

∣∣∣∣∣D+
d (x j)

∣∣ , the greater the significance 
of the dominance relation.

We now focus on a novel relation called the adjustable-perspective dominance relation.

Definition 3.3. Let Ĩ≥ = (U , AT ∪ d, V , f ) be an IFODIS ∀x, y ∈ U , where A ⊆ AT . The adjustable-perspective dominance 
relation R̃G S ≥ under attribute A can be defined as

R̃Gs≥
A = arg min

G∈{T ,S,H}
R̃C

G≥
d|A(U )

and the adjustable-perspective dominance class induced by this relation is defined as

[̃x]G S≥
A = { y ∈ U | (x, y) ∈ R̃G S≥

A }.
Clearly, [̃x]G S ≥

A is different from [̃x]G≥
A for [̃x]G S ≥

A . [̃x]G S ≥
A is comprised of all objects dominating x according to the 

adjustable-perspective dominance relation.

Proposition 3.1. Let ̃ I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS U = {x1, x2, ..., xn}, where B, A ⊆ AT . Then, we have the following 
properties:

(1) If B ⊆ AT , then ̃RGs≥
A ⊆ R̃Gs≥

B , ̃[x]Gs≥
A ⊆ [̃x]Gs≥

B ,

(2) xt ∈ [̃xs]Gs≥
A ⇔ [̃xt]Gs≥

A ⊆ [̃xs]Gs≥
A , [̃xs]Gs≥

A = ∪{ [̃xt]Gs≥
A

∣∣∣ xt ∈ [̃xs]Gs≥
A },

(3) if μ(x) + ν(x) = 1, then ̃[x]Gs≥
A = [̃x]T ≥

A = [̃x]S≥
A .

Proof. (1) ∼ (2) The proof of these properties can be obtained based on Definitions 3.1 and 3.3.
(3) If μ(x) + ν(x) = 1, T (x, a) = T (μa(x), N(νa(x))) = min(μa(x), 1 − νa(x)) = min(μa(x), μa(x)) = μa(x), S(x, a) =
S(μa(x), N(νa(x))) = max(μa(x), 1 − νa(x)) = max(μa(x), μa(x)) = μa(x), then T (x, a) = S(x, a) holds. Therefore, we can 
obtain [̃x]Gs≥

A = [̃x]T ≥
A = [̃x]S≥

A .

Definition 3.4. Let Ĩ≥ = (U , AT , V , f ) be an IFOIS for X ⊆ U , where A ⊆ AT . The lower and upper approximations of X
with respected to the adjustable-perspective dominance relation R̃G S ≥

A are defined as

R̃G S≥
A (X) =

{
x ∈ U

∣∣∣[̃x]G S≥
A ⊆ X)

}
,

R̃G S≥
A (X) =

{
x ∈ U

∣∣∣[̃x]G S≥
A ∩ X 
= ∅)

}
.

The pair (R̃G S ≥
A (X), ̃RG S ≥

A (X)) is called an SPRS. Three regions of X are defined as P O S(X) = R̃G S ≥
A (X), N EG(X) =∼

R̃G S ≥
(X), and BN D(X) = R̃G S ≥

(X) − R̃G S ≥
(X).
A A A
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Proposition 3.2. Let ̃I≥ = (U , AT , V , f ) be an IFOIS X, Y ⊆ U , where A ⊆ AT . Then, we have the following properties:

(1) R̃Gs≥
A (X) ⊆ X ⊆ R̃Gs≥

A (X),

(2) R̃Gs≥
A (∼ X) =∼ R̃Gs≥

A (X), ̃RGs≥
A (∼ X) =∼ R̃Gs≥

A (X),

(3) X ⊆ Y ⇒ R̃Gs≥
A (X) ⊆ R̃Gs≥

A (Y ), ̃RGs≥
A (X) ⊆ R̃Gs≥

A (Y ).

Proof. The properties above can be derived directly from Definition 3.4.

This yields the conclusion that R̃G S ≥
A eventually chooses an optimal dominance relation. This optimal dominance relation 

can be either the strong dominance relation, weak dominance relation, or hesitant dominance relation. The selection of 
the optimal dominance relation directly reveals whether the emphasis under this attribute is the membership degree, non-
membership degree, or hesitation degree. In contrast to a weighted IFS, the weight coefficients of the membership degree 
and non-membership degree are assigned by experts before processing such IFS. The reliability of the weights assigned by 
experts is an issue worthy of discussion. Therefore, the adjustable-perspective dominance relation is crucial for IFIS. It can 
objectively classify attributes of different focuses through the connection of features and decisions, and automatically adjust 
to the optimal dominance relation that represents the target attribute. This not only further explores the relations between 
decisions and features, but also reduces the irrationality and inconsistency of order classification. Below, we introduce an 
example to demonstrate the adjustable-perspective dominance relation in IFOIS.

Example 3.2. (Continued from Example 2.1) In order to compute the ranking results of students based on the adjustable-
perspective dominance relation, we first calculate the dominance class of strong dominance relation, weak dominance 
relation and hesitant dominance relation.

Three kinds of dominance classes with respect to a1 are computed.

[̃x1]T ≥
a1

= {x1}; [̃x1]S≥
a1

= {x1, x6}; [̃x1]H≥
a1

= {x1, x4, x5};
[̃x2]T ≥

a1
= {x1, x2, x3, x4, x5, x6}; [̃x2]S≥

a1
= {x1, x2, x6}; [̃x2]H≥

a1
= {x1, x2, x3, x4, x5};

[̃x3]T ≥
a1

= {x1, x3, x4, x5}; [̃x3]S≥
a1

= {x1, x2, x3, x6}; [̃x3]H≥
a1

= {x1, x3, x4, x5};
[̃x4]T ≥

a1
= {x1, x3, x4, x5}; [̃x4]S≥

a1
= {x1, x2, x3, x4, x5, x6}; [̃x4]H≥

a1
= {x1, x4, x5};

[̃x5]T ≥
a1

= {x1, x5}; [̃x5]S≥
a1

= {x1, x2, x3, x4, x5, x6}; [̃x5]H≥
a1

= {x5};
[̃x6]T ≥

a1
= {x1, x2, x3, x4, x5, x6}. [̃x6]S≥

a1
= {x1, x6}. [̃x6]H≥

a1
= {x1, x2, x3, x4, x5, x6}.

Three kinds of dominance classes with respect to a2 are computed.

[̃x1]T ≥
a2

= {x1, x2, x3, x4, x5, x6}; [̃x1]S≥
a2

= {x1, x5}; [̃x1]H≥
a2

= {x1, x2, x3, x4, x5, x6};
[̃x2]T ≥

a2
= {x1, x2, x3, x4, x5, x6}; [̃x2]S≥

a2
= {x1, x2, x3, x4, x5, x6}; [̃x2]H≥

a2
= {x2, x3, x4};

[̃x3]T ≥
a2

= {x3, x5}; [̃x3]S≥
a2

= {x1, x3, x5}; [̃x3]H≥
a2

= {x3, x4};
[̃x4]T ≥

a2
= {x3, x4, x5}; [̃x4]S≥

a2
= {x1, x3, x4, x5}; [̃x4]H≥

a2
= {x3, x4};

[̃x5]T ≥
a2

= {x3, x5}; [̃x5]S≥
a2

= {x1, x5}; [̃x5]H≥
a2

= {x2, x3, x4, x5, x6};
[̃x6]T ≥

a2
= {x1, x2, x3, x4, x5, x6}. [̃x6]S≥

a2
= {x1, x3, x4, x5, x6}. [̃x6]H≥

a2
= {x2, x3, x4, x5, x6}.

Three kinds of dominance classes with respect to a3 are computed.

[̃x1]T ≥
a3

= {x1, x5}; [̃x1]S≥
a3

= {x1, x2, x3, x5}; [̃x1]H≥
a3

= {x1, x5};
[̃x2]T ≥

a3
= {x1, x2, x3, x5}; [̃x2]S≥

a3
= {x2}; [̃x2]H≥

a3
= {x1, x2, x3, x4, x5, x6};

[̃x3]T ≥
a3

= {x1, x3, x5}; [̃x3]S≥
a3

= {x1, x2, x3, x5}; [̃x3]H≥
a3

= {x1, x3, x5};
[̃x4]T ≥

a3
= {x1, x2, x3, x4, x5}; [̃x4]S≥

a3
= {x1, x2, x3, x4, x5}; [̃x4]H≥

a3
= {x1, x3, x4, x5};

[̃x5]T ≥
a3

= {x5}; [̃x5]S≥
a3

= {x1, x5}; [̃x5]H≥
a3

= {x5};
[̃x6]T ≥

a3
= {x1, x2, x3, x4, x5, x6}. [̃x6]S≥

a3
= {x1, x2, x3, x4, x5, x6}. [̃x6]H≥

a3
= {x1, x3, x4, x5, x6}.

The decision dominance class of each object can be obtained.

D+
1 (x1) = D+

1 (x5) = {x1, x5}; D+
2 (x3) = D+

2 (x4) = {x1, x3, x4, x5}; D+
3 (x2) = D+

3 (x6) = {x1, x2, x3, x4, x5, x6}.
Then, we are able to acquire the dominance conditional entropy of a1, a2, a3 relative to d through computation.

R̃C
H≥
d|a1

(U ) > R̃C
S≥
d|a1

(U ) > R̃C
T ≥
d|a1

(U );
R̃C

H≥
d|a2

(U ) > R̃C
T ≥
d|a2

(U ) > R̃C
S≥
d|a2

(U );
R̃C

S≥
(U ) > R̃C

T ≥
(U ) > R̃C

H≥
(U ).
d|a3 d|a3 d|a3
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Fig. 3. The revised ranking of students under attributes a1 and a2.

Table 5
Dependencies based on proposed relations.

R̃ T ≥
A R̃ S≥

A R̃ H≥
A R̃G S ≥

A

γa(D+) γ̃a(D+) γa(D+) γ̃a(D+) γa(D+) γ̃a(D+) γa(D+) γ̃a(D+)

a1 0.67 1 ↑ 0.67 0.50 ↓ 0.67 0.92 ↑ 0.67 1 ↑
a2 0.92 0.75 ↓ 0.92 1 ↑ 0.92 0.67 ↓ 0.92 1 ↑
a3 0.83 0.92 ↑ 0.83 0.50 ↓ 0.83 1 ↑ 0.83 1 ↑

We can directly obtain the adjustable-perspective dominance relation R̃G S ≥
A under attributes a1, a2, and a3 as

R̃G S≥
a1 = R̃ T ≥

a1
, R̃G S≥

a2 = R̃ S≥
a2

, R̃G S≥
a3 = R̃ H≥

a3
.

By conforming to relation above, we find that the attribute a1 prefers the membership degree. a2 focuses on the non-
membership degree and a3 focuses on the hesitation degree. Additionally, we get the revised ranking of objects presented 
in Fig. 3 and the dependence degree of D on attributes a1, a2, a3 is presented in Table 5.

In Fig. 3, the object in the brackets is at the same level as the object outside the brackets. Intuitively, Fig. 3 reveals that 
the revised ranking of the objects on the basis of the adjustable-perspective dominance relation remains consistent with the 
decision results, which is reasonable and meets the requirements of real-world applications.

Table 5 reveals that the ranking of each attribute under different dominance relations exhibits a different consistency 
degree with the decision results. Specifically, the strong dominance relation, weak dominance relation, and hesitant domi-
nance relation are more suitable for processing the order relations between objects with respect to attributes a1, a2, and a3, 
respectively. Therefore, based on the degree of dependence, it can be further determined that attribute a1 focuses on the 
membership degree, attribute a2 focuses on the non-membership degree, and attribute a3 focuses on the hesitant degree. 
The adjustable-perspective dominance relation not only reflects the different focus of each attribute, but also adjusts to the 
optimal dominance relation that adapts to each attribute.

In Example 3.2, only three attributes were discussed for issues with different focuses. However, in real-world applica-
tions, there are many problems with numerous attributes and objects, and these attributes have different emphases. Because 
problems can be analyzed from multiple angles and levels, multi-perspective analysis can consistently obtain more compre-
hensive and reasonable solutions to problems. Therefore, it is necessary to investigate the DPRS model.

3.2. DPRS in IFOIS

For an intuitionistic fuzzy ordered dataset, there are far more than three attributes. In Example 3.2 above, the strong 
dominance relation of a1 indicated that a1 focuses on the membership degree. The relation of a2 is the weak dominance 
relation, meaning a2 emphasizes the non-membership degree. The relation of a3 is the hesitant dominance relation, meaning 
a3 focuses the hesitation degree. Each attribute subset can determine the corresponding dominance relation based on the 
adjustable-perspective dominance relation. As shown in Fig. 4, all attributes sets in IFOIS can be divided into three types 
of dominance relations according to different focuses, namely the attribute sets of the strong dominance relation, weak 
dominance relation, and hesitant dominance relation.
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Fig. 4. Three types of dominance relations in IFOIS.

Table 6
Medical evaluation system.

U a1 a2 a3 a4 a5 a6 d

x1 (0.9,0.1) (0.5,0.0) (0.9,0.0) (0.6,0.1) (0.4,0.5) (0.5,0.4) A
x2 (0.4,0.5) (0.2,0.7) (0.1,0.6) (0.3,0.6) (0.5,0.0) (0.4,0.1) C
x3 (0.5,0.3) (0.6,0.3) (0.6,0.2) (0.5,0.4) (0.3,0.5) (0.5,0.3) B
x4 (0.5,0.4) (0.5,0.4) (0.6,0.3) (0.6,0.4) (0.4,0.4) (0.7,0.1) B
x5 (0.7,0.2) (0.6,0.1) (0.7,0.1) (0.5,0.1) (0.8,0.1) (0.7,0.2) A
x6 (0.4,0.1) (0.3,0.5) (0.3,0.3) (0.2,0.6) (0.2,0.3) (0.3,0.0) C
x7 (0.6,0.2) (0.6,0.3) (0.6,0.4) (0.8,0.2) (0.3,0.4) (0.5,0.3) B
x8 (0.5,0.1) (0.5,0.3) (0.6,0.3) (0.4,0.3) (0.5,0.3) (0.4,0.4) B
x9 (0.2,0.5) (0.2,0.6) (0.4,0.5) (0.1,0.8) (0.1,0.2) (0.1,0.3) C
x10 (0.9,0.0) (0.7,0.1) (0.8,0.1) (0.9,0.0) (0.1,0.8) (0.8,0.1) A

According to the concept of granular computing, the three dominance relations can be considered as three granulations 
[34] with different perspectives. For each of the three dominance relation sets, we have different dominance classes contain-
ing numerous attribute subsets. Below, we present another example to illustrate multiple-attribute problems with different 
focuses.

Example 3.3. As shown in Table 6, we consider an IFODIS containing medical evaluation information. U = {x1, x2, x3, x4, x5,

x6, x7, x8, x9, x10} represents ten hospitals from different regions. A = {a1, a2, a3, a4, a5, a6} is composed of six evaluation 
indexes, where ai(i = 1, 2, 3, 4, 5, 6) represents equipment, service level, technical level, management level, treatment di-
rection, and hospital scale, respectively. The value of the decision attribute C ≺ B ≺ A represents the final level in this 
evaluation.

To obtain three attribute subsets with three different dominance relations, we must determine the dominance relations 
with respect to each attribute ai .

The computation of different dominance classes [̃x j ]G≥
Ai

(i = 1, 2, 3) and the decision dominance class for each object is 
similar to Example 3.2. Therefore, we have

R̃C
S≥
d|a1

(U ) > R̃C
H≥
d|a1

(U ) > R̃C
T ≥
d|a1

(U );
R̃C

T ≥
d|a2

(U ) > R̃C
H≥
d|a2

(U ) > R̃C
S≥
d|a2

(U );
R̃C

H≥
d|a3

(U ) > R̃C
S≥
d|a3

(U ) > R̃C
T ≥
d|a3

(U );
R̃C

T ≥
d|a4

(U ) > R̃C
H≥
d|a4

(U ) > R̃C
S≥
d|a4

(U );
R̃C

S≥
d|a5

(U ) > R̃C
T ≥
d|a5

(U ) > R̃C
H≥
d|a5

(U );
R̃C

S≥
d|a6

(U ) > R̃C
T ≥
d|a6

(U ) > R̃C
H≥
d|a6

(U ).

From the adjustable-perspective dominance relation in Definition 3.3, we can get

R̃G S≥
a1 = R̃ T ≥

a1 , R̃G S≥
a3 = R̃ T ≥

a3 ;
R̃G S≥

a2 = R̃ S≥
a2 , R̃G S≥

a4 = R̃ S≥
a4 ;

R̃G S≥ = R̃ H≥
, R̃G S≥ = R̃ H≥

.
a5 a5 a6 a6
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Fig. 5. Research process of DPRS.

Therefore, we can obtain the attribute subsets A1 = {a1, a3}, A2 = {a2, a4}, A3 = {a5, a6} corresponding to the strong 
dominance relation, weak dominance relation, and hesitant dominance relation, respectively.

For A1, A2, and A3, the dominance relations of A1, A2, A3 can be demonstrated and verified based on the adjustable-
perspective dominance relation. According to Definition 3.3, we are able to acquire

R̃G S≥
A1

= R̃ T ≥
A1

, R̃G S≥
A2

= R̃ S≥
A2

, R̃G S≥
A3

= R̃ H≥
A3

.

The relations of A1, A2, and A3 are determined to be the strong dominance relation, weak dominance relation, and 
hesitant dominance relation, respectively.

Based on this description, the information table can be divided into granulations with three dominance relations. As 
shown in Fig. 5, the corresponding dominance classes can be induced from different dominance relations by analyzing the 
containment relationships between the dominance classes and target decision classes. Specifically, two dissimilar scenarios 
can be considered: at least one dominance class with the correct perspective must be included in the target concept or all 
dominance classes with every perspective must be included in the target concept. We first consider the DPRS model under 
loose conditions.

Definition 3.5. Let ̃ I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS A1 ∪ A2 ∪ A3 = AT , where A1, A2, and A3 represent the attribute 
sets of the strong, weak, and hesitant dominance relations induced by the adjustable-perspective dominance relation R̃G S ≥

A , 
respectively. ∀X ⊆ U . The lower and upper approximations of X with respect to R̃ T ≥

A1
, R̃ S≥

A2
, and R̃ H≥

A3
are defined as

L̃M
G S≥
A1+A2+A3

(X) =
{

x ∈ U |
(
[̃x]T ≥

A1
⊆ X

)
∨

(
[̃x]S≥

A2
⊆ X

)
∨

(
[̃x]H≥

A3
⊆ X

)}
,

L̃M
G S≥
A1+A2+A3

(X) =
{

x ∈ U |
(
[̃x]T ≥

A1
∩ X 
= ∅

)
∧

(
[̃x]S≥

A2
∩ X 
= ∅

)
∧

(
[̃x]H≥

A3
∩ X 
= ∅

)}
,

where “∨” and “∧” signify “or” and “and,” respectively. [̃x]T ≥
A1

= [̃x]G S ≥
A1

= { y| (x, y) ∈ R̃G S ≥
A1

} represents the strong dominance 

class, [̃x]S≥
A2

= [̃x]G S ≥
A2

= { y| (x, y) ∈ R̃G S ≥
A2

} denotes the weak dominance class, and [̃x]H≥
A3

= [̃x]G S ≥
A3

= { y| (x, y) ∈ R̃G S ≥
A3

} de-

notes the hesitant dominance class. L̃M
G S ≥
A1+A2+A3

(X) indicates that there is at least one dominance class with the correct 

perspective included in the target concept. Otherwise, L̃M
G S ≥
A1+A2+A3

(X) requires that the intersections of the dominance 

classes with all perspectives included in the target concept are not empty. If L̃M
G S ≥
A1+A2+A3

(X) 
= L̃M
G S ≥
A1+A2+A3

(X), then X is 
called an LDPRS with respect to A1, A2, A3.

Proposition 3.3. Let ̃I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS A1 ∪ A2 ∪ A3 = AT . For X ∈ P (U ), we have

(1) ̃LM
G S ≥
A +A +A (X) ⊆ X ⊆ L̃M

G S ≥
A +A +A (X),
1 2 3 1 2 3
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(2) ̃LM
G S ≥
A1+A2+A3

(∼ X) =∼ L̃M
G S ≥
A1+A2+A3

(X), ̃LM
G S ≥
A1+A2+A3

(∼ X) =∼ L̃M
G S ≥
A1+A2+A3

(X),

(3) ̃LM
G S ≥
A1+A2+A3

(X) = R̃ T ≥
A1

(X) ∪ R̃ S≥
A2

(X) ∪ R̃ H≥
A3

(X), ̃LM
G S ≥
A1+A2+A3

(X) = R̃ T ≥
A1

(X) ∩ R̃ S≥
A2

(X) ∩ R̃ H≥
A3

(X).

Proof. The theorems above can be directly derived from Definition 3.5.

Proposition 3.4. Let ̃I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS, A1 ∪ A2 ∪ A3 = AT . For X, Y ∈ P (U ), we have

(1) ̃LM
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆ L̃M
G S ≥
A1+A2+A3

(X) ∩ L̃M
G S ≥
A1+A2+A3

(Y ), ̃LM
G S ≥
A1+A2+A3

(X ∪ Y ) ⊇ L̃M
G S ≥
A1+A2+A3

(X) ∪ L̃M
G S ≥
A1+A2+A3

(Y ),

(2) ̃LM
G S ≥
A1+A2+A3

(X ∪ Y ) ⊇ L̃M
G S ≥
A1+A2+A3

(X) ∪ L̃M
G S ≥
A1+A2+A3

(Y ), ̃LM
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆ L̃M
G S ≥
A1+A2+A3

(X) ∩ L̃M
G S ≥
A1+A2+A3

(Y ),

(3) ̃LM
G S ≥
A1+A2+A3

(X ∩ Y ) = (R̃ T ≥
A1

(X) ∩ R̃ T ≥
A1

(Y )) ∪ (R̃ S≥
A2

(X) ∩ R̃ S≥
A2

(Y )) ∪ (R̃ H≥
A3

(X) ∩ R̃ H≥
A3

(Y )),

(4) ̃LM
G S ≥
A1+A2+A3

(X ∪ Y ) = (R̃ T ≥
A1

(X) ∪ R̃ T ≥
A1

(Y )) ∩ (R̃ S≥
A2

(X) ∪ R̃ S≥
A2

(Y )) ∩ (R̃ H≥
A3

(X) ∪ R̃ H≥
A3

(Y )).

Proof. (1) For ∀x ∈ L̃M
G S ≥
A1+A2+A3

(X ∩ Y ), we have [̃x]T ≥
A1

⊆ (X ∩ Y ) or [̃x]S≥
A2

⊆ (X ∩ Y ) or [̃x]H≥
A3

⊆ (X ∩ Y ) according to 

Definition 3.5. Then, we know that [̃x]T ≥
A1

⊆ X or [̃x]S≥
A2

⊆ X or [̃x]H≥
A3

⊆ X holds. [̃x]T ≥
A1

⊆ Y or [̃x]S≥
A2

⊆ Y or [̃x]H≥
A3

⊆ Y

also holds. Therefore, x ∈ L̃M
G S ≥
A1+A2+A3

(X) and x ∈ L̃M
G S ≥
A1+A2+A3

(Y ) hold, meaning x ∈ L̃M
G S ≥
A1+A2+A3

(X) ∩ L̃M
Gs≥
A1+A2+A3

(Y ). 

As a result, L̃M
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆ L̃M
G S ≥
A1+A2+A3

(X) ∩ L̃M
G S ≥
A1+A2+A3

(Y ). Similarly, we can obtain L̃M
G S ≥
A1+A2+A3

(X ∪ Y ) ⊇
L̃M

G S ≥
A1+A2+A3

(X) ∪ L̃M
G S ≥
A1+A2+A3

(Y ).

(2) Because X ⊆ X ∪ Y and Y ⊆ X ∪ Y , we have that L̃M
G S ≥
A1+A2+A3

(X) ⊆ L̃M
G S ≥
A1+A2+A3

(X ∩ Y ), L̃M
G S ≥
A1+A2+A3

(Y ) ⊆
L̃M

G S ≥
A1+A2+A3

(X ∩ Y ). Therefore, L̃M
G S ≥
A1+A2+A3

(X) ∪ L̃M
G S ≥
A1+A2+A3

(Y ) ⊆ L̃M
G S ≥
A1+A2+A3

(X ∩ Y ). Similarly, L̃M
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆
L̃M

G S ≥
A1+A2+A3

(X) ∩ L̃M
G S ≥
A1+A2+A3

(Y ) can be proved.

(3) ∼ (4) This proof can be obtained from Proposition 3.3.
In the LDPRS, the three dominance classes only require that at least one type of dominance class is included in the target 

concept to reflect relatively loose conditions. In contrast, when the conditions require that all three types of dominance 
classes must be included in the target concept, then we have the TDARS, which we will investigate next.

Definition 3.6. Let ̃ I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS A1 ∪ A2 ∪ A3 = AT , where A1, A2, and A3 represent the attribute 
sets of the strong, weak, and hesitant dominance relations induced by the adjustable-perspective dominance relation R̃G S ≥

A , 
respectively. ∀X ⊆ U . The lower and upper approximations of X with respect to R̃ T ≥

A1
, namely R̃ S≥

A2
and R̃ H≥

A3
, are defined as

T̃ M
G S ≥
A1+A2+A3

(X) =
{

x ∈ U |
(
[̃x]T ≥

A1
⊆ X

)
∧

(
[̃x]S≥

A2
⊆ X

)
∧

(
[̃x]H≥

A3
⊆ X

)}
,

T̃ M
G S ≥
A1+A2+A3

(X) =
{

x ∈ U |
(
[̃x]T ≥

A1
∩ X 
= ∅

)
∨

(
[̃x]S≥

A2
∩ X 
= ∅

)
∨

(
[̃x]H≥

A3
∩ X 
= ∅

)}
,

where “∨” denotes “or” and “∧” denotes “and.” [̃x]T ≥
A1

= [̃x]G S ≥
A1

= { y| (x, y) ∈ R̃G S ≥
A1

}, [̃x]S≥
A2

= [̃x]G S ≥
A2

= { y| (x, y) ∈ R̃G S ≥
A1

}, and 

[̃x]H≥
A3

= { y| (x, y) ∈ R̃G S ≥
A1

} represent with the strong, weak, and hesitant dominance classes, respectively. T̃ M
G S ≥
A1+A2+A3

(X)

indicates that all dominance classes with every specific perspective are included in the target concept. Otherwise, 
T̃ M

G S ≥
A1+A2+A3

(X) indicates that the intersection of at least one type of dominance class and the target concept is not empty. 

If T̃ M
G S ≥
A1+A2+A3

(X) 
= T̃ M
G S ≥
A1+A2+A3

(X), then X is called an SDPRS with respect to A1, A2, A3.

Proposition 3.5. Let ̃I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS A1 ∪ A2 ∪ A3 = AT . For X ∈ P (U ), we have

(1) T̃ M
G S ≥
A +A +A (X) ⊆ X ⊆ T̃ M

G S ≥
A +A +A (X),
1 2 3 1 2 3
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(2) T̃ M
G S ≥
A1+A2+A3

(∼ X) =∼ T̃ M
G S ≥
A1+A2+A3

(X), ̃T M
G S ≥
A1+A2+A3

(∼ X) =∼ T̃ M
G S ≥
A1+A2+A3

(X),

(3) T̃ M
G S ≥
A1+A2+A3

(X) = R̃ T ≥
A1

(X) ∩ R̃ S≥
A2

(X) ∩ R̃ H≥
A3

(X), ̃T M
G S ≥
A1+A2+A3

(X) = R̃ T ≥
A1

(X) ∪ R̃ S≥
A2

(X) ∪ R̃ H≥
A3

(X).

Proof. The corresponding proof can be obtained directly from Definition 3.6.

Proposition 3.6. Let ̃I≥ = (U , AT ∪ {d}, V , f ) be an IFODIS A1 ∪ A2 ∪ A3 = AT . For X, Y ∈ P (U ), we have

(1) T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ) = T̃ M
G S ≥
A1+A2+A3

(X) ∩ T̃ M
G S ≥
A1+A2+A3

(Y ), ̃T M
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆ T̃ M
G S ≥
A1+A2+A3

(X) ∩ T̃ M
G S ≥
A1+A2+A3

(Y ),

(2) T̃ M
G S ≥
A1+A2+A3

(X ∪ Y ) = T̃ M
G S ≥
A1+A2+A3

(X) ∩ T̃ M
G S ≥
A1+A2+A3

(Y ), ̃T M
G S ≥
A1+A2+A3

(X ∪ Y ) ⊇ T̃ M
G S ≥
A1+A2+A3

(X) ∪ T̃ M
G S ≥
A1+A2+A3

(Y ),

(3) T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ) = (R̃ T ≥
A1

(X) ∩ R̃ T ≥
A1

(Y )) ∩ (R̃ S≥
A2

(X) ∩ R̃ S≥
A2

(Y )) ∩ (R̃ H≥
A3

(X) ∩ R̃ H≥
A3

(Y )),

(4) T̃ M
G S ≥
A1+A2+A3

(X ∪ Y ) = (R̃ T ≥
A1

(X) ∪ R̃ T ≥
A1

(Y )) ∪ (R̃ S≥
A2

(X) ∪ R̃ S≥
A2

(Y )) ∪ (R̃ H≥
A3

(X) ∪ R̃ H≥
A3

(Y )).

Proof. (1) For x ∈ T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ), we have that

x ∈ T̃ M
G S≥
A1+A2+A3

(X ∩ Y ) ⇔ [̃x]T ≥
A1+A2+A3

⊆ (X ∩ Y ) ∧ [̃x]S≥
A1+A2+A3

⊆ (X ∩ Y ) ∧ [̃x]H≥
A1+A2+A3

⊆ (X ∩ Y )

⇔ [̃x]T ≥
A1+A2+A3

⊆ X ∧ [̃x]S≥
A1+A2+A3

⊆ X ∧ [̃x]H≥
A1+A2+A3

⊆ X,

and [̃x]T ≥
A1+A2+A3

⊆ Y ∧ [̃x]S≥
A1+A2+A3

⊆ Y ∧ [̃x]H≥
A1+A2+A3

⊆ Y ,

⇔ x ∈ T̃ M
G S≥
A1+A2+A3

(X) ∩ x ∈ T̃ M
G S≥
A1+A2+A3

(Y ).

Therefore, T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ) = T̃ M
G S ≥
A1+A2+A3

(X) ∩ T̃ M
G S ≥
A1+A2+A3

(Y ) holds.

Because X ∩ Y ⊆ X and X ∩ Y ⊆ Y , we have that T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆ T̃ M
G S ≥
A1+A2+A3

(X), T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆
T̃ M

G S ≥
A1+A2+A3

(Y ). Therefore, T̃ M
G S ≥
A1+A2+A3

(X ∩ Y ) ⊆ T̃ M
G S ≥
A1+A2+A3

(X) ∩ T̃ M
G S ≥
A1+A2+A3

(Y ) holds.

(2) The proof is similar to (1).

(3) ∼ (4) This proof can be obtained from Proposition 3.5.

In the classical dominance rough set theory, decision makers apply the lower and upper approximations of concept 
X in dominance relation R̃Gs≥

A to extract dominance rules. Deterministic dominance rules can be acquired from the lower 
approximation and possibility dominance rules can be obtained from the boundary domain. In combination with the concept 
of the different-perspective dominance relation, two types of decision rules with logical meanings of “or” and “and” can 
be extracted from the SPRS constructed above. T (x, a), S(x, a), H(x, a) are abbreviated as Ta(x), Sa(x), Ha(x), respectively. 
ai ⊆ A1(i = t, · · · , s), a j ⊆ A2( j = m, · · · , n), av ⊆ A3(v = l, · · · , k). A1, A2, A3 ⊆ AT .
The specific forms are defined as follows:

• “At least”:

(1)
(
(Ta1 (x) ≥ νa1 ) ∧ (Ta3 (x) ≥ νa3 ) ∧ · · · ∧ (Tas (x) ≥ νas )

) ∨ (
(Sa2 (x) ≥ νa2 ) ∧ (Sa4 (x) ≥ νa4 ) ∧ · · · ∧ (San (x) ≥ νan )

) ∨(
(Ha5 (x) ≥ νa5 ) ∧ (Ha6 (x) ≥ νa6 ) ∧ · · · ∧ (Hak (x) ≥ νak )

) → (d ≥ C),

(2)
(
(Ta1 (x) ≤ νa1 ) ∧ (Ta3 (x) ≤ νa3 ) ∧ · · · ∧ (Tas (x) ≤ νas )

) ∧ (
(Sa2 (x) ≤ νa2 ) ∧ (Sa4 (x) ≤ νa4 ) ∧ · · · ∧ (San (x) ≤ νan )

) ∧(
(Ha5 (x) ≤ νa5 ) ∧ (Ha6 (x) ≤ νa6 ) ∧ · · · ∧ (Hak (x) ≤ νak )

) → (d ≤ A).

• “At most”:

(3)
(
(Ta1 (x) ≥ νa1 ) ∧ (Ta3 (x) ≥ νa3 ) ∧ · · · ∧ (Tas (x) ≥ νas )

) ∧ (
(Sa2 (x) ≥ νa2 ) ∧ (Sa4 (x) ≥ νa4 ) ∧ · · · ∧ (San (x) ≥ νan )

) ∧(
(Ha5 (x) ≥ νa5 ) ∧ (Ha6 (x) ≥ νa6 ) ∧ · · · ∧ (Hak (x) ≥ νak )

) → (d ≥ C),

(4)
(
(Ta1 (x) ≤ νa1 ) ∧ (Ta3 (x) ≤ νa3 ) ∧ · · · ∧ (Tas (x) ≤ νas )

) ∨ (
(Sa2 (x) ≤ νa2 ) ∧ (Sa4 (x) ≤ νa4 ) ∧ · · · ∧ (San (x) ≤ νan )

) ∨(
(Ha5 (x) ≤ νa5 ) ∧ (Ha6 (x) ≤ νa6 ) ∧ · · · ∧ (Ha (x) ≤ νa )

) → (d ≤ A).
k k
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Example 3.4. (Continued from Example 3.3) Because we have obtained the dominance relations of attribute sets A1 =
{a1, a3}, A2 = {a2, a4} and A3 = {a5, a6}, we only present the corresponding dominance class for each attribute set in Table 6.

The strong dominance classes with respect to A1 are also calculated.

[̃x1]T ≥
A1

= {x1}; [̃x6]T ≥
A1

= {x1, x3, x4, x5, x6, x7, x8, x10};
[̃x2]T ≥

A1
= {x1, x2, x3, x4, x5, x6, x7, x8, x10}; [̃x7]T ≥

A1
= {x1, x5, x7, x10};

[̃x3]T ≥
A1

= {x1, x3, x4, x5, x7, x8, x10}; [̃x8]T ≥
A1

= {x1, x3, x4, x5, x7, x8, x10};
[̃x4]T ≥

A1
= {x1, x3, x4, x5, x7, x8, x10}; [̃x9]T ≥

A1
= {x1, x3, x4, x5, x7, x8, x9, x10};

[̃x5]T ≥
A1

= {x1, x5, x10}; ˜[x10]T ≥
A1

= {x1, x10}.
The weak dominance classes with respect to A2 are calculated.

[̃x1]S≥
A2

= {x1}; [̃x6]S≥
A2

= {x1, x3, x4, x5, x6, x7, x8, x10};
[̃x2]S≥

A2
= {x1, x2, x3, x4, x5, x6, x7, x8, x10}; [̃x7]S≥

A2
= {x1, x5, x7, x10};

[̃x3]S≥
A2

= {x1, x3, x5, x7, x8, x10}; [̃x8]S≥
A2

= {x1, x5, x7, x8, x10};
[̃x4]S≥

A2
= {x1, x3, x4, x5, x7, x8, x10}; [̃x9]S≥

A2
= {x1, x3, x4, x5, x6, x7, x8, x9, x10};

[̃x5]S≥
A2

= {x1, x5, x10}; ˜[x10]S≥
A2

= {x10}.
The hesitant dominance classes with respect to A3 are calculated.

[̃x1]H≥
A3

= {x1, x5, x10}; [̃x6]H≥
A3

= {x1, x2, x3, x4, x5, x6, x7, x8, x10};
[̃x2]H≥

A3
= {x1, x2, x3, x4, x5, x7, x8, x10}; [̃x7]H≥

A3
= {x1, x3, x4, x5, x7, x8, x10};

[̃x3]H≥
A3

= {x1, x3, x4, x5, x8, x10}; [̃x8]H≥
A3

= {x1, x3, x4, x5, x8, x10};
[̃x4]H≥

A3
= {x1, x3, x4, x5, x8, x10}; [̃x9]H≥

A3
= {x1, x2, x3, x4, x5, x7, x8, x9, x10};

[̃x5]H≥
A3

= {x1, x5, x10}; ˜[x10]H≥
A3

= {x1, x5, x10}.
Suppose that X = {x1, x3, x5, x7, x8, x10}, we can figure the lower and upper approximations of X in IFODIS sequentially.
According to the above Definition 3.5, we compute readily the lower and upper approximations:

L̃M
G S≥
A1+A2+A3

(X) = {x1, x5, x7, x8, x10};
L̃M

G S≥
A1+A2+A3

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.
Similarly, we are able to compute the approximations in the strict situation:

T̃ M
G S ≥
A1+A2+A3

(X) = {x1, x5, x10};
T̃ M

G S ≥
A1+A2+A3

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.
From approximation results, two types of decision rules can be generated, here we only introduce the deterministic 

dominance rules from the lower approximations

L̃M
G S ≥
A1+A2+A3

(X):

(
(Ta1 (x) ≥ 0.9) ∧ (Ta3 (x) ≥ 0.9)

) ∨ (
(Sa2 (x) ≥ 1.0) ∧ (Sa4 (x) ≥ 0.9)

) ∨ (
(Ha5 (x) ≥ −0.1) ∧ (Ha6 (x) ≥ −0.1)

) → (d ≥ A);

(
(Ta1 (x) ≥ 0.7) ∧ (Ta3 (x) ≥ 0.7)

) ∨ (
(Sa2 (x) ≥ 0.9) ∧ (Sa4 (x) ≥ 0.9)

) ∨ (
(Ha5 (x) ≥ −0.1) ∧ (Ha6 (x) ≥ −0.1)

) → (d ≥ A);

(
(Ta1 (x) ≥ 0.6) ∧ (Ta3 (x) ≥ 0.6)

) ∨ (
(Sa2 (x) ≥ 0.7) ∧ (Sa4 (x) ≥ 0.8)

) ∨ (
(Ha5 (x) ≥ −0.3) ∧ (Ha6 (x) ≥ −0.2)

) → (d ≥ B);

(
(Ta1 (x) ≥ 0.5) ∧ (Ta3 (x) ≥ 0.6)

) ∨ (
(Sa2 (x) ≥ 0.7) ∧ (Sa4 (x) ≥ 0.7)

) ∨ (
(Ha5 (x) ≥ −0.2) ∧ (Ha6 (x) ≥ −0.2)

) → (d ≥ B);

(
(Ta1 (x) ≥ 0.9) ∧ (Ta3 (x) ≥ 0.8)

) ∨ (
(Sa2 (x) ≥ 0.9) ∧ (Sa4 (x) ≥ 1.0)

) ∨ (
(Ha5 (x) ≥ −0.1) ∧ (Ha6 (x) ≥ −0.1)

) → (d ≥ A).

T̃ M
G S ≥
A1+A2+A3

(X):

(
(Ta1 (x) ≥ 0.9) ∧ (Ta3 (x) ≥ 0.9)

) ∧ (
(Sa2 (x) ≥ 1.0) ∧ (Sa4 (x) ≥ 0.9)

) ∧ (
(Ha5 (x) ≥ −0.1) ∧ (Ha6 (x) ≥ −0.1)

) → (d ≥ A);
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Table 7
The time complexity of SPRS and DPRS.

Steps SPRS Steps LDPRS TDPRS

Algorithm 2 Algorithms 2 and 3 Algorithms 2 and 3
1-16 O (|U |) 1-17 O (|AT | |U |) O (|AT | |U |)

Algorithm 1 Algorithm 4 Algorithm 4
1-8 O(|AT | |U |2) 1-5 O(|AT | |U |2) O(|AT | |U |2)

9-17 O(|AT | |D||U |) 6-14 O(|D| |U |) O(|D| |U |)
18-21 O(|AT | |D|) 15-17 O(|D|) O(|D|)
Total O(|AT | |U |2) + |AT | |D||U | + |AT | |D|) Total O(|AT | |U |2 + |D| |U | + |D|) O(|AT | |U |2 + |D| |U | + |D|)

(
(Ta1 (x) ≥ 0.7) ∧ (Ta3 (x) ≥ 0.7)

) ∧ (
(Sa2 (x) ≥ 0.9) ∧ (Sa4 (x) ≥ 0.9)

) ∧ (
(Ha5 (x) ≥ −0.1) ∧ (Ha6 (x) ≥ −0.1)

) → (d ≥ A);

(
(Ta1 (x) ≥ 0.9) ∧ (Ta3 (x) ≥ 0.8)

) ∧ (
(Sa2 (x) ≥ 0.9) ∧ (Sa4 (x) ≥ 1.0)

) ∧ (
(Ha5 (x) ≥ −0.1) ∧ (Ha6 (x) ≥ −0.1)

) → (d ≥ A).

Based on the deterministic dominance rules, one can see that 
〈
Ta1 (x), Ta3 (x)

〉
, 
〈
Sa2 (x), Sa4 (x)

〉
, and 

〈
Ha5 (x), Ha6 (x)

〉
repre-

sent three groups. Following the previous calculation, we can obtain that attribute sets A1, A2, and A3 focus on membership, 
non-membership, and hesitation, respectively. Under the deterministic rules of L̃M

G S ≥
A1+A2+A3

(X) and T̃ M
G S ≥
A1+A2+A3

(X), ∀x ∈ U

must satisfy(
(μa1 (x) ≥ 0.6) ∧ (μa3 (x) ≥ 0.6)

) ∧ (
(νa2 (x) ≤ 0.3) ∧ (νa4 (x) ≤ 0.2)

) ∧ (
(ωa5 (x) ≤ 0.3) ∧ (ωa6 (x) ≤ 0.2)

) → (d ≥ B);

(
(μa1 (x) ≥ 0.5) ∧ (μa3 (x) ≥ 0.6)

) ∧ (
(νa2 (x) ≤ 0.3) ∧ (νa4 (x) ≤ 0.3)

) ∧ (
(ωa5 (x) ≤ 0.2) ∧ (ωa6 (x) ≤ 0.2)

) → (d ≥ B).

Hospital x will receive a grade of at least B in this medical evaluation. When ∀x ∈ U satisfies(
(μa1 (x) ≥ 0.9) ∧ (μa3 (x) ≥ 0.9)

) ∧ (
(νa2 (x) ≤ 0.0) ∧ (νa4 (x) ≤ 0.1)

) ∧ (
(ωa5 (x) ≤ 0.1) ∧ (ωa6 (x) ≤ 0.1)

) → (d ≥ A),

(
(μa1 (x) ≥ 0.7) ∧ (μa3 (x) ≥ 0.7)

) ∧ (
(νa2 (x) ≤ 0.1) ∧ (νa4 (x) ≤ 0.1)

) ∧ (
(ωa5 (x) ≤ 0.1) ∧ (ωa6 (x) ≤ 0.1)

) → (d ≥ A),

(
(μa1 (x) ≥ 0.9) ∧ (μa3 (x) ≥ 0.8)

) ∧ (
(νa2 (x) ≤ 0.1) ∧ (νa4 (x) ≤ 0.0)

) ∧ (
(ωa5 (x) ≤ 0.1) ∧ (ωa6 (x) ≤ 0.1)

) → (d ≥ A).

Then hospital x must receive a grade of A in this medical evaluation.

3.3. Algorithms for computing the roughness and dependence degree in IFODIS

In this subsection, we present four algorithms for calculating the upper and lower approximations based on the 
adjustable-perspective dominance relation and other five dominance relations, and compare them based on the indicators 
of roughness and dependence degree.

In Algorithm 1, an IFODIS is inputted in the first step and then the second step computes all decision classes U/d =
{D1, D2, ..., Dm}. Steps 3 to 6 calculate all types of dominance classes of every xi in the IFODIS. Steps 7 and 8 initialize the 
lower and upper approximations of each dominance class. Steps 9 to 20 obtain the roughness and dependence degrees of 
all dominance classes with respect to each decision class. Finally, steps 21 to 23 return the roughness and the dependence 
degrees in the IFODIS.

In the process of computing the dominance class, the adjustable-perspective dominance relation from Algorithm 2
is required. Algorithm 2 is used to determine the characteristic of an attribute while implementing the process of the 
adjustable-perspective dominance relation. First, Steps 1 to 4 acquire three dominance classes and decision classes accord-
ing to Definition 3.1. Step 5 calculates the dominance conditional entropy under different dominance relations. Steps 6 to 
14 compute the adjustable-perspective dominance relation. Finally, Step 15 returns the adjustable-perspective dominance 
relation with respect to At .

By using Algorithm 2, we are able to determine the characteristic of an attribute. Therefore, based on Algorithm 2, all 
attributes in an IFODIS can be divided into three types of attribute sets. Algorithm 3 describes the generation of three 
attribute subsets. In Algorithm 3, Step 2 initializes the attribute subsets. Steps 3 to 14 separate three different attribute 
subsets from AT . Step 15 acquires strong, weak, and hesitant dominance relations. Finally, Step 17 returns three types of 
attribute subsets and the corresponding strong, weak, and hesitant dominance relations.

By combining these algorithms, the attributes of an IFODIS are divided into three attribute subsets with different em-
phases. Algorithm 4 implements the computation of the roughness and dependence degree based on the three attribute 
subsets. First, Steps 1 to 4 initialize the lower and upper approximations of LDPRS and TDPRS. In Steps 5 to 10, three types 
of support characteristic functions are calculated based on Definitions 3.5 and 3.6. Then, Steps 11 to 25 compute the lower 
and upper approximations of three rough set models with respect to different decision classes. Steps 26 to 29 compute the 
roughness and dependence degree of the three rough set models. Finally, Step 30 returns the roughness and dependence 
degree of the LDPRS and TDPRS in an IFODIS.
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Algorithm 1: The algorithm for computing the roughness and the dependence degree of SPRS in IFODIS.

Input : An IFODIS ̃I≥ = (U , AT ∪ d, V , f ), attribute subsets At ⊆ AT (t = 1, 2, ..., s).
Output : The roughness and the dependence degree of SPRS in IFODIS

1 begin
2 Compute U /d = {D1, D2, · · · , D N }
3 for t = 1 to s do
4 for i = 1 to |U | do

5 Compute [̂xi ]≥At
, ̃[xi ]≥At

, ̃[xi ]T ≥
At

, ̃[xi ]S≥
At

, ̃[xi ]H≥
At

, ̃[xi ]G S ≥
At

(I ∼ V I);
6 end
7 end

8 Let ̂R≥
At

(D j), ̃R≥
At

(D j), ̃RT ≥
At

(D j), ̃R S≥
At

(D j), ̃R H≥
At

(D j), ̃RG S ≥
At

(D j);
9 R̂≥

At
(D j), ̃R≥

At
(D j), ̃RT ≥

At
(D j), ̃R S≥

At
(D j), ̃R H≥

At
(D j), ̃RG S ≥

At
(D j).

10 for j = 1 to N do
11 for i = 1 to |U | do
12 if [xi ]≥At

⊆ D j(I ∼ V I) then
13 R≥

At
(D j) = R≥

At
(D j) ∪ {xi}(I ∼ V I);

14 end
15 if [xi ]≥At

∩ D j 
= ∅ then

16 R≥
At

(D j) = R≥
At

(D j) ∪ {xi}(I ∼ V I);
17 end
18 end

19 ρ≥
At

(D j) = 1 − R≥
At

(D j )

R≥
At

(D j )
(I ∼ V I);

20 γAt (D+) =
|N|∑
i=1

R≥
At

(D+
j )

|N|∑
i=1

∣∣∣D+
j

∣∣∣
(I ∼ V I);

21 end
22 return: ρ≥

At
(D j)(I ∼ V I), γAt (D+)(I ∼ V I).

23 end

Algorithm 2: The algorithm to determine the characteristic of an attribute in IFODIS.

Input : An IFODIS ̃I≥ = (U , AT ∪ d, V , f ), At ⊆ AT (t = 1, 2, ..., s). U /d = {D1, D2, · · · , D N }
Output : The adjustable-perspective dominance relation with respect to At

1 begin
2 for i = 1 to |U | do

3 Compute [̃xi ]G≥
At

(G ∈ {T , S, H}) and D+
d (xi) by Definition 3.1;

4 end

5 Compute R̃C
T ≥
d|A(U ), ̃RC

S≥
d|A(U ), ̃RC

H≥
d|A(U ) via using Definition 3.3;

6 if R̃C
T ≥
d|A(U ) = min

G∈{T ,S,H} R̃C
G≥
d|A(U ) then

7 R̃G S ≥
At

= R̃ T ≥
At

8 end

9 if R̃C
S≥
d|A(U ) = min

G∈{T ,S,H} R̃C
G≥
d|A(U ) then

10 R̃G S ≥
At

= R̃ S≥
At

11 end

12 if R̃C
H≥
d|A(U ) = min

G∈{T ,S,H} R̃C
G≥
d|A(U ) then

13 R̃G S ≥
At

= R̃ H≥
At

14 end

15 return: ̃RG S ≥
At

.

16 end

Based on the time complexities of Algorithms 1 and 4 in Table 7, we know that the time complexities of the LDPRS 
and TDPRS are similar. In the computation of the DPRS based on Algorithms 2 and 3, because Algorithm 3 obtains the 
dominance relation attribute subsets, the approximations of the DPRS ignore the traversal of attributes, meaning the total 
time complexity of the DPRS is less than that of the SPRS.

4. Experimental studies

In this section, a series of experiments are presented to verify the effectiveness and applicability of the proposed models 
based on the ordinal classification accuracy, roughness, and dependence degree of the algorithms described above. The 
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Algorithm 3: The algorithm to determine the characteristic of all attributes in IFODIS.

Input : An IFODIS ̃I≥ = (U , AT ∪ d, V , f ), at ∈ AT (t = 1, ..., s);
Output : Attribute sets A1, A2, A3; and dominance relations ̃RT ≥

A1
, ̃R S≥

A2
, ̃R H≥

A3
.

1 begin
2 Initialize A1 ← ∅, A2 ← ∅, A3 ← ∅.

3 for t = 1 to s do
4 Return to Algorithm 2 and calculate ̃RG S ≥

at ;
5 if R̃ T ≥

at = R̃G S ≥
at then

6 A1 ← A1 ∪ {at };
7 end

8 if R̃ S≥
at = R̃G S ≥

at then
9 A2 ← A2 ∪ {at };

10 end

11 if R̃ H≥
at = R̃G S ≥

at then
12 A3 ← A3 ∪ {at };
13 end
14 end

15 R̃ T ≥
A1

=R̃G S ≥
A1

, ̃R S≥
A2

=R̃G S ≥
A2

, ̃R H≥
A3

=R̃G S ≥
A3

.

16 end

17 return: A1, A2, A3; ̃RT ≥
A1

, ̃R S≥
A2

, ̃R H≥
A3

.

Algorithm 4: The algorithm for computing the roughness and the dependence degree of LDPRS, TDPRS in IFODIS.

Input : An IFODIS ̃I≥ = (U , AT ∪ d, V , f ); A1, A2, A3 ⊆ AT , the quotient set U /d = {D1, D2, · · · , D N }.
Output : Strong, weak and hesitant dominance relations with respect to A1, A2, A3.

1 begin

2 L̃M
G S ≥
A1+A2+A3

(D j) ← ∅, ̃LM
G S ≥
A1+A2+A3

(D j) ← ∅; ̃T M
G S ≥
A1+A2+A3

(D j) ← ∅, ̃T M
G S ≥
A1+A2+A3

(D j) ← ∅;
3 for i = 1 to |U | do

4 Compute [̃xi ]T ≥
A1

, ̃[xi ]S≥
A2

, ̃[xi ]H≥
A1

according to Algorithm 3;
5 end
6 for j = 1 to N do
7 for i = 1 to |U | do

8 if
(
[̃xi ]T ≥

A1
⊆ D j

)
∨

(
[̃xi ]S≥

A2
⊆ D j

)
∨

(
[̃xi ]H≥

A3
⊆ D j

)
then

9 L̃M
G S ≥
A1+A2+A3

(D j) = L̃M
G S ≥
A1+A2+A3

(D j) ∪ {xi}; ̃LM
G S ≥
A1+A2+A3

(D j) =∼ L̃M
G S ≥
A1+A2+A3

(∼ D j);
10 end

11 if
(
[̃xi ]T ≥

A1
⊆ D j

)
∧

(
[̃xi ]S≥

A2
⊆ D j

)
∧

(
[̃xi ]H≥

A3
⊆ D j

)
then

12 T̃ M
G S ≥
A1+A2+A3

(D j) = T̃ M
G S ≥
A1+A2+A3

(D j) ∪ {xi}; ̃T M
G S ≥
A1+A2+A3

(D j) =∼ T̃ M
G S ≥
A1+A2+A3

(∼ D j);
13 end
14 end

15 ρ≥
LM (D j) = 1 −

L̃M
G S ≥
A1+A2+A3

(D j )

L̃M
G S ≥
A1+A2+A3

(D j )

; ρ≥
T M (D j) = 1 −

T̃ M
G S ≥
A1+A2+A3

(D j )

T̃ M
G S ≥
A1+A2+A3

(D j )

;

16 γLM (D+) =
∣∣∣∣L̃M

G S ≥
A1+A2+A3

(D j )

∣∣∣∣
|U | ; γT M (D+) =

∣∣∣∣T̃ M
G S ≥
A1+A2+A3

(D j )

∣∣∣∣
|U | ;

17 end
18 return: ρ≥

LM (D j), ρ≥
T M (D j); γLM (D+), γT M (D+).

19 end

superiority of the SPRS and DPRS will be illustrated based on the eight UCI datasets listed in Table 8. The experiments were 
executed on a personal computer with the Windows 10 (64-bit) OS, an Intel Core i7 2.5 GHz CPU, and 8.0 GB of RAM. All 
algorithms were implemented in Python 3.8.

It is important to remember that the foundation of this research is IFODIS. An intuitionistic fuzzy value is composed 
of a membership degree, non-membership degree, and hesitation degree. Therefore, it is imperative for us to construct 
intuitionistic fuzzy datasets from the UCI datasets. To ensure feasibility and rationality, we normalized the values in the 
datasets to construct intuitionistic fuzzy values. In our experiments, the values of the decision attributes in the datasets 
remained unchanged.

For each dataset used in our experiments, we set the decision classes as the target set. To evaluate the effectiveness of the 
SPRS, we compared it to a rough set model based on the dominance relation proposed by Xu et al. [24] in Definition 2.1 and 
the rough set model proposed by Xu et al. [25] in Definition 2.3. Additionally, the rough set model of the strong dominance 
relation, rough set model of the weak dominance relation, and rough set model of the hesitant dominance relation proposed 
in this paper were also included in our comparisons.
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Table 8
The testing data sets.

Data sets Data source Objects Attributes Decision class

Sobar-72 UCI 72 19 2
Wine UCI 178 13 3
Glass UCI 214 9 6
Wholesale customers UCI 440 7 3
Indian Liver Patient Dataset (ILPD) UCI 583 9 2
Banknote authentication UCI 1372 4 2
Wireless UCI 2000 7 4
Customer Churn UCI 3334 10 2

Fig. 6. Columnar charts of the ordinal classification consistency under dominance relations. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Table 9
The roughness and dependence of rough sets under six dominance relations.

Dataset SDRS WDRS HDRS DRS GDRS SPRS

ρ(D1) γ (D+) ρ(D1) γ (D+) ρ(D1) γ (D+) ρ(D1) γ (D+) ρ(D1) γ (D+) ρ(D1) γ (D+)

Sobar-72 0.2817 0.7849 0.2500 0.8172 0.1905 0.8710 0.2500 0.8172 0.2817 0.7849 0.1905 0.8710
Wine 0.2133 0.9507 0.1194 0.9739 0.0492 0.9884 0.0635 0.9880 0.1449 0.9681 0.0492 0.9884
Glass 0.0140 0.9963 0.0714 0.9926 0.2588 0.9338 0.1267 0.9963 0.0704 0.9982 0.0140 0.9963
Wholesale customers 0.8624 0.5273 0.6723 0.7087 0.4167 0.8159 0.4158 0.8552 0.7791 0.6336 0.4167 0.8159
Indian Liver Patient Dataset 0.4125 0.8307 0.2410 0.9247 0.1579 0.9467 0.1974 0.9333 0.2822 0.8933 0.1579 0.9467
Banknote authentication 0.3976 0.7462 0.6790 0.7038 0.8673 0.6958 0.6139 0.6932 0.4248 0.7265 0.3976 0.7462
Wireless 0.2714 0.9692 0.4917 0.9034 0.8807 0.7178 0.8645 0.7230 0.6183 0.8726 0.4917 0.9034
Customer Churn 0.6896 0.9347 0.4183 0.9350 0.3135 0.9311 0.5924 0.9174 0.4775 0.9494 0.3135 0.9311

4.1. Ordinal classification consistency of the SPRS

Conditional entropy can measure the consistency of ordinal classification under a certain attribute. Compared to condi-
tional entropy, the core f A(x) of R̃C

G≥
d|A varies more significantly and can be represented as
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Fig. 7. Columnar charts of roughness and dependence for rough set models under six dominance relations.

Table 10
The roughness and dependence of LDPRS, SPRS and TDPRS.

Dataset The roughness The dependence

LDPRS SPRS TDPRS LDPRS SPRS TDPRS

Sobar-72 0.2917 0.6742 1.0000 0.8056 0.7639 0.0000
Wine 0.6685 0.7043 1.0000 0.8460 0.7134 0.0000
Glass 0.6889 0.7501 1.0000 0.6557 0.3222 0.0000
Wholesale customers 0.3417 0.5247 1.0000 0.8755 0.7528 0.0000
Indian Liver Patient Dataset 0.6690 0.7892 1.0000 0.6964 0.3481 0.0000
Banknote authentication 0.4446 0.5365 1.0000 0.8667 0.6334 0.0000
Wireless 0.4531 0.6820 1.0000 0.7678 0.6026 0.0000
Customer Churn 0.3665 0.5860 1.0000 0.7513 0.6859 0.0000

f A(x) =
m∑

j=1

∣∣∣[̃x j]G≥
A ∩ D+

d (x j)

∣∣∣∣∣D+
d (x j)

∣∣ ,

where the greater the value of f A(x), the greater the significance of the dominance relation. Therefore, we use the value 
of f A(x) to evaluate the ordinal classification consistency of different dominance relations under each attribute. In our 
reported results, SDR, WDR, and HDR represent the strong dominance, weak dominance, and hesitant dominance relations, 
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Fig. 8. Columnar charts of roughness and dependence for rough set models of LDPRS, SPRS and TDPRS.

respectively. DR indicates the dominance relation in Definition 2.1 and GDR refers to the general dominance relation in 
Definition 2.3. Additionally, APDR represents the adjustable-perspective dominance relation proposed in this paper. For 
simplicity, we randomly selected six datasets and the first six attributes A = {a1, a2, a3, a4, a5, a6} in each dataset as the 
testing sets. The experimental results are presented in Fig. 6. In Fig. 6, the x axis represents the six selected attributes from 
each dataset and the y axis represents the values of f A(x) under the six corresponding dominance relations. Additionally, 
the z axis represents the ordinal classification consistency of the six dominance relations under different attributes. One can 
see that the ordinal classification consistency of APDR is significantly higher than that of DR and GDR, and that it maintains 
a relatively high ordinal classification consistency when compared to SDR, WDR, and HDR. These results demonstrate that 
APDR is more reliable and effective for ranking datasets from different perspectives.

4.2. Roughness the dependence degree of the SPRS and DPRS

The first experiment presented in this subsection compared the roughness and dependence of the SPRS model proposed 
in this paper to those of other dominance rough set models. For the rough set models based on the other five dominance 
relations, we abbreviate the rough set models based on the strong dominance relation, weak dominance relation, and 
hesitant dominance relation as SDRS, WDRS, and HDRS respectively. Additionally, DRS and GDRS respectively represent 
rough set models based on Definitions 2.1 and 2.3. It is crucial to consider the selection of target concepts and attributes 
in the process of conceptual approximation. To facilitate fair comparison, we uniformly consider the first decision class D1
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as the target set. To ensure the reliability of our experiment results, we selected all attributes AT from each dataset during 
conceptual approximation. The experimental results of Algorithm 1 and Algorithm 2 are presented in Table 9.

In Table 9, among the six dominance rough set models, SPRS maintains a relatively low roughness and high dependency. 
However, on some datasets, the performance of the SPRS model is slightly inferior to those of some other dominance rough 
set models. To make comparisons between the SPRS method and other rough set methods more clear and intuitive, we 
plotted some three-dimensional columnar graphs of the data in Table 9. The results are presented in Fig. 7. One can see 
that the SPRS is very feasible and effective for conceptual approximation tasks and that it closely matches the requirements 
of real-world applications and human logical thinking.

Our final experiment compared the roughness and dependence of LDPRS, SPRS, and TDPRS. According to Algorithm 3, we 
know that the adjustable-perspective dominance relation divides an attribute set into three attribute subsets with different 
emphases. Consistent with the first experiment, we selected the first decision class as the target concept. The experimental 
results are presented in Table 10.

According to the calculation results presented in Table 10, the roughness of LDPRS is the smallest, the roughness of 
TDPRS is the largest, and the roughness of SPRS is between those of LDPRS and TDPRS, which can be proved based on 
Propositions 3.3 and 3.5. These results conform to the principles of the three models. Similarly, the dependence of LDPRS is 
the largest, the dependence of TDPRS is the smallest, and the dependence of SPRS is between those of LDPRS and TDPRS. 
Based on these results, a three-dimensional histogram is presented in Fig. 8.

5. Conclusion

Because classic intuitionistic fuzzy dominance relations do not consider the partial order relations between objects 
from multiple perspectives, we defined novel dominance relations from three perspectives based on the triangular norms 
and explored the adjustable-perspective dominance relation according to uncertainty metrics. The adjustable-perspective 
dominance relation not only reflects the order relations between objects from different perspectives, but also reduces the 
inconsistency of order classification under different features and decisions. Furthermore, we constructed the SPRS and ap-
plied it to several realistic problems. Considering the complexity of practical problems in the real world, we extended the 
SPRS model to the LDPRS and TDPRS models, and discussed relevant properties and rule extraction. Finally, to verify the 
effectiveness of the proposed model, we implemented a series of experiments based on eight datasets. The experimental 
results demonstrated that the proposed model is feasible and effective.

In this paper, only the SPRS and DPRS models were proposed. We verified that the roughness and dependence of these 
models are significantly improved. However, because the features in information systems are typically multidimensional, 
how to perform attribute reduction based on three different dominance relations is a point worthy of further study. Addi-
tionally, we also want to combine the proposed model with an incremental mechanism to enhance the speed of attribute 
reduction.
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