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In the real world, each attribute of data sets has multiple scales, whether it is a conditional 
attribute or a decision attribute. Knowledge mined from data based on the optimal scale 
can well meet the needs of real life. Hence, there is no denying that optimal scale selection 
is an problem to be solved urgently in the knowledge discovery field of multi-scale decision 
tables. The optimal scale combines coarser condition attributes with the finer decision 
attribute, so as to achieve a balance between efficiency and accuracy. With the aim of 
selecting the optimal scale combination, we firstly explore some related properties and 
theorems of generalized multi-scale decision tables. Then we define the optimal scale 
in generalized multi-scale decision tables and propose two algorithms for optimal scale 
selection. In addition, a knowledge acquisition algorithm and a multi-scale rough set 
classifier framework are proposed. Finally, numerical experiments are performed on some 
open data sets to test the effectiveness of the algorithms.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Granular computing is a novel approach that simulates the human mind to solve some complex problems. Its basic 
idea comes from fuzzy information granulation proposed by Zadeh [42,43], and it was Lin [15] who explicitly proposed the 
expression “granular computing.” Lin [16] and Yao [39,40] were the first to discuss in detail the basic problems, research 
methods, and potential applications of granular computing. Although granular computing is a new research field, its basic 
ideas and methods are embodied in many disciplines. For example, Pawlak [18] came up with rough set theory in 1982, 
Wille [28] proposed formal concept analysis in 1982, and Zhang et al. proposed quotient space theory in 1990. These 
theories have played a positive role in promoting the continuous progress of granular computing. In addition, the application 
potential of granular computing has also received attention from scholars, and some challenging scientific problems have 
evolved in big data processing.

Many granular computing models and methods have been proposed in specific application background, such as fuzzy set 
theory [4,33], three-way decisions [5,6,8], and concept-cognitive learning [13,34,35]. A rough set, use of which is a very ef-
fective method to handle complex information systems, has a significant role in the progress of granular computing research. 
Pawlak’s classical rough set model describes knowledge particles with equivalence classes given by equivalence relations, 
and deduces decision or classification rules by feature selection while the positive region remains unchanged. Rough set the-
ory is widely used in the field of intelligent information processing, involving an expert system, image processing, pattern 
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Fig. 1. Motivation for our work.

recognition, decision analysis, and so on. In the field of data mining, which includes many technologies, the application of 
rough set theory mainly centers on the following aspects: feature selection [14,38], knowledge discovery [7,32], incremental 
algorithms [36,37,41], and information fusion [44]. Another hot research topic of granular computing is multi-granularity 
computing, which mainly considers how to divide the domain (research object) multiple times through multiple relations, 
so that problems (such as rule extraction and optimal granularity selection) can be solved from multiple granularity levels. 
In rough set theory, much research has been done on multi-granularity problems. According to different starting points, 
it can be approximately divided into two classifications: multi-granulation rough sets [19–23] and multi-scale rough sets 
[25–27,29].

Since Wu and Leung [31] came up with multi-scale rough sets, scholars have conducted much research, which mainly 
focuses on the optimal scale selection and rule extraction. Wu and Leung [30] considered optimal granularity selection and 
rule extraction in coordinated, uncoordinated, and incomplete multi-granularity labeling decision systems, and compared 
the similarities and differences among the results of optimal scale selection. Gu and Wu [7] discussed local scale selection 
and rule extraction of multi-scale decision systems. In the multi-scale decision system, She et al. [24] further considered 
the problem of local rule extraction and performed simulation experiments to demonstrate the effectiveness of the lo-
cal strategy. In addition, considering that the multi-scale decision system proposed by Wu and Leung requires the same 
number of scales for each conditional attribute, it is too harsh, so Li and Hu [11] relaxed the restriction of a multi-scale 
conditional attribute (i.e., the number of scales for each conditional attribute can be different in pairs). On this basis, Huang 
et al. [9] further relaxed the restriction of decision attributes and proposed a generalized multi-scale information system 
with multi-scale decision attributes. The scales of each attribute can be randomly combined to produce a single-scale de-
cision system in the generalized multi-scale information system. In optimal scale selection, the best single-scale decision 
system is selected from multiple single-scale decision systems to get the best result for the problem under consideration. 
Scale combinations increase explosively as the conditional attributes and the number of scales per conditional attribute 
increase, making calculation very time-consuming. For increased calculation efficiency, Li et al. [12] offered a new optimal 
scale selection algorithm based on the importance of multi-scale attributes and the method of stepwise regression; that is, 
heuristic thinking was adopted to solve the optimal scale combination. Considering that multi-scale decision systems are 
often in a dynamic update environment, Hao et al. [10] came up with an optimal scale updating method for multi-scale 
decision systems when objects are updated, which solved the partial and molecular problem of optimal scale selection for 
dynamic multi-scale decision systems. In addition, multi-scale rough sets have also been studied in conjunction with some 
other theories, such as entropy [1], three-way decision theory [17], and evidence theory [45]. However, the optimal scale 
selection of inconsistent generalized multi-scale information tables with multi-scale decision attributes is not considered 
in the present study. Meanwhile, the optimal scale selection algorithm for consistent generalized multi-scale information 
tables with multi-scale decision attributes is also not efficient. Therefore, it is necessary to design efficient optimal scale 
selection algorithms for generalized multi-scale information tables. More importantly, rules are extracted from the decision 
table on the basis of optimal scales and are applied to the frame of the multi-scale rough set classifier. As Fig. 1 shows, we 
have performed an intensive study in this field.

This article has three major contributions. Firstly, some related properties and theorems of generalized multi-scale in-
formation tables with multi-scale decision attributes are presented. Secondly, the definition and properties of optimal scale 
are given, and two optimal scale selection algorithms for generalized multi-scale decision tables (GMSDTs) are proposed. 
2
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Thirdly, a knowledge acquisition algorithm that is able to obtain decision rules effectively and a multi-scale rough set clas-
sifier framework are proposed.

The rest of this article is organized as follows: We succinctly review the concepts of rough sets and multi-scale infor-
mation tables in Section 2. We introduce generalized multi-scale information tables with multi-scale decision attributes and 
discuss some related properties and theorems in Section 3. In Section 4 we define the optimal scale of the GMSDTs and 
give two algorithms for optimal scale selection. On this basis, a knowledge acquisition algorithm and a multi-scale rough 
set classifier framework are proposed in Section 5. In Section 6, some related experimental tests, results, and conclusions 
are provided.

2. Preliminaries

We succinctly review several basic concepts related to rough sets and multi-scale information tables in this section. 
Furthermore, some related properties and theorems of generalized multi-scale information decision tables with multi-scale 
decision attributes are explored for the purpose of better describing the research in this article.

Let U be a nonempty finite set referred to as the universe of discourse, and let R be an equivalence relationship on U . 
Then, for any X ⊆ U , the lower and upper approximations of X are defined as

R (X) =
⋃{

[X]R | [X]R ⊆ X
}
,

R (X) =
⋃{

[X]R | [X]R ∩ X �= ∅

}
,

where [x]R = {y ∈ U | (x, y) ∈ R} is an equivalence class containing x.
A multi-scale information table is a tuple S = (U , AT ), where U = (x1, x2, . . . , xn) is a universe of discourse and AT =

(a1,a2, . . . ,an) is a nonempty and finite set of attributes, where each attribute has I scales. Then a multi-scale information 
table can be represented as 

(
U ,

{
ak

j | k = 1,2, . . . , I; j = 1,2, . . . ,m
})

.

Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I; j = 1,2, . . . ,m

}
∪ {d}

)
be a multi-scale decision table (MSDT). Attribute 

a j is restricted on its l j th scale ( j = 1, 2, . . . , m). The index set (l1, l2, . . . , lm) is called a scale combination of condition 
attributes, and the family of all scale combinations is denoted as L = {

(l1, l2, . . . , lm) | l j ∈ {1,2, . . . , I} , j = 1, . . . ,m}.
Assume that L is the family of all scale combinations of condition attributes, L1 = {

l11, l12, . . . , l1m
}

, L2 = {
l21, l22, . . . , l2m

}
∈ L . If l1j � l2j , then L2 is said to be coarser than L1, and this is denoted as L1 � L2. Moreover, if L1 � L2 and there exists 
k ∈ {1,2, . . . ,m} such that l1k < l2k , then L2 is said to be strictly coarser than L1, and this is denoted as L1 ≺ L2.

A GMSDT is a triple S = (U , AT ∪ D), where (U , AT ) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

})
is a multi-scale infor-

mation table, D = {d} is a nonempty and finite set of decision attributes, and d has n scales 
{

dt | t = 1,2, . . . ,n
}

. Then a 
GMSDT can be represented as a table S = (U , AT ∪ D) =

(
U ,

{
ak

j | k = 1,2, . . . , I j; j = 1,2, . . . ,m
}

∪ {
dt | t = 1,2, . . . ,n

})
.

Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}⋃{
dt | t = 1,2, . . . ,n

})
be a GMSDT, where ak

j : U → V k
j , 

where V k
j is the domain of the kth scale of attribute a j . For j = 1, 2, . . . , m, 1 � k � k − 1, there exists a surjective map-

ping gk,k+1
j : V k

j → V k+1
j such that ak+1

j : gk,k+1
j ◦ ak

j , i.e., ak+1
j (x) = gk,k+1

j

(
ak

j (x)
)

, x ∈ U , where gk,k+1
j is called a granular 

transformation mapping of condition attribute dt : U → V t
d , where V t

d is the domain of the tth scale of decision attribute d. 
For t = 1, 2, . . . , n, there exists a surjective mapping ht,t+1 : V t

d → V t+1
d such that dt+1 = ht,t+1 ◦ dt , i.e., dt+1 = ht,t+1

(
dt (x)

)
, 

x ∈ U , where ht,t+1 is called a scale transformation mapping of decision attributes.

Example 1. As shown in Table 1, this is an instance of GMSDTs, where U = {x1, x2, . . . , x5} represents five students. a1
represents the scores of courses, and has two scales. Different scales indicate the scores recorded in different scoring 
systems. a2 represents the evaluation of moral level, and has two scales. d has three scales, and represents the compre-
hensive evaluation of a student. In Table 1, V 1

1 = {95,90,85,80,75,70}, V 2
1 = {A, B, C}, g1,2

1 (95,90) = A, g1,2
1 (85,80) = B , 

and g1,2
1 (75,70) = C ; V 1

2 = {L, M, N}, V 2
2 = {P , Q }, g1,2

2 (L) = Q , and g1,2
2 (M, N) = P ; V 1

d = {1,2,3,4,5}, V 2
d = {G, X, W }, 

V 3
d = {1,0}, h1,2 (1,2) = G , h1,2 (3,4) = X , h1,2 (5) = W , h2,3 (G, X) = 1, and h2,3 (W ) = 0.

Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT. Q = (K , t) =
({k1,k2, . . . ,km} , t) is called a scale selection of S if the condition attribute a j is restricted on its k j th scale (1 ≤ j ≤ m)

and the decision attribute d is restricted on the tth scale (1 ≤ t ≤ n). Each scale selection Q = (K , t) = ({k1,k2, . . . ,km} , t)

forms a single-scale decision table S Q = (
U , AT K ∪ dt

)
, where AT K =

{
ak1

1 ,ak2
2 , . . . ,akm

m

}
.

Property 1. Assuming S = (U , AT ) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

})
is a generalized multi-scale information ta-

ble and L1 = {
l1, l1, . . . , l1m

}
, L2 = {

l2, l2, . . . , l2m
} ∈ L, the following properties are true for any X ⊆ U :
1 2 1 2

3
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Table 1
Scale transformation process.

U/C a1 a2 d

a1
1

g12
1→ a2

1 a1
2

g12
2→ a2

2 d1 h12→ d2 h23→ d3

x1 95 A L Q 1 G 1
x2 90 A M P 1 G 1
x3 85 B N P 2 G 1
x4 80 B L Q 3 X 1
x5 75 C M P 4 X 1
x6 70 C N P 5 W 0

(1) L1 � L2 ⇒ R AT L1 ⊆ R AT L2 .
(2) L1 � L2 ⇒ U/R AT L1 ⊆ U/R AT L2 .
(3) L1 � L2 ⇒ R AT L1 (X) ⊇ R AT L2 (X).
(4) L1 � L2 ⇒ R AT L1 (X) ⊆ R AT L2 (X).
(5) L1 � L2 ⇒ BN D 

(
R AT L1 , X

) ⊆ BN D 
(

R AT L2 , X
)
.

(6) If L0 = (1,1, . . . ,1) and L′ = (I1, I2, . . . , In), for any L ∈ L we have BN D 
(

R AT L0 , X
) ⊆ BN D 

(
R AT L , X

) ⊆
BN D 

(
R AT L′ , X

)
.

In Property 1, properties (1) and (2) reveal that the finer the scale is, the more precise the divided universes are, thus 
increasing the equivalence relation and equivalence class. Properties (3) and (4) make clear that the finer the scale is, the 
closer the lower approximation and upper approximation of X are to X . Property (5) shows that boundary regions of X
increase while the scale becomes coarser. As can be seen from property (6), BN D 

(
R AT L , X

)
can achieve its minimum value 

and its maximum value in the case of L = (1,1, . . . ,1) and L = (I1, I2, . . . , In).
Let D = {d} be a decision attribute set. Then the positive and boundary regions of D = {d} relative to R AT L are defined 

as

P O S
(

R AT L , D
) =

⋃
Di∈U/R D

R AT L (Di) ,

BN D
(

R AT L , D
) =

⋃
Di∈U/R D

(
R AT L (Di) − R AT L (Di)

)
.

Property 2. Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT and L1, L2 ∈
L . Then we have the following properties:

(1) L1 � L2 ⇒ BN D 
(

R AT L1 , Dt
) ⊆ BN D 

(
R AT L2 , Dt

)
, t = 1, 2, . . . , n.

(2) t1 < t2 ⇒ BN D 
(

R AT L , Dt1

) ⊇ BN D 
(

R AT L , Dt2

)
.

(3) If L0 = (1,1, . . . ,1), then BN D 
(

R AT L0 , Dn
) ⊆ BN D 

(
R AT L , Dt

)
, L ∈ L , t = 1, 2, . . . , n.

(4) If L′ = (I1, I2, . . . , In), then BN D 
(

R AT L′ , D1
) ⊇ BN D 

(
R AT L , Dt

)
, L ∈ L , t = 1, 2, . . . , n.

In Property 2, property (1) reveals that the finer the condition attributes are, the smaller the corresponding boundary 
regions are. Property (2) makes clear that the finer the decision attributes are, the larger the corresponding regions are. 
Moreover, property (3) indicates that the corresponding boundary regions achieve their maximum value when the condition 
attributes are finest and the decision attributes are coarsest. Property (4) shows that the corresponding boundary regions 
achieve their maximum value when the condition attributes are coarsest and the decision attributes are finest.

3. Optimal scale selection for GMSDTs

People tend to draw strong conclusions from weak conditions for many mathematical models. If conditions are too weak 
and conclusions are too strong, conclusions may not be reliable. It is important to strike a balance between efficiency and 
precision in terms of conditions and conclusions, and this problem is actually the optimal scale selection in the GMSDT. We 
first define the optimal scale of the GMSDT and discuss its related properties in this section. Two optimal scale selection 
algorithms are then provided. One can quickly find an optimal scale, and the other can find all the optimal scales.

Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT, and let L0 =
(1,1, . . . ,1) be the finest scale of the condition attribute. If BN D 

(
AT L0 , Dn

) = ∅, i.e., S is consistent relative to the de-
cision attribute dn with the coarsest scale, then S is considered to be consistent; otherwise, S is inconsistent.
4
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Definition 1. Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a consistent GMSDT, 
L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. If the following conditions are satisfied, then Q = (L, t) = ({l1, l2, . . . , lm} , t) is called 
the global optimal scale of S , and AT L ⋃{

dt
} =

(
al1

1 ,al2
2 , . . . ,alm

m ,dt
)

is the global optimal attribute set of S:

(1) BN D 
(

AT L, Dt
) = ∅.

(2) For any H = (h1,h2, . . . ,hm) ∈ L , and t′ ∈ {1,2, . . . ,n}, if L � H and t′ ≤ t (the equal sign can only have one at most), 
we have BN D 

(
AT H , Dt′

) �=∅.

Definition 2. Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be an inconsistent 
GMSDT, L0 = (1,1, . . . ,1), L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. If the following conditions are satisfied, then Q = (L, t) =
({l1, l2, . . . , lm} , t) is called the global optimal scale of S , and AT L ⋃{

dt
} =

(
al1

1 ,al2
2 , . . . ,alm

m ,dt
)

is the global optimal at-

tribute set of S:
(1) BN D 

(
AT L, Dt

) = BN D 
(

AT L0 , Dn
)
.

(2) For any H = (h1,h2, . . . ,hm) ∈ L , and t′ ∈ {1,2, . . . ,n}, if L � H and t′ ≤ t (the equal sign can only have one at most), 
we have BN D 

(
AT L0 , Dn

) ⊂ BN D 
(

AT H , Dt′
)
.

By Definitions 1 and 2, it can be seen that the so-called global optimal scale selection is to find scale combina-
tions in which 

∑m
j=1 l j − t of the scale Q = (L, t) = ({l1, l2, . . . , lm} , t) is as large as possible under the condition that 

BN D 
(

AT L, Dt
) = BN D 

(
AT L0 , Dn

)
.

Definition 3. Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT, L0 =
(1,1, . . . ,1), L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. If the following conditions are satisfied, then Q = (L, t) = ({l1, l2, . . . ,

lm} , t) is called the local optimal scale of S relative to the decision attribute dt , and AT L ⋃{
dt

} =
(

al1
1 ,al2

2 , . . . ,alm
m ,dt

)
is 

the local optimal attribute set of S:
(1) BN D 

(
AT L, Dt

) = BN D 
(

AT L0 , Dt
)
.

(2) For any H = (h1,h2, . . . ,hm) ∈ L , if L ≺ H , we have BN D 
(

AT L0 , Dt
) ⊂ BN D 

(
AT H , Dt

)
.

In real life, sometimes we care only about the information hidden in the MSDT under a certain scale of decision at-
tributes. Therefore, the definition of local optimal scale is given. Obviously, when a GMSDT degenerates to an MSDT, the 
local optimal scale is the global optimal scale.

Theorem 1. Let S = (U , AT ∪ {d}) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT, L0 = (1, 1,

. . . ,1), L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. If BN D 
(

AT L, Dt
) = BN D 

(
AT L0 , Dn

)
, then for any H = (h1,h2, . . . ,hm) ∈ L , and 

t′ ∈ {1,2, . . . ,n}, if H � L and t′ ≥ t (the equal sign can only have one at most), Q = (
H, t′) = ({h1,h2, . . . ,hm} , t′) is not the global 

optimal scale of S and C H ⋃{
dt′

}
=

(
al1

1 ,al2
2 , . . . ,alm

m ,dt′
)

is not the global optimal attribute set of S.

Proof. Assume that Q = (
H, t′) = ({h1,h2, . . . ,hm} , t′) is the global optimal scale of S .

However, there exists H � L and t′ ≥ t (the equal sign can only have one at most) such that BN D 
(

AT L, Dt
) =

BN D 
(

AT K0 , Dn
)
, which clearly contradicts the assumption that Q = (

H, t′) = ({h1,h2, . . . ,hm} , t′) is the global opti-

mal scale of S . Therefore, Q = (
H, t′) = ({h1,h2, . . . ,hm} , t′) is not the global optimal scale of S and AT H ⋃{

dt′
}

=(
al1

1 ,al2
2 , . . . ,alm

m ,dt′
)

is not the global optimal attribute set of S .

Theorem 2. Let S = (U , AT ∪ {d}) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT, L0 = (1, 1,

. . . , 1), L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. If BN D 
(

AT L0 , Dn
) ⊂ BN D 

(
AT L, Dt

)
, then for any H = (h1,h2, . . . ,hm) ∈ L , and 

t′ ∈ {1,2, . . . ,n}, if L � H and t ≥ t′ (the equal sign can only have one at most), Q = (
H, t′) = ({h1,h2, . . . ,hm} , t′) is not the global 

optimal scale of S and AT H ⋃{
dt

} =
(

al1
1 ,al2

2 , . . . ,alm
m ,dt′

)
is not the global optimal attribute set of S.

Proof. Assume that Q = (
H, t′) = ({h1,h2, . . . ,hm} , t′) is the global optimal scale of S .

We obtain BN D 
(

AT H , Dt′
) = BN D 

(
AT L0 , Dn

)
by the definition of the global optimal scale. Because BN D 

(
AT L0 , Dn

) ⊂
BN D 

(
AT L, Dt

)
and L � H and t ≥ t′ (the equal sign can only have one at most), we know that BN D 

(
AT L0 , Dn

) ⊂
BN D 

(
AT L, Dt

) ⊆ BN D 
(

AT H , Dt′
)

by Property 2. BN D 
(

AT H , Dt′
) = BN D 

(
AT L0 , Dn

)
obviously contradicts BN D 

(
AT L0 ,
5
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Fig. 2. The lattice structure of scale combination in Example 2.

Dn) ⊂ BN D 
(

AT H , Dt′
)
. Therefore, Q = (

H, t′) = ({h1,h2, . . . ,hm} , t′) is not the global optimal scale of S and AT H ⋃{
dt′

}
=(

al1
1 ,al2

2 , . . . ,alm
m ,dt′

)
is not the global optimal attribute set of S .

Theorem 3. Let S = (U , AT ∪ {d}) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT, L0 =
(1,1, . . . ,1), L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. If Q = (H, t) = ({h1,h2, . . . ,hm} , t) is not the local optimal scale of S and 
AT H ⋃{

dt
} =

(
al1

1 ,al2
2 , . . . ,alm

m ,dt
)

is not the local optimal attribute set of S, then Q = (H, t) = ({h1,h2, . . . ,hm} , t) is not the 

global optimal scale of S and AT H ⋃{
dt

} =
(

al1
1 ,al2

2 , . . . ,alm
m ,dt

)
is not the global optimal attribute set of S.

Proof. Assume that Q = (H, t) = ({h1,h2, . . . ,hm} , t) is the global optimal scale of S .
By the definition of the global optimal scale, we know that:
(1) BN D 

(
AT H , Dt

) = BN D 
(

AT L0 , Dn
)
.

(2) For any K = (k1,k2, . . . ,km) ∈ L , and t′ ∈ {1,2, . . . ,n}, if H � K and t′ ≤ t (the equal sign can only have one at most), 
we have BN D 

(
AT L0 , Dn

) ⊂ BN D 
(

AT K , Dt′
)
.

Because BN D 
(

AT L0 , Dn
) ⊆ BN D 

(
AT L0 , Dt

) ⊆ BN D 
(

AT H , Dt
)

by Property 2, we know that BN D 
(

AT L0 , Dn
) =

BN D 
(

AT L0 , Dt
) = BN D 

(
AT H , Dt

)
.

Let t′ = t . For any K = (k1,k2, . . . ,km) ∈ L , if H ≺ K , we have BN D 
(

AT L0 , Dn
) = BN D 

(
AT L0 , Dt

) = BN D 
(

AT H , Dt
) ⊂

BN D 
(

AT K , Dt
)
. This clearly contradicts the fact that Q = (H, t) = ({h1,h2, . . . ,hm} , t) is not the local optimal scale of S and 

AT H ⋃{
dt

} =
(

al1
1 ,al2

2 , . . . ,alm
m ,dt

)
is not the local optimal attribute set of S . Therefore, Q = (H, t) = ({h1,h2, . . . ,hm} , t) is 

not the global optimal scale of S and AT H ⋃{
dt

} =
(

al1
1 ,al2

2 , . . . ,alm
m ,dt

)
is not the global optimal attribute set of S .

Example 2 (Continued from Example 1). Assume that S = (U , AT ∪ {d}) = (
U ,

{
a1

1,a2
1,a1

2,a2
2

} ∪ {
d1,d2

})
is a GMSDT, condition 

attributes a1 and a2 have two scales, and decision attributes have two scales; hence, S consists of eight scale combinations 
that form a lattice structure, as shown in Fig. 2.

As shown in Fig. 2, 
{

a2
1,a2

2,d1
}

at the top has maximum boundary regions and 
{

a1
1,a1

2,d2
}

at the bottom has minimum 
boundary regions. In addition, if BN D 

({
a2

1,a2
2

}
,d1

) = BN D 
({

a1
1,a1

2

}
,d2

)
, then 

{
a2

1,a2
2,d1

}
is the global optimal scale. From 

bottom to top in Fig. 2, the scale gets coarser and coarser, and the boundary regions get larger and larger. In any case, {
a1

1,a1
2,d2

}
at the bottom always satisfies BN D 

({
a1

1,a1
2

}
,d2

) = BN D 
({

a1
1,a1

2

}
,d2

)
, which ensures the presence of the global 

optimal scale.

There is no difference between local optimal scale selection and global optimal scale selection, so we propose two global 
optimal scale selection algorithms. Algorithm 1 can quickly find a global optimal scale, and Algorithm 2 can find all the 
global optimal scales.

Algorithm 1 takes AT L0
⋃{

dn
}

as the starting point to search upward for a scale combination that meets the definition of 
the global optimal scale. Q ueue is a set of scale combinations, and is used to determine whether O S satisfies the definition 
6
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Table 2
A GMSDT.

U/C a1 a2 a3 d

a1
1 a2

1 a1
2 a2

2 a1
3 a2

3 d1 d2

x1 1 S 1 Y 1 G 1 +
x2 1 S 1 Y 1 G 1 +
x3 1 S 2 Y 1 G 2 +
x4 2 S 1 Y 2 G 2 +
x5 3 L 3 N 3 F 1 +
x6 3 L 3 N 3 F 3 −
x7 4 L 4 N 4 F 2 +
x8 4 L 4 N 4 F 4 −
x9 3 L 4 N 5 B 3 −
x10 4 L 3 N 5 B 3 −
x11 3 L 3 N 6 B 4 −
x12 3 L 3 N 6 B 4 −

Algorithm 1: Global optimal scale selection of GMSDTs.
Input: A GMSDT S = (U , AT ∪ {d}).
Output: A global optimal scale O S .
1: calculate BN D (R AT L0 , Dn

)
and BN D (R AT L′ , D1

)
;

2: if BN D (R AT L0 , Dn
) �= BN D (R AT L′ , D1

)
then

3: O S = AT L0
⋃{

dn
}

4: Q ueue = Init Q ueue (O S)

5: while Q ueue �= ∅ do
6: if BN D (R AT H , Dt

) = BN D (R AT L0 , Dn
)

then
7: O S = AT H ⋃{

dt
}

8: Q ueue = Init Q ueue (O S)

9: else
10: Q ueue = Q ueue − AT H ⋃{

dt
}

11: end if
12: end while
13: else
14: O S = AT L′ ⋃{

d1
}

15: end if
16: return O S;

of the global optimal scale. Algorithm 1 can quickly find a global optimal scale that satisfies the definition. The worst-case 
time complexity of Algorithm 1 is O  

((∑m
j=1 I j + n

)
× |U |2

)
, where |U | is the number of objects.

Algorithm 2 needs to traverse all scale combinations to find all global optimal scales. Nevertheless, Theorems 1 and 2
allow us to reduce some unnecessary calculations when judging whether some scale combinations meet the definition 
of global optimal scales. O S S is a set of scale combinations whose BN D 

(
AT L, Dt

) = BN D 
(

AT L0 , Dn
)
. T is a set of scale 

combinations BN D 
(

AT L0 , Dn
) ⊂ BN D 

(
AT L, Dt

)
. Algorithm 2 can find all the global optimal scales in the lattice structure of 

scale combinations. The worst-case time complexity of Algorithm 2 is O  
((∏m

j=1 I j × n
)

× |U |2
)

, where |U | is the number 
of objects.

Example 3. Let S = (U , AT ∪ {d}) = (
U ,

{
a1

1,a2
1,a1

2,a2
2,a1

3,a2
3

} ∪ {
d1,d2

})
be a GMSDT, as given in Table 2, where U =

{x1, x2, . . . , x12} represents 12 bank customers. a1, a2, and a3 stand for consumption, savings, and credit, respectively. Each 
attribute has two scales, where S, L, Y, N, G, F, and B, respectively, represent small, large, yes, no, good, fair, and bad. d
represents different levels of bank customers.

We now find a global optimal scale for Example 3 on the basis of Algorithm 1.
(1) It can be calculated that BN D 

({
a1

1,a1
2,a1

3

}
,d2

) = {x5, x6, x7, x8}; therefore, S is inconsistent.
(2) Let O S = {

a1
1,a1

2,a1
3,d2

}
. Then Q ueue = {{

a2
1,a1

2,a1
3,d2

}
,
{

a1
1,a2

2,a1
3,d2

}
,
{

a1
1,a1

2,a2
3,d2

}
,
{

a1
1,a1

2,a1
3,d1

}}
.

(3) It is easy to obtain BN D 
({

a2
1,a1

2,a1
3

}
,d2

) = {x5, x6, x7, x8}. Hence, if we let O S = {
a2

1,a1
2,a1

3,d2
}

, then Q ueue ={{
a2

1,a2
2,a1

3,d2
}
,
{

a2
1,a1

2,a2
3,d2

}
,
{

a2
1,a1

2,a1
3,d1

}}
.

(4) It is easy to obtain BN D 
({

a2
1,a2

2,a1
3

}
,d2

) = {x5, x6, x7, x8}. Hence, if we let O S = {
a2

1,a2
2,a1

3,d2
}

, then Q ueue ={{
a2

1,a2
2,a2

3,d2
}
,
{

a2
1,a2

2,a1
3,d1

}}
.

(5) It is easy to obtain BN D 
({

a2
1,a2

2,a2
3

}
,d2

) = {x5, x6, x7, x8}. Hence, if we let O S = {
a2

1,a2
2,a2

3,d2
}

, then Q ueue ={{
a2

1,a2
2,a2

3,d1
}}

.
(6) We have BN D 

({
a2

1,a2
2,a2

3

}
,d2

) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12}. By Definition 2, ({2,2,2} 2) is the global 
optimal scale of S and 

{
a2,a2,a2,d2

}
is the global optimal attribute set of S .
1 2 3

7
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Algorithm 2: Global optimal scale selection of GMSDTs.
Input: (1) A GMSDT S = (U , AT ∪ {d}); (2) a global optimal scale O S .
Output: The global optimal scales O S S .
1: initialize Q ueue;
2: if O S �= AT L′ ⋃{

d1
}

then
3: calculate BN D (R AT L0 , Dn

)
;

4: O S S ← O S
5: T ← O S
6: for each item ∈ Q ueue do
7: if there exists scale in T subject to scale � item then
8: continue
9: end if

10: if there exists scale in O S S subject to item � scale then
11: continue
12: end if
13: calculate boundary regions of the scale item, denote as B
14: if B = BN D (R AT L0 , Dn

)
then

15: O S S ← item
16: else
17: T ← item
18: end if
19: end for
20: else
21: O S S ← AT L′ ⋃{

d1
}

22: end if
23: for each item ∈ O S S do
24: for each scale ∈ O S S − item do
25: if there exists scale in O S S subject to item � scale then
26: O S S = O S S − item
27: end if
28: end for
29: end for
30: return O S S;

Furthermore, we now find all the global optimal scales for Example 2 on the basis of Algorithm 2.
It can be calculated that BN D 

({
a1

1,a1
2,a1

3

}
,d2

) �= BN D 
({

a2
1,a2

2,a2
3

}
,d1

)
. Therefore, let O S S = {{

a2
1,a2

2,a2
3,d2

}}
and T ={{

a2
1,a2

2,a2
3,d2

}}
. Then we can obtain three global optimal scales of S by traversing all scale combinations in the lattice 

structure of scale combinations. They are ({2,2,2} 2), ({1,1,2} 1), and ({2,1,1} 1). Hence, 
{

a2
1,a2

2,a2
3,d2

}
, 
{

a1
1,a1

2,a2
3,d1

}
, 

and 
{

a2
1,a1

2,a1
3,d1

}
are the global optimal attribute sets of S .

We now discuss feature selection of the optimal scale.

Definition 4. Let U be a nonempty finite set, where X = {X1, X2, . . . , Xn} is a partition of U . The information entropy of X
is defined as

H (X ) = −
n∑

i=1

P (Xi) log2 P (Xi),

where P (Xi) = |Xi ||U | .

Definition 5. Let U be a nonempty finite set, where X = {X1, X2, . . . , Xn} and Y = {Y1, Y2, . . . , Ym} are two partitions of U . 
The conditional entropy for partitioning Y with respect to partitioning X is defined as

H (Y | X ) =
n∑

i=1

P (Xi) H (Y | Xi) ,

where H (Y | Xi) = − 
∑m

j=1 P
(
Y j | Xi

)
log2 P

(
Y j | Xi

)
and P

(
Y j | Xi

) =
∣∣Y j∩Xi

∣∣
Xi

.

Definition 6. Let S = (U , AT ∪ D) =
(

U ,
{

ak
j | k = 1,2, . . . , I j; j = 1,2, . . . ,m

}
∪ {

dt | t = 1,2, . . . ,n
})

be a GMSDT, L0 =
(1,1, . . . ,1), L = (l1, l2, . . . , lm), and t ∈ {1,2, . . . ,n}. O S = (L, t) = ({l1, l2, . . . , lm} , t) is the global optimal scale of S . If 
S ⊆ L, H

(
dt | [x]S

) = H
(
dt | [x]L

)
. If for all s ∈ S , H

(
dt | [x]S−{s}

) �= H
(
dt | [x]L

)
, then S is the optimal subset of the global 

optimal scale L.
8
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4. Rule extraction and rough set classifier design

The classification problem is not only a core problem of supervised learning; it is also a problem that we often encounter 
in daily life. To achieve accurate classification, so as to better handle practical problems, what we should do is select the 
optimal scale to fully mine the hidden information in decision tables. In this section we propose a knowledge acquisition 
algorithm based on rough set theory to extract decision rules from decision tables. Furthermore, a multi-scale rough set 
classifier framework based on a ruleset is designed.

Algorithm 3: Decision rule acquisition.

Input: The optimal attribute set AT L ⋃{
dt

}
;

Output: Decision rules;
1: for each class ∈ U/Rdt do
2: for each x ∈ class do
3: Output (x, [x]AT L

⋂
class

)
;

4: class ← class − (
[x]AT L

⋂
class

)
;

5: end for
6: end for

The decision rules can be abstracted by the optimal scale selected from the GMSDT. Hence, we provide a decision rule 
extraction method, as described in Algorithm 3. Not only the decision rules for each object but also the number of supported 
objects for each rule is output when the set of optimal scales for S is acquired in Algorithm 3. The time complexity of 
Algorithm 3 is O  

(|U |2), where |U | is the number of objects.

Example 4 (Continued from Example 3). According to Algorithms 1 and 2, the optimal scale ({2,2,2} 2) is selected from the 
GMSDT given in Table 2, and the following decision rules can be acquired with Algorithm 3:
(1) Ruleset obtained from the first scale ({1,1,1} 2) of S , deterministic rule set are as follows:

r1 : (a1
1,1

) ∧ (
a1

2,1
) ∧ (

a1
3,1

) ⇒ (
d2,+)

, supported by x1, x2;
r2 : (a1

1,1
) ∧ (

a1
2,2

) ∧ (
a1

3,1
) ⇒ (

d2,+)
, supported by x3;

r3 : (a1
1,2

) ∧ (
a1

2,1
) ∧ (

a1
3,2

) ⇒ (
d2,+)

, supported by x4;
r4 : (a1

1,3
) ∧ (

a1
2,4

) ∧ (
a1

3,5
) ⇒ (

d2,−)
, supported by x9;

r5 : (a1
1,4

) ∧ (
a1

2,3
) ∧ (

a1
3,5

) ⇒ (
d2,−)

, supported by x10;
r6 : (a1

1,3
) ∧ (

a1
2,3

) ∧ (
a1

3,6
) ⇒ (

d2,−)
, supported by x11, x12.

And possible ruleset are
r7 : (a1

1,3
) ∧ (

a1
2,3

) ∧ (
a1

3,3
) ⇒ (

d2,+)
, supported by x5;

r′
7 : (a1

1,3
) ∧ (

a1
2,3

) ∧ (
a1

3,3
) ⇒ (

d2,−)
, supported by x6;

r8 : (a1
1,4

) ∧ (
a1

2,4
) ∧ (

a1
3,4

) ⇒ (
d2,+)

, supported by x7;
r′

8 : (a1
1,4

) ∧ (
a1

2,4
) ∧ (

a1
3,4

) ⇒ (
d2,−)

, supported by x8.
(2) Ruleset obtained from the optimal scale ({2,2,2} 2) of S , deterministic rule set are

r1 : (a2
1, S

) ∧ (
a2

2, Y
) ∧ (

a2
3, G

) ⇒ (
d2,+)

, supported by x1, x2, x3, x4;
r2 : (a2

1, L
) ∧ (

a2
2, N

) ∧ (
a2

3, B
) ⇒ (

d2,−)
, supported by x9, x10, x11, x12.

And possible ruleset are
r3 : (a2

1, L
) ∧ (

a2
2, N

) ∧ (
a2

3, F
) ⇒ (

d2,+)
, supported by x5, x7;

r′
3 : (a2

1, L
) ∧ (

a2
2, N

) ∧ (
a2

3, F
) ⇒ (

d2,−)
, supported by x6, x8.

According to Example 4, rulesets extracted from the optimal scale are more concise than those extracted from the 
first scale and each rule has more supporting objects. Occam’s razor principle is called entities should not be multiplied 
unnecessarily. If this principle is adopted, the rulesets extracted from the optimal scale are considered to be more efficient 
and accurate than the rulesets extracted from other scales.

However, to design a rough set classifier, it is not enough to rely only on the ruleset extracted from the optimal scale. 
For example, neither the deterministic rule nor the possible rule can determine the category of the object 

(
a2

1, S
)∧ (

a2
2, N

)∧(
a2

3, F
)
. We need to consider the decision rules that apply to objects whose categories cannot be determined with either of 

the above-mentioned rules, so as to realize the automatic classification of objects to be classified.
There are three situations for the objects to be classified:

(1) Deterministic rules can be used to determine the category of objects such as 
(
a2

1, S
) ∧ (

a2
2, Y

) ∧ (
a2

3, G
)
. The category is (

d2,+)
.

(2) Possible rules can be used to determine the category of objects such as 
(
a2

1, L
) ∧ (

a2
2, N

) ∧ (
a2

3, F
)
. Select the possible 

rule with the maximum number of supported objects to judge the category of objects.
(3) Neither deterministic rules nor possible rules can judge the category of objects such as 

(
a2

1, L
) ∧ (

a2
2, N

) ∧ (
a2

3, G
)
. 

Calculate the distance of the object from the antecedent of all deterministic and possible rules in the ruleset. Select the rule 
9
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Fig. 3. A multi-scale rough set classifier framework.

Table 3
Operating environment.

Component Model Parameter

CPU AMD Ryzen 7 6800H 3.2 GHz
Platform Python 3.9
Operating system Windows 11 64 bit
Memory DDR5 16 GB; 6400 MHz
Hard disk MTFDKBA512TFH 512 GB

whose antecedent is closest to the object. Select the category with the maximum number of supported objects to judge the 
category of objects. The distance used here is the Hamming distance, and the formula is d (x, y) = 1

N

∑
i 1xi �=x j .

It is not difficult to see that (1) and (2) are two special cases when the Hamming distance is 0, and (3) is a reasonable 
generalization of (1) and (2).

Example 5 (Continued from Example 4). Use the ruleset obtained from the optimal scale ({2,2,2} 2) of S to determine the 
category of the object x : (a2

1, L
) ∧ (

a2
2, N

) ∧ (
a2

3, G
)
.

Let the antecedent of rules r1, r2, r3, r′
3 be a1, a2, a3, a′

3. By calculation, we can get d (x,a1) = 1, d (x,a2) = 2, d (x,a3) =
2, d 

(
x,a′

3

) = 2. Because d (x,a1) < d (x,a2) = d (x,a3) = d 
(
x,a′

3

)
, select the rule r2, r3, r′

3. The objects that support category (
d2,−)

are {x6, x8, x9, x10, x11, x12}. The objects that support category 
(
d2,+)

are {x5, x7}. Apparently, category 
(
d2,−)

has 
the largest number of supported objects. Therefore, we judge that object x belongs to category 

(
d2,−)

.
Using the method outlined above, we can design a rough set classifier to realize the automatic classification of objects. 

For GMSDTs, we can select multiple optimal scales through the optimal scale selection algorithms proposed in this article. 
Because each optimal scale can train a rough set classifier, a multi-scale rough set classifier can be constructed by our taking 
the mode of predicted results. Fig. 3 shows the framework for a multi-scale rough set classifier.

5. Experiments and analysis

5.1. Data description

All programs for the experiments were written in Python and were executed on a personal computer. The details of the 
operating environment are shown in Table 3.

Twelve open data sets from the University of California, Irvine were selected to verify the algorithms presented in this 
article. Details of these 12 open data sets are shown in Table 4.

The method of creating GMSDTs in [9] is used to transform standard decision tables into GMSDTs. For continuous at-
tributes, we first use the k-means clustering algorithm to discretize the attributes. The cluster core is used as the new 
attribute value. Finally, the method of creating GMSDTs in [9] is used to transform the single-scale attribute into the multi-
scale attribute. For data sets with more than 20 attributes, the clustering number K of each attribute is uniformly specified 
as 6.
10
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Table 4
Description of data sets.

Data set Instances Features Classes

Iris 150 4 3
Wholesale customers (region) 440 6 3
Contraceptive Method Choice 1473 9 3
Car Evaluation 1728 6 4
Estimation of obesity levels based on eating habits and physical condition 2111 16 7
Abalone 4177 8 9
Wine Quality (white) 4898 11 7
Shill Bidding Dataset 6321 9 2
Nursery 12960 8 5
Mice Protein Expression 1080 80 8
MEU-Mobile KSD 2856 71 56
Polish companies bankruptcy data 10503 64 2

Table 5
Optimal scale combination and running time for three data sets with Algorithm 1.

Data set Scales Optimal scale combination Running time (s)

Mice Protein Expression 5 × 5 × · · · × 1 × 1 (5,5,5,5,5, . . . ,5,1,1,1,1) 0.805225
MEU-Mobile KSD 5 × 5 × · · · × 5 × 1 (5,5,5,5,5, . . . ,5,1,5,5,1) 500.804162
Polish companies bankruptcy data 5 × 5 × · · · × 5 × 1 (5,5,5,5,5, . . . ,5,5,5,5,1) 15609.695373

Table 6
Running time for nine data sets with Algorithm 2.

Data set Running time (s)

This work Method in [9] Method in [11]

Iris 2.522581 14.318465 13.844829
Wholesale customers (region) 0.600713 140.869354 142.895350
Contraceptive Method Choice 2.057566 200.788399 229.648538
Car Evaluation 10.353220 82.681253 80.569686
Estimation of obesity levels based on 
eating habits and physical condition

23.779038 29118.080091 42730.959870

Abalone 4.085046 3164.573462 3368.164955
Wine Quality (white) 539.554701 Long time Long time
Shill Bidding Dataset 250.044801 1185.044555 1097.402318
Nursery 144.847004 1605.351084 1188.747542

5.2. Experimental results

Algorithms 1 and 2 can be used to acquire the global optimal scale. The experimental results are displayed in Tables 5–7.
The algorithms in [9,11] find all optimal scale combinations by traversing all scale combinations, and their outer time 

complexity is O  
((∏m

j=1 I j × n
))

. With increasing number of attributes in the data set, the time complexity increases ex-

ponentially. Considering that it is not necessary to find all optimal scale combinations in practical applications, Algorithm 1, 
which can find an optimal scale combination, is proposed in this article. Its outer time complexity is O  

((∑m
j=1 I j + n

))
, 

and it can handle big data sets with variation in a number of attributes. From Table 5, we can see a global optimal scale 
combination obtained by Algorithm 1 and the corresponding running time.

From Table 6, we can see the running time of Algorithm 2 in this article and of the algorithms in [9,11] for global 
optimal scale selection. It should be noted that the time efficiency of Algorithm 2 in this article is much greater than that 
of the algorithms in [9,11] even though the time complexity is the same.

We can see that the global optimal scale combination can be acquired by Algorithms 1 and 2 from Table 7. It should be 
noted that there is more than one global optimal scale combination in some cases.

From Fig. 4, we know that the fewer the condition attributes, the shorter the running time of the global optimal scale 
selection, while the running time of the global optimal scale selection is not necessarily related to the size of the dataset.

In the next experiment, we apply four diverse kinds of classifiers to compare the performance for the global optimal scale 
(GOS), the first scale (FirS), the final scale (FinS), the optimal subset about the global optimal scale (OSGOS), the optimal 
subset about the first scale (OSFirS), and the optimal subset about the final scale (OSFinS). They are the k-nearest-neighbor 
(KNN) classifier, the classification and regression trees (CART) classifier, the support vector machine (SVM) classifier, and the 
rough set classifier proposed in this article.

The experiments in this article use fivefold cross-validation. The experimental results are given in Tables 8–11. All data 
are averaged from five independent experiments.
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Table 7
Optimal scale combination for nine data sets.

Data set Scales Optimal scale combination

Iris 5 × 5 × 5 × 5 × 1 (2,3,3,4,1)

(5,3,4,3,1)

(1,3,5,4,1)

(3,3,5,3,1)

(5,2,3,4,1)

(5,3,2,4,1)

Wholesale customers (region) 4 × 4 × 4 × 4 × 4 × 4 × 1 (1,1,1,1,1,1,1)

Contraceptive Method Choice 2 × 3 × 3 × 7 × 1 × 1 × 3 × 3 × 1 × 1 (1,1,1,1,1,1,1,1,1,1)

Car Evaluation 3 × 3 × 3 × 2 × 2 × 2 × 3 (1,2,1,1,1,2,3)

(1,1,1,1,1,1,1)

Estimation of obesity levels based on 
eating habits and physical condition

1 × 3 × 3 × 7 × 1 × 1 × 2 × 3 × 3 × 1 × 2 × 1 ×
3 × 2 × 3 × 1 × 3

(1,1,2,3,1,1,1,2,3,1,1,1,1,1,1,1,2)

Abalone 1 × 3 × 3 × 4 × 3 × 3 × 3 × 3 × 4 (1,1,1,1,1,1,1,1,4)

Wine Quality (white) 5 × 6 × 6 × 2 × 2 × 8 × 2 × 2 × 6 × 4 × 3 × 3 (2,2,2,1,1,1,1,1,2,1,1,3)

Shill Bidding Dataset 3 × 3 × 1 × 3 × 3 × 1 × 3 × 1 × 2 × 1 (3,3,1,3,3,1,2,2,1,1)

(2,3,1,3,3,1,2,3,1,1)

(3,3,1,2,3,1,3,2,1,1)

(2,3,1,2,3,1,3,3,1,1)

(2,3,1,3,3,1,3,1,1,1)

Nursery 2 × 3 × 2 × 3 × 2 × 1 × 2 × 2 × 3 (1,3,1,1,1,1,2,1,3)

(1,2,1,1,1,1,2,1,2)

(1,1,1,1,1,1,2,1,1)

5.3. Statistical analysis

In this subsection, the Friedman test [3] and corresponding post hoc tests [2] are applied to reveal the differences for 
different scales. By the Friedman test, we have that

F F = (M − 1)χ2
F

M (s − 1) − χ2
F

∼ F (s − 1, (s − 1) (M − 1)) ,

χ2
F = 12M

s (s − 1)

(
s∑

i=1

R2
i − s (s + 1)2

4

)
,

where M and s are the number of datasets and compared scales, respectively, and Ri is the mean ranking of classification 
accuracy.

According to the procedure for the statistical test in this article, the mean ranking can be computed for each model. 
Table 12 gives the mean raking and the corresponding F F and P values for three scales under four classifiers.

Table 12 shows that the P values under the four classifiers are all well below the selected significance level α = 0.01; 
therefore, one can reject the original hypothesis. There are significant differences in classification accuracy among these 
scales under the KNN classifier, CART classifier, SVM classifier, and rough set classifier.

In this case, the Bonferroni-Dunn statistical test is used to uncover the statistical discrepancy of different scales. The 
critical value can be calculated in accordance with the following formula:

C Dα = qα

√
s (s + 1)

6M
.

If the difference between the average ranking of two scales is greater than C Dα , then they will be considered to be 
markedly different. In Fig. 5, a special form of graph is introduced to visually show the differences between different scales. 
If there is a linear connection between the two scales, then they are not significantly different from each other.

From Fig. 5(a) and 5(b), for the KNN classifier and the CART classifier, we can see that there is a significant difference 
between OSGOS and FirS, while GOS, FinS, OSFirS, and OSFinS have no significant difference with FirS. From Fig. 5(c), for 
the SVM classifier, it can be seen that there is no significant difference between GOS, OSFirS, FirS, FinS, and OSFinS. It can 
be seen from Fig. 5(d), for the rough set classifier, that there is no significant difference between GOS, OSFirS, FirS, and FinS, 
while OSGOS has a significant difference with FirS and FinS. In conclusion, OSGOS is superior to GOS, OSFirS, FirS, FinS, and 
OSFinS from the results of the two statistical tests.

6. Conclusion

Research on multi-scale rough sets has achieved fruitful results. However, there has not been much research on GMSDTs 
with multi-scale decision attributes, especially for inconsistent GMSDTs. In this article, we introduced GMSDTs with multi-
scale decision attributes. Some of the related properties and theorems were presented. What is more, the definition of 
X. Zhang and Y. Huang International Journal of Approximate Reasoning 161 (2023) 108983
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Fig. 4. Experiments with different sizes of the universe: (a) Iris; (b) Wholesale customers (region); (c) Contraceptive Method Choice; (d) Car Evaluation; 
(e) Estimation of obesity levels based on eating habits and physical condition; (f) Abalone; (g) Wine Quality (white); (h) Shill Bidding Dataset; (i) Nursery. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 8
Classification accuracy (%) of six different optimal subset methods applied on 12 data sets obtained with the KNN classifier.

Data set FirS FinS GOS OSFirS OSFinS OSGOS

Iris 96.00 ± 0.33 90.67 ± 1.11 96.17 ± 0.17 93.67 ± 1.94 81.83 ± 2.00 96.17 ± 0.41
Wholesale customers (region) 70.80 ± 0.79 70.64 ± 3.33 70.80 ± 0.79 70.97 ± 1.58 70.07 ± 2.64 70.97 ± 1.58
Contraceptive Method Choice 51.63 ± 0.94 43.51 ± 1.12 51.63 ± 0.94 52.31 ± 1.33 44.06 ± 1.17 52.31 ± 1.33
Car Evaluation 98.70 ± 0.18 72.66 ± 0.58 93.05 ± 0.56 98.39 ± 0.24 71.55 ± 0.90 98.83 ± 0.18
Estimation of obesity levels based on 
eating habits and physical condition

91.68 ± 0.25 61.59 ± 0.61 92.16 ± 0.37 91.77 ± 0.44 61.09 ± 1.48 92.04 ± 0.12

Abalone 88.20 ± 0.46 49.90 ± 0.93 88.20 ± 0.46 88.29 ± 0.32 49.92 ± 2.11 88.29 ± 0.32
Wine Quality (white) 61.35 ± 0.46 44.63 ± 0.80 62.13 ± 0.61 61.65 ± 0.72 44.80 ± 0.75 61.80 ± 0.29
Shill Bidding Dataset 96.86 ± 0.08 98.16 ± 0.09 98.38 ± 0.06 97.38 ± 0.24 98.30 ± 0.14 98.64 ± 0.13
Nursery 98.91 ± 0.05 84.95 ± 0.29 99.25 ± 0.09 98.63 ± 0.08 84.35 ± 0.27 98.99 ± 0.06
Mice Protein Expression 99.07 ± 0.19 96.09 ± 0.31 99.07 ± 0.19 99.21 ± 0.22 96.46 ± 0.7 99.21 ± 0.22
MEU-Mobile KSD 61.20 ± 0.60 53.84 ± 0.52 61.26 ± 0.56 64.23 ± 0.29 54.1 ± 0.59 64.79 ± 0.41
Polish companies bankruptcy data 95.26 ± 0.10 95.21 ± 0.10 95.31 ± 0.12 95.31 ± 0.12 95.29 ± 0.09 95.33 ± 0.13
13
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Table 9
Classification accuracy (%) of six different optimal subset methods applied on 12 data sets obtained with the CART classifier.

Data set FirS FinS GOS OSFirS OSFinS OSGOS

Iris 93.67 ± 1.00 84.00 ± 2.13 93.83 ± 0.41 94.67 ± 1.45 76.50 ± 5.78 95.33 ± 1.13
Wholesale customers (region) 72.10 ± 0.46 71.31 ± 1.02 72.10 ± 0.46 72.33 ± 1.06 71.36 ± 0.79 72.33 ± 1.06
Contraceptive Method Choice 43.26 ± 0.56 42.70 ± 0.79 43.26 ± 0.56 43.28 ± 0.61 42.87 ± 0.50 43.28 ± 0.61
Car Evaluation 96.09 ± 0.18 69.97 ± 0.49 96.19 ± 0.19 96.15 ± 0.28 70.02 ± 0.32 96.32 ± 0.13
Estimation of obesity levels based on 
eating habits and physical condition

84.92 ± 0.50 42.50 ± 0.40 85.26 ± 0.29 85.06 ± 0.60 42.82 ± 0.32 85.41 ± 0.28

Abalone 88.24 ± 0.12 45.29 ± 0.29 88.24 ± 0.12 88.31 ± 0.31 45.42 ± 0.42 88.31 ± 0.31
Wine Quality (white) 44.86 ± 0.34 44.64 ± 0.31 45.00 ± 0.19 44.81 ± 0.29 44.71 ± 0.19 45.00 ± 0.21
Shill Bidding Dataset 97.31 ± 0.04 97.23 ± 0.05 97.38 ± 0.06 97.24 ± 0.04 97.29 ± 0.01 97.32 ± 0.14
Nursery 97.43 ± 0.09 66.27 ± 0.20 97.47 ± 0.06 97.44 ± 0.05 66.30 ± 0.18 97.51 ± 0.06
Mice Protein Expression 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
MEU-Mobile KSD 2.01 ± 0.04 2.01 ± 0.08 2.03 ± 0.05 2.04 ± 0.06 2.0 ± 0.04 2.07 ± 0.10
Polish companies bankruptcy data 95.28 ± 0.07 95.30 ± 0.11 95.32 ± 0.11 95.29 ± 0.07 95.28 ± 0.05 95.39 ± 0.08

Table 10
Classification accuracy (%) of six different optimal subset methods applied on 12 data sets obtained with the SVM classifier.

Data set FirS FinS GOS OSFirS OSFinS OSGOS

Iris 96.33 ± 0.41 89.50 ± 0.85 96.50 ± 0.62 96.33 ± 1.55 80.33 ± 2.15 97.17 ± 1.13
Wholesale customers (region) 72.33 ± 0.52 71.36 ± 0.33 72.33 ± 0.52 73.82 ± 0.66 71.54 ± 1.10 73.82 ± 0.66
Contraceptive Method Choice 55.43 ± 0.99 46.83 ± 1.22 55.43 ± 0.99 55.99 ± 0.25 46.66 ± 0.41 55.99 ± 0.25
Car Evaluation 99.77 ± 0.15 73.47 ± 0.24 97.55 ± 0.17 98.93 ± 0.13 73.79 ± 0.57 98.99 ± 0.29
Estimation of obesity levels based on 
eating habits and physical condition

92.50 ± 0.26 65.33 ± 0.40 92.65 ± 0.24 92.40 ± 0.44 64.76 ± 0.86 92.96 ± 0.61

Abalone 88.16 ± 0.13 54.27 ± 0.31 88.16 ± 0.13 88.30 ± 0.19 53.68 ± 0.42 88.30 ± 0.19
Wine Quality (white) 57.50 ± 0.33 51.76 ± 0.75 53.73 ± 0.47 56.19 ± 0.70 47.64 ± 0.85 57.77 ± 1.15
Shill Bidding DataSet 98.89 ± 0.08 98.58 ± 0.09 99.49 ± 0.08 99.05 ± 0.24 99.22 ± 0.17 99.59 ± 0.05
Nursery 99.95 ± 0.02 86.17 ± 0.25 99.97 ± 0.01 98.16 ± 0.32 98.11 ± 0.26 99.01 ± 0.24
Mice Protein Expression 99.86 ± 0.09 100.0 ± 0.00 99.86 ± 0.09 99.91 ± 0.05 100.0 ± 0.00 99.91 ± 0.05
MEU-Mobile KSD 73.98 ± 0.23 68.51 ± 0.21 74.2 ± 0.52 80.56 ± 0.44 67.42 ± 0.77 80.73 ± 0.29
Polish companies bankruptcy data 96.07 ± 0.25 96.07 ± 0.2 96.33 ± 0.27 95.95 ± 0.13 96.00 ± 0.28 96.17 ± 0.20

Table 11
Classification accuracy (%) of six different optimal subset methods applied on 12 data sets obtained with the rough set classifier.

Data set FirS FinS GOS OSFirS OSFinS OSGOS

Iris 92.13 ± 4.61 88.53 ± 5.17 93.33 ± 4.71 92.13 ± 5.32 79.20 ± 4.65 94.13 ± 2.54
Wholesale customers (region) 59.32 ± 4.82 69.64 ± 3.78 59.32 ± 4.82 61.32 ± 5.36 69.55 ± 3.62 61.32 ± 5.36
Contraceptive Method Choice 47.81 ± 1.75 45.23 ± 2.52 47.81 ± 1.75 48.38 ± 2.88 46.64 ± 2.39 48.38 ± 2.88
Car Evaluation 96.79 ± 0.89 72.44 ± 2.35 98.82 ± 0.50 98.55 ± 0.62 73.31 ± 2.49 98.83 ± 0.47
Estimation of obesity levels based on 
eating habits and physical condition

89.92 ± 1.65 63.58 ± 2.19 90.11 ± 1.26 90.10 ± 1.40 64.16 ± 1.77 90.17 ± 1.20

Abalone 86.61 ± 0.92 52.84 ± 1.20 86.61 ± 0.92 86.91 ± 0.84 52.74 ± 1.66 86.91 ± 0.84
Wine Quality (white) 64.61 ± 1.43 46.18 ± 1.28 64.83 ± 1.14 64.41 ± 1.66 46.24 ± 1.40 64.74 ± 0.94
Shill Bidding Dataset 97.37 ± 0.42 98.00 ± 0.34 98.57 ± 0.27 98.16 ± 0.32 98.11 ± 0.26 99.01 ± 0.24
Nursery 98.50 ± 0.28 85.73 ± 0.69 99.92 ± 0.10 98.20 ± 0.24 85.96 ± 0.71 98.71 ± 0.14
Mice Protein Expression 98.98 ± 0.52 97.43 ± 1.01 98.98 ± 0.52 99.00 ± 0.69 97.50 ± 1.01 99.00 ± 0.69
MEU-Mobile KSD 52.59 ± 2.13 49.26 ± 2.40 52.33 ± 1.68 63.37 ± 1.92 49.09 ± 1.58 63.78 ± 1.39
Polish companies bankruptcy data 94.26 ± 0.49 94.27 ± 0.5 95.24 ± 0.51 94.27 ± 0.41 94.32 ± 0.44 95.24 ± 0.44

Table 12
Friedman test.

Classifier Mean ranking F F P

FirS FinS GOS OSFirS OSFinS OSGOS

KNN 3.75 5.42 2.54 2.71 5.17 1.42 43.44 3.00 × 10−8

CART 3.71 5.33 2.46 2.79 5 1.46 43.31 3.20 × 10−8

SVM 3.33 4.88 2.92 3.17 5.04 1.67 28.41 3.03 × 10−5

Rough set 4 5.17 2.67 2.92 4.75 1.5 33.64 2.81 × 10−6
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Fig. 5. Critical distance (CD) diagram for the Bonferroni-Dunn test: (a) KNN classifier; (b) CART classifier; (c) SVM classifier; (d) rough set classifier.

optimal scale in GMSDTs and two algorithms for optimal scale selection were proposed. The algorithms were proved to 
be efficient by experiments and can handle data sets with a large number of attributes: however, the running time of the 
algorithms still needs to be improved. It is well known that classical rough set theory can deal only with symbolic data. If 
classical rough set theory is used to handle continuous data, it is necessary to discretize the data first. The optimal scale 
selection method proposed in this article can be used to determine the number of categories for discretization of continuous 
attributes. Besides, a knowledge acquisition algorithm and a multi-scale rough set classifier framework were proposed. The 
above-mentioned work solves the partial molecular problem of optimal scale selection and knowledge discovery in GMSDTs 
with multi-scale decision attributes. But there are still many challenging problems to be addressed before these problems 
can be completely solved, which will be considered in the future, such as optimal scale selection and knowledge discovery 
in incomplete GMSDTs with multi-scale decision attributes, an optimal scale updating method for dynamic MSDTs, and 
computational efficiency of large-scale data sets.

Future research will focus on optimal scale selection and knowledge discovery in incomplete generalized multi-scale 
tables with multi-scale decision attributes. Besides, more attention will be focused on the application of these models, 
especially the most common classification problems in life.
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