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Abstract
Dominance-based neighborhood rough set (DNRS) is capable to give qualitative and quantitative descriptions of the relations 
between ordered objects. In spite of its effectiveness in feature selection, DNRS ignores the various significance of features. 
In fact, different features exert different impacts on decision-making. Once we explore these differences in advance, it is 
easier to find out features with high correlation and dependency. Likewise, it is inevitable that in big-data era the objects may 
update from time to time, which calls for efficient attribute reduction. However, the existing approaches are inappropriate for 
the weighted and ordered data. Motivated by these two deficiencies, first, we assign different weights to conditional attrib-
utes and establish the weighted dominance-based neighborhood rough set (WDNRS). Then a kind of conditional entropy 
in matrix form and ensuing updating principles are put forward to evaluate the significance of the attributes. In addition, 
grounded on the entropy, we come up with the heuristic algorithm and corresponding incremental mechanism when objects 
increase. Finally, twelve experiments are carried out to verify that it is effective and efficient for the designed method to 
select features in dynamic datasets.

Keywords Dynamic ordered data · Feature selection · Incremental learning · Weighted dominance-based neighborhood 
rough sets

1 Introduction

Feature selection, also referred to as attribute reduction, is 
of great use in the era of big data. It aims to extract neces-
sary features from high-dimensional data regarded as good 
reflection of the whole datasets. Namely, uncorrelated or 
insignificant attributes are to be removed on the condition 
of the maintenance of the knowledge bases ability to clas-
sify. Then we reach the targets of reducing dimensional-
ity, improving interpretability and moreover saving time 
and computational space. With a lot advancement, attribute 
reduction still remains a vigorous and growing research area. 
For example, machine learning is an essential method to 

obtain knowledge from a mass of data [1–6]. Some scholars 
also connect attribute reduction with graphs [7, 8].

Rough set theory (RST), proposed by Pawlak [9], is also 
an important and effective theoretic tool aiming at access-
ing datasets with inconsistency and uncertainty. With no 
need for prior knowledge, RST completely depends on the 
existing data. Pawlak regarded the relation produced by the 
conditional sets and decision sets as equal relation, which, 
however, is not exact in real life. Then some researchers have 
introduced varieties of relations such as similarity relations, 
neighborhood relations, and dominance-based relations into 
the original rough sets. On that basis, scholars have proposed 
many representative models such as neighborhood rough set 
(NRS) [10], variable precision rough sets (VPRS) [11] and 
dominance-based rough set (DRS) [12]. And in this study, 
we pay close attention to the neighborhood relation and the 
dominance-based relation.

It is well-described when using neighborhood relations 
to extract the similarity among samples and easier to evalu-
ate the information systems with real-valued attributes. 
Meanwhile, Wang et al. constructed approximation opera-
tors on neighborhood systems [13]. Relevant classifiers was 
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the focus of research for Hu et al. in [14]. And for attribute 
reduction, Sun et al. applied entropy [15]. [16] considered 
feature selection with missing labels and introduced multi-
label fuzzy neighborhood rough sets. What’s more, in [17], 
for imbalanced data, the authors designed a novel adaptive 
fuzzy neighborhood-based feature selection method with 
adaptive synthetic over-sampling.

Nowadays, more and more scholars have kept an eye on 
the dominance relation, which is pretty common in daily 
life. For example, the grades of students can be reckoned as 
having internal ordered characteristic, as well as the credit 
level and ranks of school. Namely, we can obtain the domi-
nance principle by ranking attribute-values. In order to pre-
sent this peculiarity, Greco et al. created dominance-based 
rough set approach (DRSA) [12], and successfully extended 
it to multi-criteria decision analysis [18]. Afterwards, many 
scholars have been developing stretched DRSA under dif-
ferent conditions, including generalized dominance rough 
sets [19] and soft dominance based rough sets [20]. And 
when connected with neighborhood relation, DRSA also 
performed well. Chen et al. proposed Dominance-based 
Neighborhood Rough Sets (DNRS) and further investigated 
its feature selection [21]. Later, the authors came up with 
parallel attribute reduction algorithms [22]. And in [23], 
Wan et al. probed feature interaction for hybrid attribute 
reduction. In spite of an effective attribute reduction, these 
approaches mentioned above are all short of the considera-
tion of two respects.

For one thing, there are less likely for each attribute 
to have the same weight as the others. Accordingly, it is 
better and necessary to assign different weights to differ-
ent features. And the weight of an attribute stands for its 
importance when exploring the more significant conditional 
attributes for the decision one. Namely, we have already 
highlighted features highly-correlated to the decision in 
advance. Scholars have studied ways to assign weights of 
attributes under varieties of conditions. Wang et al. intro-
duced a subclass-weighted classifier to cope with imbal-
anced data [24]. Vluymansa et al. came up with a weighted 
Parzen window function to access the probability from the 
weighted subsampled data [25]. And In Hu’ s study, various 
features were endowed with different wights in neighbor-
hood rough set [26]. However, the aforementioned papers 
were not involved with the dominance relation. That is 
the reason why we attempt to attach great importance to 
those attributes that are highly related to decision-making 
in feature selection under the background of the dominance 
relation. And this paper utilizes the correlation coefficients 
of attributes in accordance with decisions to acquire the 
weights which reflects the significance of attributes. For 
another, with the rapid update in the big era, static meth-
ods are no longer appropriate for dynamic information sys-
tems, which stimulate the rise of the incremental learning. 

Incremental learning is so conducive in the information age, 
a period flooded with massive changing data, for the rea-
son that it is grounded on the existing results and keeps on 
acquiring knowledge from incoming data with no need to 
reconsider the original ones. In other words, if we use non-
incremental approaches, aiming to access static datasets, it is 
a waste of time and calculation space. And nowadays, schol-
ars have been developing numerous incremental methods, 
which can be divided into three aspects: objects-oriented, 
attribute-oriented and attribute values-oriented.

For the variation of objects, Liang et al. applied informa-
tion entropy to incremental learning [27]. Sang et al. pro-
posed matrix-based dominance conditional entropy when 
massive objects are the addition (IAR-A) or deletion (IAR-
D) of an ordered system [28]. Furthermore, the authors 
combined the strengths of dominance-based neighborhood 
rough sets and fuzzy dominance rough sets to design fuzzy 
dominance neighborhood rough sets to access datasets with 
noise [29]. And in [30], Yuan et al. developed a dynamic 
algorithm based on progressive fuzzy three-way concept. 
For the variation of attributes, scholars have proposed sev-
eral incremental algorithms related to rough sets for attrib-
ute reduction with dynamically adding attributes. Jing et al. 
introduced an matrix-grounded incremental algorithm to 
calculate knowledge granular under the variation in attrib-
utes [31]. Chen et al. refined concepts of the discernibility 
matrix and the discernible relation, which is considered as 
the criterion of the reduction rather than information granu-
lar or information entropy for dynamic-attribute datasets 
[32]. Except for variation of just one factor, furthermore, 
scholars have studied incremental mechanisms with at least 
two elements changing. For example, Dong et al. presented a 
unified approach for accessing dynamic datasets with objects 
and attributes increase at the same time [33]. In [34], Zhang 
et al. considered the simultaneous variation of information 
sources and attributes when fusing data.

Nowadays, scholars have been applying matrix form of 
information to dynamic datasets attribute reduction. For the 
reason that it is convenient to update the sub-matrix other 
than constructing the whole from scratch. It was initially 
applied in dynamic datasets with an individual variation [28, 
29, 35]. Furthermore, Huang et al. utilized this approach in 
dynamic fuzzy decision systems on the simultaneous vari-
ation of samples and features [36]. Wang et al. proposed 
specific multi-dimensional algorithms when attribute val-
ues and objects vary at the same time [37], and the author 
stretched to the coinstantaneous variation of both attributes 
and objects [38]. It is apparent that most of the incremental 
attribute reduction approaches aforementioned are irrelevant 
to a dynamic information system combined the preference-
order relation with different-weighted attributes. Therefore, 
the incremental mechanisms to attribute reduction in exist-
ence are poor to fit dynamic ordered datasets and easier to 
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make samples misclassified, which are the motivation of this 
study. Whats more, in reality, chances are that the adding 
data change the weight of each feature, which brings about 
an upgrade of the weight. If we stick to the origin assign-
ment of the weight, it is possible to reduce precision. And 
that is also the reason why we combine the weighted attrib-
utes with dynamic information system.

And uncertainty measure, used to evaluate the signifi-
cance of attributes and quantify the inconsistency of data, 
attach great importance to feature selection. Information 
entropy, proposed by Shannon is the general measure [39]. 
Scholars have developed it such as the fuzzy information 
system designed by Hu et al. [40] . And for ordered data-
sets, the author proposed ascending and decreasing rank 
conditional entropy to access the consistency degree of the 
ranking data [41]. Sang et al. extended the ascending one to 
matrix form [28], which we are going to use in the subse-
quent study.

The contributions are summarized as follows: (1) We 
assign different weight to each attribute in dominance neigh-
borhood rough sets(DNRS) and then define the weighted 
dominance neighborhood rough sets(WDNRS). (2) This 
paper applies the matrix to calculate the dominance con-
ditional entropy. And on that basis, outer and inner sig-
nificance measure can be obtained to find out the all the 
necessary attributes. Then dynamic updating mechanism 
is developed based on the static one with the variation of 
objects. (3) Experiments on twelve datasets downloaded 
from UCI are utilized to bear out that the designed model 
is conducive to promote the performance of classification. 

In addition, when objects increase, the ensuing incremental 
algorithms contribute to remarkably reduce the time and the 
space of calculation.

The rest of the paper is organized as follows: in Sect. 2, 
some related works are in retrospect, including the compara-
tive approaches we consider in this study. Section 3 intro-
duces the generation of the weight, which we connect with 
the dominance neighborhood rough sets. On the basis of 
Sect. 3, we come up with a matrix-based method to calculate 
the dominance conditional entropy in Sect. 4. Furthermore 
in Sect. 5, an updating mechanism is proposed and used to 
develop an incremental attribute reduction algorithm when 
adding objects from the information system. Extensive 
experiments are in presentation in Sect. 6. Eventually, we 
draw the conclusions in brief and picture future perspectives. 
And the brief framework of the paper can be seen in Fig. 1.

2  Related work

This section overviews some basic points of classical dom-
inance-based neighborhood rough sets, which can be found 
in [9, 18, 22], and subsequent shortcomings.

2.1  Dominance‑based neighborhood rough set

Definition 1 Given an information system with decision 
IS = (U,AT ∪ DT , h, g) , where U =

{
x1, x2,… , xn

}
 is a 

nonempty and finite objects set; AT =
{
a1, a2,… , ap

}
 

is a nonempty and finite set composed by conditional 

Fig. 1  The brief framework of the study
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attributes, DT =
{
d1, d2,… , dq

}
 is a nonempty and finite 

set constituted by decision attributes, and additionally, 
AT ∩ DT ≠ � ; h ∶ U × AT ⟶ Va is the information func-
tion, and for ∀a ∈ AT  , ∀x ∈ U , Va is the finite domain of 
a; g ∶ U × DT ⟶ Vd is the information function, and for 
∀d ∈ DT  , ∀x ∈ U , Vd is the finite domain of d. And this 
paper keeps an eye on the single-decision information sys-
tem, namely, DT = {d}.

Definition 2 Given a decision information system 
(ODIS) , IS⪰ = (U,AT ∪ {d}, h, g) , for any ∀a ∈ AT  , all 
the domain of a is entirely pre-ordered by the relation 
⪰a . An increasing preference is defined as ∀x, y ∈ U  , 
y ⪰a x ⇔ h(y, a) ≥ h(x, a) ; similarly, a decreasing preference 
is defined as y ⪰a x ⇔ h(y, a) ≤ h(x, a).

In real life, the decision-makers have already known the 
rank of criterion in accordance with prior knowledge. Con-
sidering simplicity and generality, this paper just includes 
criteria with increasing order.

Definition 3 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , for 
∀A ⊆ AT  , a ∈ A , the dominance-based neighborhood rela-
tion DN⪰�

A
 on A is defined as

where dA(x, y) =
�∑

a∈A

�
h(x, a) − h(y, a)

�2 . dA is a Euclid-
ean distance function reflecting the distance between any two 
objects under attribute subset A and � (𝜆 > 0) is a threshold.

Moreover, d, as a decision attribute, the dominance rela-
tion on d is expressed as D�+

d
= {(x, y) ∣ g(x, d) ≤ g(y, d)} and 

D�−
d

= {(x, y) ∣ g(x, d) ≥ g(y, d)}.

Definition 4 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , for 
∀A ⊆ AT  , ∀x ∈ U , the dominating neighborhood sets and 
dominated neighborhood sets according to A are defined as

In an ODIS, {d} is a DT with a single decision attribute, 
U∕d =

{
d1, d2,… , dt

}
(t ≤ |U|) , where preference-order 

relationship is suitable to dt , and dt ⪰ … dt
�

⪰ d1.

Definition 5 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , for 
∀A ⊆ AT  , X ⊆ U , the lower and upper approximations of 
the subset X are defined as

(1)DN⪰�
A

=
{
(x, y) ∣ dA(x, y) ≤ � ∧ h(x, a) ≤ h(y, a)

}
,

(2)
DN�+

A
(x) =

{
y ∈ U ∣ y DN⪰�

A
x
}
,

DN�−
A
(x) =

{
y ∈ U ∣ x DN⪰�

A
y
}
.

(3)
DN⪰𝜆

A
(X) =

{
x ∈ X ∣ DN𝜆+

A
(x) ⊆ X

}
,

DN⪰𝜆
A
(X) =

{
x ∈ X ∣ DN𝜆+

A
(x) ∩ X ≠ �

}
,

where DN⪰�
A
(X) and DN⪰�

A
(X) are a pair of approximation 

operators. If DN⪰�
A
(X) = DN⪰�

A
(X) , then X with respect to 

DN⪰�
A
(X) and DN⪰�

A
(X) is accurate; otherwise, X is rough.

Property 1 According to Definition 5, we can easily get that 
DN⪰𝜆

A
(X) ⊆ X ⊆ DN⪰𝜆

A
(X).

Definition 6 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , 
U∕d =

{
d1, d2,… , dt

}
 , for ∀A ⊆ AT  , the upper and lower 

approximations of d with respect to A are defined as

And the boundary and the positive regions of d with respect 
to A are defined as

Definition 7 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , for 
∀A ⊆ AT  , the dependency degree of d with respect to A is 
defined as

where |⋅| is the representation of the cardinality of the set. 
�⪰�
A
(d) is the reflection of the ability to approximate {d} of 

subset A. And a larger �⪰�
A
(d) corresponds to the subset’s 

stronger ability to approximate.
Additionally, the value of the dependency degree depends 

on two factors. One is the value of � , and the other is the 
range of the subset A. As for � , the larger the value of � is, 
the smaller the �⪰�

A
(d) is. While for A, with more attributes 

included in A, the dependency degree grows larger.

2.2  Shortcomings of dominance neighborhood 
rough sets

When calculating the dominance-based neighborhood 
classes of the DNRS, we generally regard the weight of each 
attribute as 1. In other words, each attribute has the same 
degree of importance in feature selection, which contrib-
utes to inadequate exploration of the internal relationship 
among conditions and decisions. Additionally, the attributes 

(4)

DN⪰�
A
(d) =

t⋃
i=1

DN⪰�
A

(
di
)
,

DN⪰�
A
(d) =

t⋃
i=1

DN⪰�
A

(
di
)
.

(5)
BN⪰�

A
(d) = DN⪰�

A
(d) − DN⪰�

A
(d),

POS⪰�
A
(d) =

⋃
di∈U∕d

DN⪰�
A

(
di
)
.

(6)�⪰�
A
(d) =

|||POS
⪰�
A
(d)

|||
|U| ,
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with larger attribute-values are more likely to be selected if 
assigned the same weights. Next, an instance will show the 

weakness of the classical DNRS and verify the necessity of 
the assignment of various weights.

Example 2.1 Given a decision information table 
IS⪰ = (U,AT ∪ {d}, h, g) is shown in Table 1, where sam-
ple set is U = {x1, x2,⋯ , x10} , conditional attribute set is 
AT = {a1, a2, a3, a4} , decision attribute set is D = {d} . These 
samples are divided into two parts d1 = {x1, x2, x3, x4, x5} 
and d2 = {x6, x7, x8, x9, x10} by d. Given two attribute subsets 
A1 = {a1, a2},A2 = {a3, a4} and a neighborhood threshold 
� = 0.1 , the dominance neighborhood information granules 
are formed by A1 and A2 under � = 0.1 are shown in Table 2.

From Table 2, we know that the granularity of neighbor-
hood information granules induced by A1 is finer than that 
induced by A2 . According to the definition of POS⪰�

A
 and 

Tab le   2 ,  we  can  ge t  t ha t  POS⪰�
A1

= U  and 
POS⪰�

A2

= {x1, x2, x3, x6, x7, x8, x9, x10} . Therefore,we can get 
that �⪰�

A1

(d) = 1 and �⪰�
A2

(d) = 0.8 . So from the above analysis, 
it is obvious that the ability of A1 to approximate d is better 
than that of A2 . We then use KNN, LSVC and LR to classify 
unknown regions, and the classification results are shown in 
Fig. 2. As is shown in the picture, the separability of attrib-
ute subset A2 is significantly higher than that of A1 . Under 
attribute subset A1 , some samples are misclassified by KNN, 
LSVC and LR (see Fig. 2a–c). Under attribute subset A2 , all 
samples can be correctly classified by KNN, LSVC and LR 
(see Fig. 2d–f). A1 approximates d better than A2 , but A1 is 
less separable with respect to d than A2 . Therefore, it is 

Table 1  A decision information 
system

U a1 a2 a3 a4 d

x1 0.28 0.89 0.21 0.29 1
x2 0.30 0.90 0.19 0.26 1
x3 0.48 0.51 0.20 0.39 1
x4 0.50 0.52 0.26 0.38 1
x5 0.61 0.69 0.29 0.35 1
x6 0.39 0.71 0.27 0.18 2
x7 0.37 0.65 0.33 0.24 2
x8 0.62 0.90 0.38 0.20 2
x9 0.76 0.86 0.35 0.36 2
x10 0.89 0.50 0.39 0.28 2

Table 2  Information granules U DN
⪰�
A1

(x) DN
⪰�
A2

(x)

x1 {x1, x2} {x1, x4, x5}

x2 {x2} {x1, x2, x4}

x3 {x3} {x3}

x4 {x4} {x4, x5, x7}

x5 {x5} {x5, x9}

x6 {x6} {x6, x7}

x7 {x6, x7} {x7, x10}

x8 {x8} {x8, x10}

x9 {x9} {x9}

x10 {x10} {x10}

Fig. 2  Classification results 
under three classifiers on A1 
and A2
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limited to use the dominance neighborhood rough set model 
to measure the importance of attribute subsets. Next, we will 
introduce an effective model to measure the importance of 
attribute subsets.

3  The weighted dominance‑based 
neighborhood rough sets

As illustrated in the above example, one of the disadvan-
tages of DNRS is that each conditional attribute has the 
same weight when selecting necessary and non-redundant 
features. However, different weights are conducive to reveal 
how important each attribute is to decision-making. Then we 
are to propose a new rough set model named the weighted 
dominance-based neighborhood rough set(WDNRS) to 
assess the importance of feature subsets.

3.1  The generation of the w

Next, we give the generation process of w.
Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , for ∀a ∈ AT  , 

∀x ∈ U , h(x, a) is the value of object with respect to a. Let 
the coefficient matrix be

MA =

⎛⎜⎜⎜⎝

h
�
x1, a1

�
h
�
x1, a2

�
⋯ h

�
x1, ap

�
h
�
x2, a1

�
h
�
x2, a2

�
⋯ h

�
x2, ap

�
⋮ ⋮ ⋮ ⋮

h
�
xn, a1

�
h
�
xn, a2

�
⋯ h

�
xn, ap

�

⎞⎟⎟⎟⎠
,

the vector  of  the decision at t r ibute d  be 
Md =

(
g
(
x1, d

)
, g
(
x2, d

)
,… , g

(
xn, d

))T  , and the partition 
coefficients of attributes be � =

(
�
(
a1
)
, �
(
a2
)
,… , �

(
ap
))T . 

In order to find out the optimum, in turn, we are going to 
solve the optimization problem

where ‖∙‖2 is the representation the 2-norm of a vector. To 
solve this, first assuming MA� = Md , then 

(
MA

)T are multi-
plied to both sides to get 

(
MA

)T
MA� =

(
MA

)T
Md . Finally, 

we can get � =
((

MA

)T
MA

)−1(
MA

)T
Md.

Particularly, when the matrix 
(
MA

)T
MA is not invert-

ible, or a penalty term is in need in the optimum function, 
we transform equation to �(�) = ��MA� −Md

��2 + ‖�‖2 . 
Since �(�) is a convex function, the minimum of �(�) 
can be attained when �� (�) = 0 . And that is to say 
�
�

(�) = 2
(
MA

)T(
MA� −Md

)
+ 2� = 0 . Hence, there is 

(7)𝜂⋆ = argmin‖‖MA𝜂 −Md
‖‖,

(
MT

A
MA + E

)
� = MT

A
Md , where E is an identity matrix. Then 

in this situation, � =
(
MT

A
MA + E

)−1
MT

A
Md . And if MT

A
MA or 

MT
A
MA + E is high dimensional or near to ill-conditioned, 

subfunction ”np.linalg.solve” in Numpy , is used to directly 
solve MT

A
MA� = MT

A
Md

 or (MT
A
MA + E

)
� = MT

A
Md

 , rather 
than the inverse matrix.

Additionally, |�(a)| is the absolute value of �(a) , and is 
the reflection of the relation between condition attribute a 
and decision attribute d. The larger the absolute value is, the 
stronger the internal correlation is.

Definition 8 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
∀a ∈ AT  , the weight of a can be defined as

Property 2 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
for ∀a ∈ AT  ,  the weight vector with features 
� =

(
�
(
a1
)
,�

(
a2
)
,… ,�

(
ap
))T , then 

(1) �(a) ≥ 0;
(2) 

∑
ai∈AT

�
�
ai
�
= �AT�.

Proof (1)–(2) can be directly demonstrated by Definition 8.
From Property 2, we can get that the weights of condi-

tional attributes are calculated by the partition coefficients 
between the conditions and decisions. The higher � reflects 
the higher relevance between the condition attributes and 
the decision.

  ◻

Definition 9 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
� =

(
�
(
a1
)
,�

(
a2
)
,… ,�

(
ap
))T  is the weight vector of 

attribute, for attribute subset A ⊆ AT  and neighborhood 
threshold � , the distance function between two objects is 
defined as

And the weighted dominance-based neighborhood relation 
and relative dominating and dominated sets are defined as

(8)�(a) =
�AT���(a)�

∑
ai∈AT

����
�
ai
����
.

(9)

dA(x, y) =
√∑

a∈A

(�(a)(h(x, a) − h(y, a)))2

=
√∑

a∈A

�2(a)(h(x, a) − h(y, a))2.
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where �(a) represents the weight of attribute a and it sat-
isfies that �(a) ≥ 0 , 

∑
a∈AT ��(a)� = �AT� . When 𝜔(a) > 1 , 

the significance of attribute a is added in feature selection; 
otherwise, when 0 < 𝜔(a) < 1 , reduced. What’s more, when 
�(a) = 1 , the degree of importance of a remains still. Espe-
cially, if �(a) = 0 , then this attribute can be pre-removed 
before selecting features. And we set a degree of tolerance 
� for the dominance relation, since it is severe for an object 
to meet the need that all the conditional attributes’ values 
must be larger than that of another object, especially when 
the distance requirement has been satisfied. And once setting 
� = 0 , it is a strictly dominance-based relation.

W
⪰
A
 represents a weighted dominance-based neighbor-

hood relation. When � = 1 and � = 0 , W⪰
A
 is a generalization 

of dominance-based neighborhood relation. That is to say, 
the dominance-based neighborhood relation is a special case 
of the weighted dominance-based neighborhood relation.

Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , W⪰
A
 is a weighted 

dominance-based neighborhood relation, ∀x ∈ U , then we 
can get the reflexivity from Definition 9:

Example 3.1 (Continuing from Example 2.1) In order to 
manifest the effectiveness of the weights, we review the 
example. The � and � can be calculated through Eqs. 7 
and 8, then � = (−0.4634, 0.2867, 6.6948,−1.3231) and 
� = (0.2114, 0.1308, 3.0542, 0.6036) . Since �

(
a1
)
 , �

(
a2
)
 

and �
(
a4
)
 are less than 1, the influence of a1 , a2 and a4 in 

decision making needs to be reduced. While a3 , correspond-
ing to the weight more than 1, is paid more attention when 
making decision. And we still assume � = 0.1 in this exam-
ple. The weighted dominance neighborhood information 
granules generated by A1 and A2 are shown in Table 3.

(10)

W
⪰
A
=
{
(x, y) ∣ dA(x, y) ≤ � ∧ h(x, a) − � ≤ h(y, a)

}
;

W
+
A
=
{
y ∈ U ∣ yW⪰

A
x
}
, W

−
A
=
{
y ∈ U ∣ x W⪰

A
y
}
,

(11)Reflexivity ∶ (x, x) ∈ W
⪰
A
.

From Table 3, we can get that WPOS�
A1

=
{
x6, x8, x9, x10

}
 

and WPOS�
A2

= U . Hence, corresponding dependency degree 
are �⪰�

A1

(d) = 0.4 and �⪰�
A2

(d) = 1 . Connected with Fig. 2, it is 
evident that the results obtained from the two perspectives 
are consistent. That is to say the ability of A2 to approximate 
D in the dominance neighborhood rough set is better than 
that of A1 . Therefore,the weighted dominance neighborhood 
rough set model can make up the deficiency of the domi-
nance neighborhood rough set model.

3.2  The weighted dominance‑based neighborhood 
conditional entropy

In [41], Hu et  al. proposed dominance-based condition 
entropy (DCE) to access the degree of ranking consistency 
of samples in an ODIS. It is obvious that DCE only obeys 
the dominance-based relation, which is not equivalent to the 
weighted dominance-based neighborhood relation. Since it 
ignores the influence of the noise and regards every attrib-
ute equally. In order to make up the above weaknesses, we 
propose the weighted dominance-based neighborhood con-
ditional entropy (WDNCE) next.

Definition 10 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
∀A ⊆ AT  , the WDNCE of A with respect to d is defined as

In Eq. 12 , |W+
A(xi)∩D

+
d (xi)||W+

A(xi)|  can be considered as a variable, 
which is the main element of WDNCE. And this variable is 
a reflection of the degree of ranking consistency of samples 
in accordance with the conditional feature subset A and the 
decision feature d. And it is evident that this variable is in 
inverse proportional to the value of WDNCE, which shows 
WDNCE is non-negative. What’s more, chances that the 
rank produced by the reduced attribute subset is closer to the 
actual decision. That is to say, the smaller value of WE

⪰
d∣A

(U) , 
the more necessary of conditional attribute subset A, and 
vice versa.

In the following, we are going to give the definition of the 
attribute significance measure, which is conducive to acquire 
necessary and informative attributes when selecting features.

3.3  Attribute reduction

Definition 11 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
∀A ⊆ AT  , ∀a ∈ A , the WDNCE-based inner significance 
measure of a for A is defined as

(12)WE
⪰
d∣A

(U) = −
1

|U|
n∑
i=1

log

|||W
+
A

(
xi
)
∩ D+

d

(
xi
)|||

|||W
+
A

(
xi
)|||

.

Table 3  Information granules

U DN
⪰�
A1

(x) DN
⪰�
A2

(x)

x1 {x1, x2, x8} {x1}

x2 {x2, x8} {x1, x2, x3}

x3 {x3, x5, x8, x9} {x3}

x4 {x4, x5, x8, x10} {x4, x5}

x5 {x5, x8, x9} {x5}

x6 {x6, x8, x9} {x6}

x7 {x5, x6, x7, x8, x9} {x7, x9}

x8 {x8} {x8, x10}

x9 {x9} {x9}

x10 {x10} {x10}
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According to the explanation of WDNCE, a higher inner 
significance measure indicates the greater importance of the 
conditional attribute subset. We can select essential features 
from the sets and get the core feature set A, which is denoted 
as CoreA =

{
a ∈ A ∣ sim⪰

in
(a,A, d) > 0

}
.

Definition 12 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
∀A ⊆ AT  , ∀a ∈ (AT − A) , the WDNCE-based outer signifi-
cance measure of a for A is defined as

Similarly, the outer significance measure is also conducive to 
find out necessary features and delete redundant ones. Given 
an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) and ∀a ∈ AT  , we have 
a ∈ CoreA as long as sim⪰

in
(a,A, d) > 0 . And a can be viewed 

as an indispensable attribute. Then a reduct can be gained 
by gradually adding single attribute from the attributes not 
among the core and finding the subset with the highest outer 
significance measure.

Next, we are going to introduce the conditions of feature 
selection based on WDNCE.

Definition 13 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
∀A ⊆ AT  , the selected attribute subset A can be a reduct of 
IS⪰ only if it meets the following requirements:

The aim of attribute reduction is to figure out meaningful 
attributes without redundancy, and the two conditions are 
guarantees. The former ensures our selected feature subset 
owns the same discernibility as the initial one. The latter 
guarantees that every feature in the simplified subset is indis-
pensable via getting rid of redundant elements. Hence, a 
reduct can be obtained when these two items are satisfied.

3.4  Feature selection in matrix form

When handling with high-dimensional data, it is intuitive 
and effective to transform the calculation to matrix. There-
fore, there is a need to acquire WDNCE through relation 
matrices. Subsequently, we are going to give the conception 
of the operations on relation matrices.

Definition 14 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , 
∀A ⊆ AT  , W⪰

A
 is a dominance relation under A, and its cor-

responding relation matrix with respect to A on U is defined 
as �A

U
=
[
mA

(i,j)

]
n×n

 , where

(13)sim⪰U
in

(a,A, d) = WE
⪰
d∣A−{a}

(U) −WE
⪰
d∣A

(U).

(14)sim⪰U
out

(a,A, d) = WE
⪰
d∣A

(U) −WE
⪰
d∣A∪{a}

(U).

(15)
(1)WE

⪰
d∣A

(U) = WE
⪰
d∣AT

(U);

(2) ∀a ∈ A,WE
⪰
d∣A−{a}

(U) ≠ WE
⪰
d∣AT

(U).

Property 3 �A
U
=
[
mA

(i,j)

]
n×n

 is a dominance relation matrix, 
it holds: 

(1) mA
(i,j)

= 1 , where i ∈ [1, n] and i ∈ N+;
(2) 

∑n

j=1
mA

(i,j)
=
���W

+
A

�
xi
���� and  

∑n

i=1
mA

(i,j)
=
���W

−
A

�
xi
���� , 

where i, j ∈ [1, n] and i, j ∈ N+.

Definition 15 Given A1,A2 ⊆ AT ∪ {d} , �A1

U
 and �A2

U
 are 

relation matrices respectively under attribute subsets A1 and 
A2 , operations ′′▽′′ are defined as

From Eq. 17, we can know that ′′▽′′ is used to produce a 
new relation matrix, and the new one considers both attrib-
ute subsets A1 and A2.

Definition 16 Given A ⊆ AT ∪ {d} , �A
U
=
[
mA

(i,j)

]
n×n

 be a 
relation matrix £and its corresponding diagonal matrix can 
be defined as �̂ =

[
m̂A

(i,j)

]
n×n

 , where

Additionally, the inverse matrix of �̂A
U

 is represented as (
�̂

A
U

)−1

=
[
1∕m̂A

(i,j)

]
n×n

.

Definition 17 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
∀A ⊆ AT  , grounded on two diagonal matrices, WDNCE of 
A to d is denoted as follows, where �̂A∪{d}

U
= �̂

A
U
▽D+

d
.

Proof According to Definition 10. it can be found as follows. 
Through the proof below indicates that WDNCE generated 
by Eqs. 12 and 19 are the same.

(16)mA
(i,j)

=

{
1, y W⪰

A
x;

0, otherwise.

(17)�
A1

U
▽�

A2

U
=
[
m

A1

(i,j)
× m

A2

(i,j)

]
n×n

.

(18)m̂A�
(i,j)

=

�∑n

k=1
mA

(i,k)
, 1 ≤ i = j ≤ n;

0, 1 ≤ i, j ≤ n, i ≠ j.

(19)WE
⪰
d∣A

= −
1

|U| log
||||�̂

A∪{d}

U
▽

(
�̂

A
U

)−1||||.

WE
⪰
d∣A

(U) = −
1

�U�
∑n

i=1
log

∏n

i=j=1

�̂
A∪{d}

(i,j)

�̂
A
(i,j)

=

−
1

�U� log
∏n

i=j=1
�̂

A∪{d}

(i,j)∏n

i=j=1
�̂

A
(i,j)

= −
1

�U� log
∏n

i=1

�∑n

k=1
W

⪰A∪{d}

(i,k)

�

∏n

i=1

�∑n

k=1
�̂

A
(i,k)

� =

−
1

�U� log
∏n

i=1

���W
+
A∪{d}

�
xi
����∏n

i=1

���W
+
A

�
xi
����

=

−
1

�U� log
∏n

i=1

���W
+
A

�
xi
�
∩ D+

d

�
xi
����∏n

i=1

���W
+
A

�
xi
����

= −
1

�U�
∑n

i=1
log

�W+
A (xi)∩D

+
d (xi)��W+

A (xi)�
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What’s more, from Eq. 19 we can know that the center part 

of WDNCE is 
||||�̂

A∪{d}

U
▽

(
�̂

A
U

)−1|||| , which directly shows the 

proportion of the diagonal matrices �̂A∪{d}

U
 to �̂A

U
 . And its 

practical meaning is in agreement with Eq. 12.

  ◻

3.5  Heuristic feature selection mechanism

This subsection is going to introduce the non-incremental 
heuristic attribute reduction algorithm which is grounded on 
Definition 13. Concrete steps are presented in Algorithm 1.

to acquire indispensable features. Steps 11–17 add necessary 
features with the highest outer significance from the remains 
into the core feature set. In Steps 18–22, redundant attributes 
are deleted with the WDNCE unchanged. And all three seg-
ments’ time complexity are O

(|AT|2|U|2).

4  Incremental approach for the weighted 
dominance‑based neighborhood rough 
set with dynamic objects

In actual life, dynamic objects can be divided into two kinds: 
increasing samples and decreasing ones. Out of the similar-
ity of the two situations, this study just focuses on the situa-

tion that samples are added into the origin dataset. Section 3 
has already presented the way WDNCE selects necessary 
features. In spite of the use of matrix form, repeating calcu-
lation is time-wasting once objects vary, particularly faced 
with big data. On that ground, we introduce an incremental 
algorithm for attribute reduction.

In algorithm WDNCE-HAR, Step 2 calculate the wights 
of the entire conditional feature sets, and the time complex-
ity is O(|U| × |AT|) . In Step 3, WDNCE based on the raw 
set AT is counted, corresponding to the time complexity of 
O
(|AT|2|U|2) . Steps 4–10 apply inner significance measure 
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4.1  Incremental mechanism of WDNCE 
when increasing objects

According to Eq. 12, it can be found that the update of 
WDNCE is the outcome of the variation of dominance rela-
tion matrix and its diagonal matrix. That is to say, before 
generating the new WDNCE, we need to introduce the 
changes of the weight, relation matrices and corresponding 
diagonal matrices and we start from the update of weight 
when there are objects added.

Definition 18 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , 
where U =

{
x1, x2,… , xn

}
 , ∀a ∈ AT  , we can get the 

weight from Eq.  11. Then new sample set come in, 
U+ =

{
xn+1, xn+2,… , xn+n�

}
 . The update of � is presented as

where � is the original weight generated under objects set 
U, and �′ is a new weight produced under objects set U+ . 
Moreover, when xi and xj are not in the above two situations, 
we treat the weights as the weighted average of � and �′ . 
Figure 3 illustrates the update principle of � . Next, we give 
the conception about the update of matrices.

Proposition 1 Let an ODIS, IS⪰ = (U,AT ∪ {d}, h, g) , where 
U =

{
x1, x2,… , xn

}
 , ∀A ⊆ AT  , W⪰

A
 is a dominance relation 

under A, the weighted dominance relation matrix with 
respect to A on U is defined as �A

U
=
[
mA

(i,j)

]
n×n

 . Then objects 

increase. New object set U+ =
{
xn+1, xn+2,… , xn+n�

}
 adds to 

U. Then the changed object set is Ũ = U ∪ U+ , and the 
updated dominance relation matrix is presented as 
�

A

Ũ
=
[
m̃A

(i,j)

]
(n+n�)×(n+n�)

 , where

Proof Given that U+ =
{
xn+1, xn+2,… , xn+n�

}
 is joined to U, 

then Ũ = U ∪ U+ =
{
x1, x2,… , xn, xn+1,… , xn+n�

}
 . And we 

can divide the updated dominance relation into four parts, 
which is

⎡⎢⎢⎢⎣

�
�

1A

U,U

�
n×n

�
�

2A

U,U+

�
n×n��

�
3A

U+,U

�
n
�×n

�
�

4A

U+,U+

�
n
�×n�

⎤⎥⎥⎥⎦
Relative presentation is in Fig. 4.
The first part of the matrix is on behalf of the dominance 

relation of U × U under A. The second section of the matrix 
represents the dominance relation of U × U+ under A. The 
third segment shows the the dominance relation of U+ × U 
under A, while the last one displays the dominance relation 
of U+ × U+ under A. When i and j are both between 1 and n, 
�

1A
U,U

=
[
m1A

(i,j)

]
n×n

 , if xjW
⪰
A
xi satisfies, m1A

(i,j)
= 1 , otherwise, 

0. When i and j have at least one beyond n, m̃A
(i,j)

= 1 only if 
xjW

⪰
A
xi holds. Similarly, m̃4A

(i,j)
= 1 holds under the condition 

that xjW
⪰
A
xi.

�
1A
U,U

 is the already existed part, and we do not need to 
recalculate it. Meanwhile, we can find that �2A

U,U+
 , �3A

U+,U
 , 

�
4A
U+,U+

 can be summarized a unified expression, and

m̃A
(i,j)

=

⎧⎪⎨⎪⎩

1, xjW
⪰
A
xi,

�
n + 1 ≤ i ≤ n + n�

�
∧
�
n + 1 ≤ j ≤ n + n�

�
;

0, otherwise.

Thus, the proposition can be proved.

(20)�̃ =

⎧
⎪⎨⎪⎩

�, 1 ≤ i, j ≤ n;

��, n + 1 ≤ i, j ≤ n + n�;
n×�+n�×��

n+n�
otherwise,

(21)

m̃A
(i,j)

=

⎧⎪⎨⎪⎩

mA
(i,j)

, 1 ≤ i, j ≤ n;

1, xjW
⪰
A
xi,

�
n + 1 ≤ i ≤ n + n�

�
∨
�
n + 1 ≤ j ≤ n + n�

�
;

0, otherwise.

Fig. 3  Update principle of �

Fig. 4  Update principle of dominance relation matrix
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Furthermore, we are going to introduce the way domi-
nance diagonal matrix update.

◻

Proposition 2 Let an ODIS , IS⪰ = (U,AT ∪ {d}, h, g) , 
where U =

{
x1, x2,… , xn

}
 , ∀A ⊆ AT  , the existed diagonal 

matrix is �̂A
U
=
[
m̂A

(i,j)

]
n×n

 . After adding samples, the matrix 

is �̂A

Ũ
=
[
m̂A

(i,j)

]
(n+n�)×(n+n�)

 , where

Proof In accordance with Definition 16, it can be known that 
if an element is not on the diagonal, then its corresponding 
value in dominance diagonal matrix is 0. That is to say, 
∀i, j ∈

[
1, n + n�

]
 , if i ≠ j , then ̃̂m

A

(i,j)
= 0 always satisfies. And 

when i = j , there are two situations. First, for ∀i = j ∈ [1, n] , 
we have ̃̂m

A

(i,j)
=
∑n+n�

k=1
m̃A

(i,k)
=
∑n

k=1
mA

(i,k)
+
∑n+n�

k=n+1
m̃A

(i,k)
 . For 

∀i, k ∈ [1, n] , corresponding weights are unchanged, that 
means the existed weighted dominance-based neighborhood 
relation for objects in U always holds. So there is 
̂̃m
A

(i,j)
=
∑n

k=1
mA

(i,k)
+
∑n+n�

k=n+1
m̃A

(i,k)
= m̂A

(i,j)
+
∑n+n�

k=n+1
̃̂m
A

(i,k)
 . 

Besides, for any n + 1 ≤ i = j ≤ n + n� , ̃̂m
A

(i,j)
=
∑n+n�

k=1
m̃A

(i,k)
 . 

Then we can get the the update principle of diagonal 
matrices.

  ◻

4.2  Incremental algorithm for feature selection

In this subsection, we propose an incremental algorithm fac-
ing increasing samples based on WDNCE. In Algorithm 2, 

(22)̃̂m
A

(i,j)
=

⎧
⎪⎨⎪⎩

m̂A
(i,j)

+
∑n+n�

k=n+1
mA

(i,k)
, 1 ≤ i = j ≤ n;∑n+n�

k=1
m⪰A

(i,k)
, n + 1 ≤ i = j ≤ n + n�;

0, i, j ∈
�
1, n + n�

�
, i ≠ j.

Step 1 increases dataset’s objects. Step 2 is used to update 
the weights and it is worth mentioning that the origin 
weights are reserved for the initial data. And Step 2 also 
updates all kinds of initial diagonal matrices by Proposition 
1. The time complexity of Step 2 is |AT||||Ũ

|||||U+
|| . In the fol-

lowing, we use Step 3 to generate the new WDNCE via 
using Eq.  19. Steps 4–8 differentiates the relationship 
between WDNCE under the previous reduct and under the 
raw attribute set for the new dataset. If the value of the for-
mer is not higher than the latter, we consider the previous 
reduct as the reduct under new dataset. If not, Steps 9–14 
depict the way the necessary attributes are added into the 
previous reduct and their relative steps are |AT − C||||Ũ

|||
2

 . 
After finding out the reduct, Steps 16–21 aims at getting rid 
of redundant features and get the final reduct in Steps 22 and 
23. And corresponding time complexity of Steps 16–21 are 
|C|2|||Ũ

|||
2

.

5  Experimental analysis

In this part, we evaluate the proposed method via twelve 
datasets downloaded from UCI, which are shown in Table 4. 
All experiments are carried out on a private computer and 
its configuration is below. Its CPU is i5-11300H with the 
memory of 16GB and the system of Windows 11. In addi-
tion, the algorithms are coded by Python.

Before starting numerical experiments, we need to pro-
cess the data. First, we transform all the symbols of categori-
cal features into numerical value based on their semantic 
meaning. Additionally, values of the whole dataset need to 
be normalized via vai =

vai−min(Vai)
max(Vai)−min(Vai)

.
In order to demonstrate the advantages of the proposed 

method WDNCE-IAR in effectiveness and efficiency, the 
model is evaluated from two aspects, effectiveness and 

Table 4  The description of data 
sets

No. Data sets Abbreviation Samples Attributes Classes

1 Wine Wine 178 13 3
2 Sonar,mines vs rocks Sonar 208 60 2
3 Seeds Seeds 210 7 3
4 Heart Failure Clinical Records Heart 299 13 2
5 Leaf Leaf 340 15 30
6 Ionosphere Iono 351 34 2
7 Forest Fires Forest 517 13 2
8 Wisconsin Diagnostic Breast Cancer Wdbc 569 31 2
9 Breast Cancer Breast 699 10 2
10 Maternal Health Risk Health 1014 7 3
11 Cardiotocography Card 2126 21 3
12 Statlog (Image Segmentation) Image 2310 19 7
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efficiency. For effectiveness, we focus on the reduct size 
and the precision. WDNCE-IAR is compared with five 
other algorithms, WDNCE-HAR, DCE-HAR [28], DCE-
IAR [28], NCMI [23], HKCMI [42]. WDNCE-HAR is a 
heuristic feature selection mechanism based on the weighted 
dominance-based neighborhood conditional entropy shown 
in Algorithm 1. DCE-HAR and DCE-IAR apply dominance 
conditional entropy into attribute reduction, and the latter is 
a dynamic approach on the basis of the former. NCMI, as an 

interaction attribute reduction, is grounded on neighborhood 
conditional mutual information. HKCMI combines fuzzy 
complementary mutual information on clustering issues. In 
addition, two classifiers BayesNet and RandomTree are uti-
lized to verify the classification performance of the reduct 
derived from those methods. We carry out experiments 
adopting 10-fold cross-validation. And for efficiency, speed-
up ratio is our evaluation criteria.
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5.1  Effectiveness analysis

In this subsection, we are going to compare WDNCE-IAR 
with the other five mechanisms in terms of their classifica-
tion precision. Randomly choosing 50% of the objects from 
one dataset, the remaining half samples are viewed as sub-
sequent-added objects. When generating a new reduct, the 
rest is added to the origin. Respectively assessing the clas-
sification accuracy under the above algorithms, the results 
are presented below in Tables 5 and 6 where the bold parts 
refer to the highest accuracy. Table 5 is about classification 
outcome under BayesNet, likewise, Table 6, RandomTree. 
In the table, ”RAW” means the classification accuracy of the 
raw data. Extra, the number in bracket following the accu-
racy represents the feature number of the ultimate reduct.

As illustrated in Tables 5 and 6 no matter in what clas-
sifier, the classification precision of WDNCE-IAR is bet-
ter than that of other methods for most of the datasets. 
Moreover, the proposed method select less features without 

significantly worsening classification performances. Con-
versely, sometimes there is a decent classification accuracy 
instead.

Considering WDNCE-IAR involves two parameter � and 
� , then we are going to further explore the classification 
performance under the combination of different parameters’ 
values. Figure 5 shows the classification precision under 
BayesNet classifier for six datasets with the variation of 
both � and � . The abscissa represents the parameter � and 
the ordinate is on behalf of the parameter � . Classification 
results are displayed on z-axis. The values of � are set from 
0.1 to 0.2 with a step of 0.025. Meanwhile � ranges from 0 
to 0.2 in steps of 0.05.

Through Fig. 5, it is evident that classification accuracy 
is actually influenced by parameters � and � , which, to some 
extent, demonstrates the necessity of our research. For data-
set Seed, Iono and Forest, their figures are fluctuating with 
the change of two parameters. However, there are some 
instances that the value of � has an inapparent impact on 

Table 5  The comparative 
classification results of different 
algorithms on BayesNet 
classifier (%)

Data set RAW NCMI HKCMI DCE − HAR DCE − IAR WDNCE − HAR WDNCE − IAR

Wine 0.9624 0.9494(9) 0.9629(9) 0.9685(9) 0.9705(10) 0.9595(4) 0.9891(5)
Sonar 0.7085 0.7298(46) 0.6984(8) 0.6929(6) 0.6945(5) 0.7342(4) 0.7868(6)
Seeds 0.8974 0.9057(7) 0.9286(6) 0.9418(6) 0.9386(6) 0.9054(6) 0.9442(6)
Heart 0.7636 0.7866(8) 0.7911(9) 0.7445(11) 0.7211(11) 0.7993(6) 0.8316(6)
Leaf 0.6426 0.7015(7) 0.5882(5) 0.6153(9) 0.6084(8) 0.6367(10) 0.7081(12)
Iono 0.8896 0.9269(12) 0.8491(12) 0.7523(18) 0.7587(18) 0.8852(46) 0.9186(5)
Forest 0.9461 0.9527(8) 0.9288(8) 0.8997(8) 0.9022(9) 0.9541(6) 0.9656(7)
Wdbc 0.9265 0.9483(7) 0.9239(12) 0.9294(13) 0.9266(7) 0.9324(13) 0.9502(15)
Breast 0.9619 0.9526(4) 0.9649(8) 0.9667(8) 0.9643(9) 0.9648(4) 0.9681(4)
Health 0.6059 0.6565(6) 0.6203(5) 0.6109(6) 0.6109(6) 0.6254(6) 0.6354(6)
Card 0.7416 0.8605(5) 0.7602(10) 0.7545(10) 0.7574(10) 0.7462(11) 0.8164(10)
Iamge 0.6722 0.8323(4) 0.5335(7) 0.6817(10) 0.6923(10) 0.6852(14) 0.7148(14)
Average 0.8099 0.8502 0.7975 0.7965 0.7955 0.8191 0.8524

Table 6  The comparative 
classification results of different 
algorithms on RandomForest 
classifier (%)

Data set RAW NCMI HKCMI DCE − HAR DCE − IAR WDNCE − HAR WDNCE − IAR

Wine 0.9718 0.9315(9) 0.9631(9) 0.9536(9) 0.9833(10) 0.9581(4) 0.9723(5)
Sonar 0.7959 0.7255(46) 0.7397(8) 0.7535(6) 0.7395(5) 0.7881(4) 0.8023(6)
Seeds 0.8955 0.9233(7) 0.9312(6) 0.9536(6) 0.9215(6) 0.9055(6) 0.9331(6)
Heart 0.8229 0.8214(8) 0.7978(9) 0.8083(11) 0.7423(11) 0.8185(6) 0.8231(6)
Leaf 0.6601 0.6559(7) 0.5817(5) 0.6348(9) 0.6514(8) 0.6629(10) 0.6885(12)
Iono 0.9246 0.9155(12) 0.9182(12) 0.9008(18) 0.9242(18) 0.9243(46) 0.9329(5)
Forest 0.9683 0.9835(8) 0.9534(8) 0.9638(8) 0.9609(9) 0.9766(6) 0.9764(7)
Wdbc 0.9502 0.9443(7) 0.9474(12) 0.9412(24) 0.9441(24) 0.9618(13) 0.9618(15)
Breast 0.9638 0.9597(4) 0.9659(8) 0.9677(8) 0.9677(9) 0.9672(4) 0.96721(4)
Health 0.7926 0.7935(6) 0.7974(5) 0.7971(6) 0.7994(6) 0.7887(6) 0.8066(6)
Card 0.9216 0.8951(5) 0.9232(10) 0.9195(10) 0.9186(10) 0.9227(11) 0.9232(10)
Iamge 0.8477 0.8281(4) 0.5383(7) 0.8219(10) 0.8326(10) 0.8527(14) 0.8534(14)
Average 0.8762 0.8646 0.8385 0.8679 0.8655 0.8773 0.8871
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classification performances. For datasets Leaf, the influence 
of � is slight, since when � is fixed, the variation of � poorly 
influences the classification precision. It is nearly the same 
with Dataset Wine and Dataset Heart except for the situation 
that � is closer to 0.2 and � is next to 0. And from Fig. 5, we 
can find combinations of parameters corresponds to superior 
performance are not fixed. For example, in the dataset Wine, 
the best accuracy is acquired with � = 0.2, � = 0.2 . While 
the precision reaches the maximum in dataset Forest when 
� and � are set 0.125 and 0.1 respectively.

In order to further verify the effectiveness of WDNCE-
IAR and WDNCE-HAR, Wilcoxon signed-ranked test 
is applied to evaluate whether the the proposed methods 
WDNCE-IAR and WDNCE-HAR statically outperform 
comparative approaches. Then corresponding P-values are 
generated in Table 7 where the bold parts are smaller than 
0.1. When setting a significance level of 10 %, most of the 

P-values are smaller than 0.1, particularly for WDNCE-IAR, 
which indicates the classification accuracy of the two meth-
ods are statically higher than others. And that demonstrates 
the effectiveness of the two designed methods.

5.2  Efficiency comparison

This subsection aims at demonstrating the efficiency of 
WDNCE-IAR in accordance with speed-up ratio, which is 
calculated as speed − up ratio =

THAR

TIAR
 . We simulate the 

dynamic process in the following way. Firstly, randomly 
choose 50% samples as the initial dataset.Then, from the 
remaining set, objects wait to be added. We record the time, 
compute the ratio and compare it with the numerical value 
1. If the result is greater than one, then static mechanism 
spends more time on selecting features, which further indi-
cates the necessity of our study.

Fig. 5  Classification accuracy under BayesNet classifier for six datasets based on various parameters � and �

Table 7  P-values of the 
comparison results on two 
classifiers

BayesNet RandomForest

WDNCE-IAR WDNCE-HAR WDNCE-IAR WDNCE-HAR

RAW 0.0013 0.0114 0.0013 0.3051
NCMI 0.2525 0.9369 0.0021 0.0273
HKCMI 0.0013 0.0388 0.0019 0.0539
DCE-HAR 0.0013 0.0539 0.0067 0.0458
DCE-IAR 0.0013 0.0734 0.0043 0.1120
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The results of numerical experiments are shown in 
Fig. 6, where the x-axis denotes the type of datasets and the 
y-axis shows the values of speed-up ratio. From the picture, 
almost all the ratios are beyond 4. For datasets Breast, Heart 
and Wine, WDNCE-IAR is at least ten times faster than 
WDNCE-HAR. And it is noteworthy that the speed-up ratio 
for datasets Iono and Sonar even exceed 60. That is to say 
WDNCE-IAR is efficient in attribute reduction and saves 
lots of time in making decisions.

6  Conclusion and future work

When applying neighborhood rough sets to feature selec-
tion, traditional approaches always directly assign the same 
weights to all conditional features. These methods ignore the 
inner relationship between conditional attributes and deci-
sions. And if we can mine them in advance, we are able to 
highlight those features having high correlations with the 
decision. Hence, it is easier and more effective to figure out 
essential conditional features. Likewise, it is unavoidable 
that in the age of big data, the demand of feature selec-
tion has surged since oceans of data spring up everyday. 
Static methods are inappropriate to access updated massive 
data while incremental learning is conducive to efficiently 
cope with. Inspired by these two limitations, the weighted 

dominance-based neighborhood rough set(WDNRS) is came 
up with and a relative entropy is also introduced. Consider-
ing that matrix form is instrumental in reducing the com-
plexity of calculation, a related incremental algorithm in 
matrix form is also proposed for dynamic ordered data with 
updating samples. Experimental results show that the accu-
racy rises through assigning different weights and incremen-
tal algorithm contributes to shorten the run time. In general, 
the proposed method is capable of effectively and efficiently 
selecting necessary and non-redundant features from update 
ordered data.

There are two respects for our future research. For one 
thing, in the information age, the variation of collected data 
is various. And in this study, we just keep an eye on the 
change of objects. Later, we intend to extend incremental 
feature-selection mechanisms which pay attention to the sin-
gle variation of features or the simultaneous varying of both 
objects and attributes. For another thing, no matter what 
variable changes, features or samples, different datasets cor-
responds to different wights. However, it is a waste of time 
if we count them from scratch. And there is a need to ensure 
the precision of the generated weights. Hence we will inves-
tigate the updated weights in the future.
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Fig. 6  The speed-up ratio of datasets
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