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A B S T R A C T

Concept-cognitive learning (CCL) is an emerging field for studying the representation and processing of
knowledge embedded in data. Many efforts are focused on this field due to the interpretability and effectiveness
of the formal concept (not pseudo concept). However, the standard CCL methods cannot tackle continuous
data directly. Although the current fuzzy-based CCL (FCCL) is a straightforward approach to discovering the
knowledge embedded in continuous data, it does not sufficiently utilize the native advantage of concepts
in simulating the cognitive mechanism. Then it causes it to be incomplete and complex cognition. Inspired
by the memory mechanism, this paper combines the recalling and forgetting mechanisms with CCL, called
memory-based concept-cognitive learning (M-FCCL). Specifically, a cosine measure is introduced to describe the
relationship of samples and construct cosine-similar granules to learn the concept. Subsequently, a fuzzy three-
way concept based on the cosine similar granules is defined to represent and discover knowledge. Furthermore,
two memory mechanisms are borrowed for the process of concept cognition for dynamic data classification and
knowledge fusion: concept-recalling can enhance the effectiveness of concept learning, and concept-forgetting
can effectively reduce the complexity of concept cognition. Finally, some experiments are compared with other
methods on 16 benchmark datasets to show that M-FCCL achieves superior performance. Specifically, on these
datasets, the proposed M-FCCL method achieves 17.02% and 18.54% classification accuracy gain compared
with some advanced CCL mechanisms and popular classification methods.
. Introduction

As an emerging computing paradigm, cognitive computing is mod-
led on the human brain that implements cognitive intelligence by try-
ng to simulate the cognitive mechanisms of the human brain, such as
erception, reasoning, learning, and recognition [1]. The human brain
s viewed as, by far, the most advanced and efficient cognitive, essential
or realizing artificial intelligence. A fundamental concept of artificial
ntelligence covers the data-information-knowledge-wisdom (DIKW) hi-
rarchy [2–4], in which knowledge, the prerequisite for wisdom, is
iewed as information related to wisdom formation. Meanwhile, a
alue conceptual model in data science is the symbols-meaning-value
SMV) space [5], where data are regarded as a resource, and the power
f data is the knowledge embedded in data, the wisdom views as the
alue of data. From an interpretability viewpoint, the representation
nd learning of concepts are critical topics for studying cognitive
omputing and artificial intelligence [6,7]. An influential theory of in-
erpretability is granular computing(GrC), which plays an essential role
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in studying concerning information and knowledge processing when
humans use concepts, symbols, and models to describe the objective
world [8–10].

Concept, a fundamental carrier of knowledge representation, is the
basic cognitive unit of the human brain that can effectively describe
the general and objective essence of knowledge [11]. The intent and
extent of a concept are uniquely determinable, and the concept by
which they refer to each other is unique and can be used to describe
different types of things. In 1982, Wille [12] proposed the formal
concept analysis (FCA) theory to describe a formal concept from a
mathematics perspective. Inspired by FCA and cognitive computing,
a research topic about cognitive concept learning is gradually coming
into view. A cognitive concept method based on granular computing is
proposed by Zhang in his seminal paper [13]. The paper [14] discusses
a mathematic algebraic model for concept learning from a cognitive
viewpoint. A three levels framework of concept learning based on
cognitive informatics and granular computing is presented by Yao
in paper [15], which is necessary research for investigating concept
vailable online 3 August 2023
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cognition and concept learning. Note that three-way decision based on
three-level thinking is another widely recognized methodology of GrC
for investigating the conceptual model in papers [16–18], and its ad-
vantage lies in the granulation thinking paradigm about trichotomous
(i.e., triadic thinking, triadic computing, triadic processing). Inspired
by this theory, some scholars [19,20] combine three-way decisions
with the formal concept to study formal concept analysis from positive
and negative information, i.e., three-way concept analysis. There is no
denying that three-way concept analysis is a fruitful marriage for study
concept knowledge presentation and learning, which is one of the main
reasons why this article characterizes knowledge in a framework of
fuzzy three-way concept.

The research mentioned above mainly focuses on the concept learn-
ing framework from the perspective of the cognitive mechanism of
the human brain. Note that human-level concept cognition can often
generalize successfully from just a single instance, yet machine learn-
ing generally requires tens or hundreds of instances to accomplish
with similar accuracy [6,21]. Hence, concept-cognitive learning theory
emerges, via a unified view of the cognitive mechanism and machine
learning, simulating the human cognitive process. As an essential topic
of concept learning, knowledge representation, and cognitive comput-
ing, CCL has been investigated from different aspects. For example,
Li [22] studies the granule concept learning method from a cognitive
viewpoint. Li [23] proposes a three-way cognitive concept learning
based on multi-granularity. Xu [24] combines GrC theory with two-
way learning to study the fuzzy-based concept learning method. Xu
and Guo [25,26] investigate two-way concept-cognitive learning from
a fuzzy-based progressive learning viewpoint and a concept movement
viewpoint. Zhang [27] propose a concept-cognitive learning method for
multi-source information fusion. Qian [28] gives three-way concept lat-
tices based on apposition and sub-position of formal contexts. Shi and
Mi [29,30] discuss concept-cognitive learning for incremental concept
learning. Zhang [31] constructed a causal asymmetry analysis using an
incremental concept tree.

Concept-cognitive learning is the science of cognition and learning
things via concepts [20]. Note that two advantages of CCL in dealing
with knowledge discovery: (1) different concepts have the native char-
acter of recognizing different ontologies, and (2) the process of concept
learning has the character of incremental learning that can integrate
past experiences into itself to deal with dynamic data. Therefore,
Mi [32] proposes a fuzzy-based CCL method to exploit data via a fuzzy
conceptual clustering method. Yuan [33] establishes an incremental
learning mechanism based on the progressive fuzzy three-way concept
to deal with dynamic data. Zhang [34] uses weighted fuzzy concepts to
design an incremental mechanism for the fuzzy-based CCL, etc. Since
the weak learning ability of fuzzy concepts in classification tasks, the
pseudo concept has been proposed in the above Ref. [32–34], which
differs from regular fuzzy concepts. The pseudo concept, a derivative
of some concepts, strengthens the influences of fuzzy concepts in the
concept-cognitive process. Although these methods are significantly
better than other classification algorithms in terms of rationality, they
still have some problems.

• Existing incremental concept-cognitive learning models adopt a
gradual strategy to incorporate new concepts. However, this strat-
egy will result in the unsatisfactory performance of the model for
inappropriate incremental learning.

• Most existing dynamic concept-cognitive learning methods focus
on incremental learning mechanisms while ignoring the knowl-
edge accumulation in a dynamic environment, which could dis-
turb the subsequent cognitive learning and degrade performance.

• The current fuzzy concept-cognitive learning method does not suf-
ficiently utilize the native advantage of fuzzy concepts in ontology
recognition, which causes it to have weak interpretability due to
2

only representing knowledge via pseudo concept.
Inspired by the current work of granular computing and machine
learning [10,35–37], the main thread adopted in the current article
is the memory-based CCL approach for dynamic data classification
and knowledge fusion in a fuzzy formal context to address the issues
mentioned above. This article aims to model novel functionalities
of concept-cognitive learning to deal with dynamic data efficiently,
namely forgetting the unnecessary knowledge in the original concept
space and recalling part of the necessary knowledge to fuse knowledge
for concept update. The main contributions of this paper are as follows.

• It presents a memory-based concept-cognitive learning method
in a fuzzy formal context for dynamic data classification and
knowledge fusion, and one can considerably enhance classifica-
tion performance in most of the existing FCCL models and other
classification algorithms.

• It defines the fuzzy three-way concept based on a cosine similarity
granule to characterize and discover the knowledge embedded in
data. One can simultaneously study the information and knowl-
edge in formal concepts from positive and negative angles to
ensure the integrity of knowledge depiction and reduce cognitive
bias.

• It designs a concept-recalling mechanism for dynamic knowledge
updating, integrating the past experience into itself by recall-
ing related knowledge to reduce the complexity of the learning
system. Meanwhile, some experiments verify that the M-FCCL
performs better than other methods.

• It provides a novel thought of cognitive concept based on concept
forgetting via forgetting some unnecessary concepts in concept
space, which can enhance the performance of concept recognition
and omit the step for pseudo-concept learning [32–34]. Moreover,
in this way, one can sufficiently utilize the native advantage of
fuzzy concepts in ontology recognition and integrability.

This article designs a novel concept-cognitive learning method using
memory mechanisms to enhance concept learning ability (motivation
I) and reduce cognitive concept complexity (motivation II). Fig. 1 de-
scribes the block diagram of the proposed M-FCCL. As shown in Fig. 1,
the memory-based concept-cognitive learning method includes three
main stages: a novel fuzzy three-way concept for concept learning is
established in Section 3.1, a concept recalling mechanism based on the
fuzzy three-way concept is constructed in Section 3.2, and then a con-
cept forgetting mechanism to reduce the cognitive concept complexity
is proposed in Section 3.3. Moreover, this paper is arranged as follows:
Section 2 briefly reviews some notions related to concept-cognitive
learning. Section 3 details the memory-based concept-cognitive learn-
ing method in four parts: concept learning, concept forgetting, concept
recalling, and our procedure. Furthermore, the experimental results and
analysis are presented in Section 4. Finally, some concluding remarks
and future work are summarized in Section 5.

2. Preliminaries

This section briefly reviews some notions related to fuzzy formal
context, fuzzy three-way concept, and granule concept learning. A de-
tailed discussion of them can be found in the corresponding papers [33,
38–40]. Before starting with this section, it is necessary to claim that
the current article investigates the concept-cognitive learning model in
a fuzzy-classical decision formal context not a fuzzy–fuzzy or classical-
fuzzy decision formal context, that is, conditional attributes are fuzzy
data, and decision attributes are discrete data.

2.1. Fuzzy formal context

The fuzzy formal context, a database with fuzzy relations, mainly
focuses on introducing the fuzzy member degree of the fuzzy set into

the description of the binary relations between object and attribute.
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Fig. 1. Block diagram of the proposed M-FCCL.
One can effectively solve the limitation that classical formal concept
analysis is only suitable for discrete data.

Let 𝛺 be a universe and a fuzzy set 𝑋 on 𝛺 has the following form:

𝑋 = {⟨𝑥, 𝜇𝑋 (𝑥)⟩|𝑥 ∈ 𝛺}, (1)

where 𝜇𝑋 ∶ 𝛺 → [0, 1], 𝜇𝑋 (𝑥) is referred to as the membership degree of
object 𝑥 with respect to 𝑋, and 𝜇𝑐

𝑋
(𝑥) = 1−𝜇𝑋 (𝑥) is the non-membership

degree.
As is well known, a triplet (𝛺,𝛹, 𝐼) can be represented as a fuzzy

formal context, where 𝛺 = {𝑥1, 𝑥2,… , 𝑥𝑛} and 𝛹 = {𝑎1, 𝑎2,… , 𝑎𝑚} are,
respectively, called the object set and the attribute set. Meanwhile,
𝐼 = {⟨(𝑥, 𝑎), 𝜇(𝑥, 𝑎)⟩|(𝑥, 𝑎) ∈ 𝛺 × 𝛹} is a fuzzy relation, where 𝜇 ∶
𝛺 × 𝛹 → [0, 1], 𝜇(𝑥, 𝑎) denotes the membership degree of object 𝑥 with
respect to 𝑎. For convenience, it is denoted by 𝐼(𝑥, 𝑎) = 𝜇(𝑥, 𝑎). For any
𝐼(𝑥, 𝑎) and 𝐼(𝑥′, 𝑎), the 𝐼(𝑥, 𝑎) ⩾ 𝐼(𝑥′, 𝑎) ⇔ 𝜇(𝑥, 𝑎) ⩾ 𝜇(𝑥′, 𝑎).

Definition 1. A triplet (𝛺,𝛹, 𝐼) is a fuzzy formal context, for any
𝐸 ⊆ 𝛺, 𝑇 ⊆ 𝛹 and 𝑇 ∈ 𝛤𝛹 , the derivation operator (⋅)∗ can be defined
as follows:

𝐸∗(𝑎) =
⋀

𝑥∈𝐸
𝐼(𝑥, 𝑎), 𝑎 ∈ 𝛹, (2)

𝑇 ∗ = {𝑥 ∈ 𝛺|∀𝑎 ∈ 𝑇 , 𝑇 (𝑎) ⩽ 𝐼(𝑥, 𝑎)}, (3)

where 𝛤𝛹 is the union of all fuzzy sets in 𝛹 .

Then, a pair (𝐸, 𝑇 ) is fuzzy concept if 𝐸∗ = 𝑇 and 𝑇 ∗ = 𝐸
hold, where 𝐸 is the extent and 𝑇 is the intent of the fuzzy con-
cept (𝐸, 𝑇 ). Obviously, (𝐸∗∗, 𝐸∗) and (𝑇 ∗, 𝑇 ∗∗) are two fuzzy concepts.
The fuzzy concept lattice ̃(𝛺,𝛹, 𝐼) is the union of all fuzzy concept
in (𝛺,𝛹, 𝐼). For any (𝐸1, 𝑇1), (𝐸2, 𝑇2) ∈ ̃(𝛺,𝛹, 𝐼), the ordered by
(𝐸1, 𝑇1) ⩽ (𝐸2, 𝑇2) ⇔ 𝐸1 ⊆ 𝐸2 ⇔ 𝑇2 ⊆ 𝑇1. For any 𝐸1, 𝐸2, 𝐸 ⊆ 𝛺, 𝑇1, 𝑇2 ⊆
𝑇 , the following properties hold:

(1) 𝐸1 ⊆ 𝐸2 ⇒ 𝐸∗
2 ⊆ 𝐸∗

1 , 𝑇1 ⊆ 𝑇2 ⇒ 𝑇 ∗
2 ⊆ 𝑇 ∗

1 ;
(2) 𝐸 ⊆ 𝐸∗∗, 𝑇 ⊆ 𝑇 ∗∗;
(3) 𝐸 = 𝐸∗∗∗, 𝑇 = 𝑇 ∗∗∗;
(4) 𝐸 ⊆ 𝑇 ∗ ⇔ 𝑇 ⊆ 𝐸∗;
(5) (𝐸1 ∪ 𝐸2)∗ = 𝐸∗

1 ∩ 𝐸∗
2 , (𝑇1 ∪ 𝑇2)∗ = 𝑇 ∗

1 ∩ 𝑇 ∗
2 ;

(6) (𝐸 ∩ 𝐸 )∗ ⊇ 𝐸∗ ∪ 𝐸∗, (𝑇 ∩ 𝑇 )∗ ⊇ 𝑇 ∗ ∪ 𝑇 ∗.
3

1 2 1 2 1 2 1 2
Generally, the fuzzy formal context with decision labels is more suitable
for classification scenarios. Hence, it is necessary to claim that this
paper discusses the CCL model in a fuzzy decision formal context.
A fuzzy decision formal context is a quintuple (𝛺,𝛹, 𝐼,𝐷, 𝐽 ), where
(𝛺,𝛹, 𝐼) is a fuzzy formal context and (𝛺,𝐷, 𝐽 ) is a classical formal
context. A classical fuzzy formal context (𝛺,𝐷, 𝐽 ) is a triple, where
𝛺∕𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑙} are referred to as a decision division based on
decision class 𝐷, 𝛺 = 𝐷1 ∪𝐷2∪,… ,∪𝐷𝑙, 𝐽 ∶ 𝛺 ×𝐷 → {𝐷1, 𝐷2,… , 𝐷𝑙}
is a binary relation.

In order to more clearly explain the fuzzy formal context and fuzzy
decision formal context in the current article, two examples are given in
Fig. 2 to show the differences between them, respectively. Specifically,
Fig. 2(a), including four objects and eight conditional attributes, is
an example of fuzzy formal context (𝛺,𝛹, 𝐼), where 𝐼 represents the
fuzzy relation between 𝛺 and 𝛹 = {𝑎, 𝑏, 𝑐,… , ℎ}. In addition, Fig. 2(b),
including four objects, five conditional attributes, and three decision
classes induced by decision attribute 𝐷, is an example of fuzzy decision
formal context (𝛺,𝛹, 𝐼,𝐷, 𝐽 ), where 𝐼 represents the fuzzy relation
between 𝛺 and 𝛹 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝐽 is the binary relation between
objects set and decision attribute 𝐷. Any dataset with decision labels
can be processed to a fuzzy decision formal context for constructing
concept subspace.

2.2. Fuzzy three-way concept analysis

Let 𝐼− = {⟨(𝑥, 𝑎), 1−𝜇(𝑥, 𝑎)⟩|(𝑥, 𝑎) ∈ 𝛺×𝛹} be the complement of 𝐼 ,
where 1 − 𝜇(𝑥, 𝑎) reflects the non-membership degree of object 𝑥 with
respect to 𝑎. For conveniencel, it is denoted by 𝐼−(𝑥, 𝑎) = 1 − 𝜇(𝑥, 𝑎).

Definition 2. A triplet (𝛺,𝛹, 𝐼) is a fuzzy formal context. For any 𝑋 ⊆
𝛺, 𝑇 ⊆ 𝛹 and 𝑇 ∈ 𝛤𝛹 , the positive cognitive operators ̃ ∶ 2𝛺 → 𝛤𝛹

and  ∶ 𝛤𝛹 → 2𝛺 of (𝛺,𝛹, 𝐼) are defined by:

̃(𝑋)(𝑎) =
⋀

𝑥∈𝑋
𝐼(𝑥, 𝑎), 𝑎 ∈ 𝛹, (4)

(𝑇 ) = {𝑥 ∈ 𝛺|∀𝑎 ∈ 𝑇 , 𝑇 (𝑎) ⩽ 𝐼(𝑥, 𝑎)}. (5)

Similarly, the negative cognitive operators ̃− ∶ 2𝛺 → 𝛤𝛹 and
− ∶ 𝛤𝛹 → 2𝛺 of (𝛺,𝛹, 𝐼−) are defined by:

̃−(𝑋)(𝑎) =
⋀

𝑜∈𝑋
𝐼−(𝑜, 𝑎), 𝑎 ∈ 𝛹, (6)

−(𝑇 ) = {𝑜 ∈ 𝛺|∀𝑎 ∈ 𝑇 , 𝑇 (𝑎) ⩽ 𝐼−(𝑜, 𝑎)}, (7)
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Fig. 2. Illustration of two different forms of fuzzy contexts. (a) fuzzy formal context and (b) fuzzy decision formal context.
where 2𝛺 is the power set of 𝛺 and 𝑇 (𝑎) is the membership degree of
object with respect to 𝑎 on 𝑇 .

The above definition shows that the positive and negative cognitive
operators can characterize the cognitive process between objects and
attributes in two ways. Moreover, ̃(𝑋)(𝑎) and ̃−(𝑋)(𝑎) are referred to
as the cognitive process from object to attribute, and (𝑇 ) and −(𝑇 )
are referred to as the cognitive process from attribute to object, which
means that one can learn object or attribute information from the given
information.

Definition 3. A triplet (𝛺,𝛹, 𝐼) is a fuzzy formal context. For any
𝑋 ⊆ 𝛺 and 𝑇1, 𝑇2 ∈ 𝛤𝛹 , the fuzzy three-way concept cognitive operator
̃∇ ∶ 2𝛺 → 𝛤𝛹 × 𝛤𝛹 and ∇ ∶ 𝛤𝛹 × 𝛤𝛹 → 2𝛺 are defined by:

̃∇(𝑋) = (̃(𝑋), ̃−(𝑋)), (8)
∇(𝑇1, 𝑇2) = (𝑇1) ∩−(𝑇2). (9)

Then, (𝑋, (𝑇1, 𝑇2)) is a fuzzy three-way concept if ̃∇(𝑋) = (𝑇1, 𝑇2),
∇(𝑇1, 𝑇2) = 𝑋, and 𝑋 and (𝑇1, 𝑇2) are, respectively, known as the ex-
tent and intent of (𝑋, (𝑇1, 𝑇2)). Moreover, (𝑋, (𝑇1, 𝑇2)) is the subconcept
of (𝑋′, (𝑇 ′

1 , 𝑇
′
2 )) if 𝑋 ⊆ 𝑋′ or (𝑇 ′

1 , 𝑇
′
2 ) ≥ (𝑇1, 𝑇2), denoted by (𝑋, (𝑇1, 𝑇2)) ≤

(𝑋′, (𝑇 ′
1 , 𝑇

′
2 )).

Furthermore, to describe both positive and negative information
simultaneously, the positive and negative cognitive operators are com-
bined to form a unique cognitive operator called the three-way op-
erator, and the corresponding fuzzy concept is the fuzzy three-way
concept. More discussion of the fuzzy three-way concept and the fuzzy
three-way operator can be found in Ref. [33].

Definition 4. Let (𝛺,𝛹, 𝐼) be a fuzzy formal context. For any 𝑋 ⊆ 𝛺
and 𝑇1, 𝑇2 ∈ 𝛤𝛹 , (∇̃∇(𝑋), ̃∇(𝑋)) and (∇(𝑇1, 𝑇2), ̃∇∇(𝑇1, 𝑇2)) are
called a pair of fuzzy three-way concepts.

According to Definition 4, a pair of fuzzy three-way concepts can be
learned, where (∇̃∇(𝑋), ̃∇(𝑋)) and (∇(𝑇1, 𝑇2), ̃∇∇(𝑇1, 𝑇2)) are
the object-oriented fuzzy three-way concept and the attribute-oriented
fuzzy three-way concept. Nevertheless, learning the attribute-oriented
fuzzy three-way concept in a fuzzy context is sometimes immensely
challenging without giving the initial clues 𝑇1, 𝑇2 ∈ 𝛤𝛹 . Hence, the
object-oriented fuzzy three-way concept is usually utilized in con-
cept learning to solve a particular problem, such as classification or
recognition.

3. Memory-based concept-cognitive learning method

Note that forgetting and recalling are two crucial cognitive mech-
anisms of human memory, especially in learning new knowledge. One
can be used to forget some irrelevant or insignificant knowledge, and
another can help humans spontaneously recall some relevant or similar
4

knowledge. However, the current CCL method easily ignores the cogni-
tive properties of the cognitive subject (e.g., forgetting and recalling),
and then resulting in some new issues in the cognitive system, such as
the cumulative cognition of concepts and pseudo-concept learning with
poor interpretability leading to poor performance.

Inspired by the memory mechanism, this section integrates humans’
memory mechanisms into CCL and studies a novel concept-cognitive
learning model via forgetting unnecessary concepts and recalling nec-
essary concepts to enhance the performance of a cognitive system. In
this model, the fuzzy concept is regarded as the knowledge acquired
via the cognitive system, and the concept space of the system is used to
store knowledge. Consequently, once new data arrives, the most similar
fuzzy concept from the concept space is recalled for knowledge fusion,
called concept recall. Moreover, the fuzzy concept in the concept space
is evaluated according to specific rules, and the fuzzy concepts that do
not meet the evaluation criteria are forgotten in the subsequent concept
recognition process, called concept forgetting.

3.1. Concept learning for fuzzy three-way concept

This subsection introduces a cosine similarity degree to construct
a similarity granule for concept learning. One of the primary motiva-
tions is that objects in similar granules tend to influence each other,
especially in fuzzy decision formal contexts.

Definition 5. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context,
for any 𝑥1, 𝑥2 ∈ 𝛺 and 𝑎 ∈ 𝛹 , the cosine similarity degree between 𝑥1
and 𝑥2 as follows:

𝑐𝑠(𝑥1, 𝑥2) =

∑

𝑎𝑖∈𝛹 𝐼(𝑥1, 𝑎𝑖) ⋅ 𝐼(𝑥2, 𝑎𝑖)
√

∑

𝑎𝑖∈𝛹 𝐼(𝑥1, 𝑎𝑖)2 ⋅
√

∑

𝑎𝑖∈𝛹 𝐼(𝑥2, 𝑎𝑖)2
, (10)

where 𝐼(𝑥, 𝑎𝑖) is the membership degree of object 𝑥 with respect to 𝑎𝑖.

Definition 5 can be utilized to construct a similarity granule, where
𝑐𝑠(𝑥1, 𝑥2) ∈ [0, 1] and the valve of 𝑐𝑠(𝑥1, 𝑥2) reflects the similarity degree
between 𝑥1 and 𝑥2.

Definition 6. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context,
for any 𝑥 ∈ 𝐷𝑖 and 𝑎 ∈ 𝛹 , the cosine similarity granule of object 𝑥 can
be defined as follows:

𝐶𝑆(𝑥) = {𝑥′ ∈ 𝐷𝑘|𝑐𝑠(𝑥, 𝑥′) ≥ 𝛿}, (11)

where 𝛿 is a threshold and 𝑐𝑠(𝑥, 𝑥′) is the cosine similarity degree
between the object 𝑥 and 𝑥′.

Generally speaking, learning the fuzzy concept in a fuzzy context
is an effective way to deal with uncertainty and vagueness in fuzzy
attributes, as a fuzzy membership relation between object and attribute
constructs it [41,42]. However, constructing a classical fuzzy concept
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mainly considers the positive element of the commonality of the ob-
jects, ignoring negative information about the attributes, which means
it describes information often incomplete. Hence, in this article, the
classical fuzzy concept with the fuzzy three-way concept is replaced
to represent the concept.

According to Definitions 5–6, a cosine similarity granule is ob-
tained to describe similar objects in 𝛺. The threshold 𝛿 is vital in the
ubsequent concept-learning process. And then, a notion of the fuzzy
hree-way concept based on a cosine similarity granule is as follows.

heorem 1. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context and
∕𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑙} be a decision division. For any 𝐶𝑆(𝑥) ⊆ 𝐷𝑘,
̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)), (̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥)))) is a fuzzy three-way
oncept.

roof. To prove this theorem, one can divide it into two steps:
1) prove ∇(̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥))) = ̃(𝐶𝑆(𝑥)) ∩ −̃−(𝐶𝑆(𝑥)) is

valid;
(2) prove ̃∇(̃(𝐶𝑆(𝑥)) ∩ −̃−(𝐶𝑆(𝑥))) = (̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥))) is
valid.

• For (1), it is immediate from Definition 3.
• For (2), according to Definition 2, for any 𝑎 ∈ 𝑇 , then

̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)) = {𝑦 ∈ 𝐷𝑘|𝐼(𝑦, 𝑎) ≥
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎)}

∩ {𝑦 ∈ 𝐷𝑘|𝐼
−(𝑦, 𝑎) ≥

⋀

𝑜∈𝐶𝑆(𝑥)
𝐼−(𝑜, 𝑎)}

= {𝑦 ∈ 𝐷𝑘|𝐼(𝑦, 𝑎) ≥
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎)}

∩ {𝑦 ∈ 𝐷𝑘|1 − 𝐼−(𝑦, 𝑎) ≤ 1

−
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼−(𝑜, 𝑎)}

= {𝑦 ∈ 𝐷𝑘|𝐼(𝑦, 𝑎) ≥
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎)}

∩ {𝑦 ∈ 𝐷𝑘|𝐼(𝑦, 𝑎) ≤
⋁

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎)}

= {𝑦 ∈ 𝐷𝑘|
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎) ≤ 𝐼(𝑦, 𝑎)

≤
⋁

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎)}.

Therefore, for any 𝑎 ∈ 𝑇 , the following relation holds

̃(̃(𝐶𝑆(𝑥))) ∩−̃−(𝐶𝑆(𝑥))(𝑎) =
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼(𝑜, 𝑎) = ̃(𝐶𝑆(𝑥))(𝑎).

At the same time, the following equation holds

̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)) = {𝑦 ∈ 𝛺𝑖|
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼−(𝑜, 𝑎)}

≤ 𝐼−(𝑦, 𝑎) ≤
⋁

𝑜∈𝐶𝑆(𝑥)
𝐼−(𝑜, 𝑎),

̃−(̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)))(𝑎) =
⋀

𝑜∈𝐶𝑆(𝑥)
𝐼−(𝑜, 𝑎) = ̃−(𝐶𝑆(𝑥))(𝑎).

Hence, ̃∇(̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥))) = (̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥))).

By combining (1) and (2), this theorem is proven.

Definition 7. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context
and 𝛺∕𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑙} be a decision division. For any 𝑥 ∈ 𝐷𝑘, the
object-oriented fuzzy three-way concept subspace ̃𝐷𝑘 about 𝐷𝑘 can be
defined as follows:

̃𝐷𝑘 = {(̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)), (̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥))))|𝑥 ∈ 𝐷𝑘}.
5

(12)
Algorithm 1 Concept learning for fuzzy three-way concept

Input: A formal context (𝛺,𝛹, 𝐼,𝐷, 𝐽 ), parameter 𝛿.
Output: Fuzzy three-way concept space ̃;
1: Initial ̃ = ∅;
2: for 𝐷𝑘 ⊆ 𝛺∕𝐷 do
3: Initial ̃𝐷𝑘 = ∅;
4: for all 𝑥 ∈ 𝐷𝑘 do
5: for 𝑦 ∈ 𝐷𝑘 do
6: Compute the cosine similarity degree 𝑐𝑠(𝑥, 𝑦) according

to Definition 5
7: end for
8: Get the cosine similarity granule 𝐶𝑆(𝑥) according to

Definition 6;
9: Learn the fuzzy three-way concept (̃(𝐶𝑆(𝑥)) ∩

−̃−(𝐶𝑆(𝑥)), (̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥))));
0: ̃𝐷𝑘 ← (̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)), (̃(𝐶𝑆(𝑥)), ̃−(𝐶𝑆(𝑥))));
1: end for
2: end for
3: ̃ ← ̃𝐷𝑘

4: return ̃.

Definition 7 shows how an object-oriented fuzzy three-way concept
subspace is constructed. According to this definition, the fuzzy three-
way concept space ̃ = {̃𝐷1 , ̃𝐷2 ,… , ̃𝐷𝑙} is produced. The concept
learning process for the fuzzy three-way concept is shown in Algorithm
1, and its time complexity is 𝑂(|𝛺|

2
|𝛹 |).

3.2. Cognitive mechanism based on concept recalling

Section 3.1 discussed the concept learning method for fuzzy three-
way concept via the cosine similarity granule and two pairs of cognitive
operators , ̃, and −, ̃−. Then, this subsection will propose a
ognitive mechanism based on concept recalling to concern how the
bject-oriented fuzzy three-way concept space ̃𝐷𝑘 are timely updated
s time goes on, which is not only an incremental concept-cognitive
earning system but also good at knowledge fusion in concept space.

Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context, 𝛺∕𝐷 =
𝐷1, 𝐷2,… , 𝐷𝑙}. Then, the 𝛺𝐷

𝑖 = {𝛺𝐷1
𝑖 , 𝛺𝐷2

𝑖 ,… , 𝛺𝐷𝑙
𝑖 } is referred to as

he object set under the 𝑖th cognitive state. For brevity, for any 𝐷𝑘 ⊆ 𝐷,
the 𝛺𝐷𝑘

1 , 𝛺𝐷𝑘
2 ,… , 𝛺𝐷𝑘

𝑠 with 𝛺𝐷𝑘
1 ⊆ 𝛺𝐷𝑘

2 ⊆ … ⊆ 𝛺𝐷𝑘
𝑠 are denoted by

{𝛺𝐷𝑘
𝑡 } ↑.

Definition 8. Let 𝛺𝐷𝑘
𝑖−1 and 𝛺𝐷𝑘

𝑖 be object sets of {𝛺𝐷𝑘
𝑡 } ↑, where

{𝛺𝐷𝑘
𝑡 } ↑ is a nondecreasing sequence subset of 𝛺𝐷𝑘 , that is, 𝛺𝐷𝑘

1 ⊆
𝛺𝐷𝑘

2 ⊆ ⋯ ⊆ 𝛺𝐷𝑘
𝑠 . Denote by 𝛥𝛺𝐷𝑘

𝑖−1 = 𝛺𝐷𝑘
𝑖 −𝛺𝐷𝑘

𝑖−1. Suppose

(1) ̃𝑖−1 ∶ 2𝛺
𝐷𝑘
𝑖−1 → 𝛤𝛹 , 𝑖−1 ∶ 𝛤𝛹 → 2𝛺

𝐷𝑘
𝑖−1 ,

(2) ̃
𝛥𝛺𝐷𝑘

𝑖−1
∶ 2𝛥𝛺

𝐷𝑘
𝑖−1 → 𝛤𝛹 , 

𝛥𝛺𝐷𝑘
𝑖−1

∶ 𝛤𝛹 → 2𝛥𝛺
𝐷𝑘
𝑖−1 ,

(3) ̃𝑖 ∶ 2𝛺
𝐷𝑘
𝑖 → 𝛤𝛹 , 𝑖 ∶ 𝛤𝛹 → 2𝛺

𝐷𝑘
𝑖 ;

(4) ̃−
𝑖−1 ∶ 2𝛺

𝐷𝑘
𝑖−1 → 𝛤𝛹 , −

𝑖−1 ∶ 𝛤𝛹 → 2𝛺
𝐷𝑘
𝑖−1 ,

(5) ̃−
𝛥𝛺𝐷𝑘

𝑖−1

∶ 2𝛥𝛺
𝐷𝑘
𝑖−1 → 𝛤𝛹 , −

𝛥𝛺𝐷𝑘
𝑖−1

∶ 𝛤𝛹 → 2𝛥𝛺
𝐷𝑘
𝑖−1 ,

(6) ̃−
𝑖 ∶ 2𝛺

𝐷𝑘
𝑖 → 𝛤𝛹 , −

𝑖 ∶ 𝛤𝛹 → 2𝛺
𝐷𝑘
𝑖 ;

are six pairs of cognitive operators satisfying the following properties:

̃𝑖(𝐶𝑆(𝑥)) =

⎧

⎪

⎨

⎪

⎩

̃𝑖−1(𝐶𝑆(𝑥)) ∩ ̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑦), 𝑖𝑓 𝑦 ∈ 𝐶𝑆(𝑥)

̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝐶𝑆(𝑥)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13)

̃−
𝑖 (𝐶𝑆(𝑥)) =

⎧

⎪

⎨

⎪

̃−
𝑖−1(𝐶𝑆(𝑥)) ∩ ̃−

𝛥𝛺𝐷𝑘
𝑖−1

(𝑦), 𝑖𝑓 𝑦 ∈ 𝐶𝑆(𝑥)

̃−
𝐷𝑘

(𝐶𝑆(𝑥)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(14)
⎩

𝛥𝛺𝑖−1
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then ̃𝑖 and ̃−
𝑖 are extended cognitive operators of ̃𝑖−1 and ̃−

𝑖−1 with
the update information 𝛥𝛺𝐷𝑘

𝑖−1.

Definition 8 describes the knowledge fusion process with updated
information by defining six positive and negative cognitive operator
pairs. Note that concept-cognitive learning was often considered in-
cremental due to the whole being something else than the sum of
its part [22,25,43]. A novel cognitive mechanism based on concept
recalling according to Definition 8 is discussed in what follows.

Theorem 2. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context and
𝛺𝐷𝑘

𝑖 be a object set about 𝐷𝑘 under 𝑖th cognitive state. For any new object
𝑦 ∈ 𝛺𝐷𝑘

𝑖 (i.e 𝑦 ∉ 𝛺𝑖−1), then the following statements hold:

(1) for any 𝐶𝑆(𝑥) ⊆ 𝛺𝐷𝑘
𝑖 , if 𝑦 ∈ 𝐶𝑆(𝑥), then

(𝑖̃𝑖(𝐶𝑆(𝑥)) ∩−
𝑖 ̃

−
𝑖 (𝐶𝑆(𝑥)), (̃𝑖(𝐶𝑆(𝑥)), ̃−

𝑖 (𝐶𝑆(𝑥))))

= (𝑖(̃𝑖−1(𝐶𝑆(𝑥)) ∩ ̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑦)) ∩−

𝑖 (̃
−
𝑖−1(𝐶𝑆(𝑥)) ∩ ̃−

𝛥𝛺𝐷𝑘
𝑖−1

(𝑦)),

(̃𝑖−1(𝐶𝑆(𝑥)) ∩ ̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑦), ̃−

𝑖−1(𝐶𝑆(𝑥))

∩ ̃−
𝛥𝛺𝐷𝑘

𝑖−1

(𝑦))).

(15)

(2) for any 𝐶𝑆(𝑥) ⊆ 𝛺𝐷𝑘
𝑖 , if 𝑦 ∉ 𝐶𝑆(𝑥), then

(𝑖̃𝑖(𝐶𝑆(𝑥)) ∩−
𝑖 ̃

−
𝑖 (𝐶𝑆(𝑥)), (̃𝑖(𝐶𝑆(𝑥)), ̃−

𝑖 (𝐶𝑆(𝑥))))

= (𝑖−1̃𝑖−1(𝐶𝑆(𝑥)) ∩−
𝑖−1̃

−
𝑖−1(𝐶𝑆(𝑥)), (̃𝑖−1(𝐶𝑆(𝑥)), ̃−

𝑖−1(𝐶𝑆(𝑥)))).

(16)

Proof. The proof is immediate from Definition 8.

Definition 9. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context and
𝛺𝐷𝑘

𝑖 be a object set about 𝐷𝑘 under 𝑖th cognitive state. For any object
𝑥 ∈ 𝛺𝐷𝑘

𝑖 , the object-oriented fuzzy three-way concept space about 𝐷𝑘
under 𝑖th cognitive state can be defined as follows:

̃𝐷𝑘
𝑖 = {(𝑖̃𝑖(𝐶𝑆(𝑥))∩−

𝑖 ̃
−
𝑖 (𝐶𝑆(𝑥)), (̃𝑖(𝐶𝑆(𝑥)), ̃−

𝑖 (𝐶𝑆(𝑥))))|𝑥 ∈ 𝛺𝐷𝑘
𝑖 }.

(17)

According to the above definition, one can learn the fuzzy three-way
concept space under 𝑖th cognitive states (i.e., ̃𝑖 = {̃𝐷1

𝑖 , ̃𝐷2
𝑖 ,… , ̃𝐷𝑙

𝑖 })
through the concept fusion mechanism based on concept recalling.
The details are shown in Algorithm 2, and its time complexity is
𝑂(|𝛥𝛺𝐷𝑘

𝑖−1‖𝐷𝑘‖𝛹 |).
So far, a concept fusion mechanism has been built based on concept

recalling and the object-oriented fuzzy three-way concept space under
various cognitive states. Different fuzzy concepts influence each other
in concept space with much repetitive and interfering information
between them. Moreover, accumulating concepts will influence the cog-
nitive system’s performance over time. Hence, the following subsection
will discuss concept recognition via concept forgetting for the proposed
concept-cognitive learning system.

3.3. Concept recognition via concept forgetting

According to the procedure in Section 3.2, the cognitive mechanism
based on concept recalling in M-FCCL can directly update the concept
space under different cognitive states for new objects without retaining
the whole model. Nevertheless, as mentioned above, the previous two
subsections mainly introduced how to carry out concept learning and
concept cognition. However, it still needs to offer an effective man-
ner of concept recognition, identifying which concept space needs to
6

update with new objects.
Algorithm 2 Cognitive mechanism based on concept recalling

Input: A formal context (𝛺,𝛹, 𝐼,𝐷, 𝐽 ), fuzzy three-way concept space
̃𝐷𝑘
𝑖−1, the added object set 𝛥𝛺𝐷𝑘

𝑖−1.
Output: Fuzzy three-way concept space ̃𝐷𝑘

𝑖 .
1: for all 𝑦 ∈ 𝛥𝛺𝐷𝑘

𝑖−1 do
2: Get the fuzzy three-way concept (𝑦, (̃

𝛥𝛺𝐷𝑘
𝑖−1

(𝑦), ̃−
𝛥𝛺𝐷𝑘

𝑖−1

(𝑦)));

3: for all 𝐶𝑆(𝑥) ∈ 𝐷𝑘 do
4: if 𝑦 ∈ 𝐶𝑆(𝑥) then
5: ̃𝑖(𝐶𝑆(𝑥)) = ̃𝑖−1(𝐶𝑆(𝑥)) ∩ ̃

𝛥𝛺𝐷𝑘
𝑖−1

(𝑦);

6: ̃−
𝑖 (𝐶𝑆(𝑥)) = ̃−

𝑖−1(𝐶𝑆(𝑥)) ∩ ̃−
𝛥𝛺𝐷𝑘

𝑖−1

(𝑦);

7: else ̃𝑖(𝐶𝑆(𝑥)) = ̃𝑖−1(𝐶𝑆(𝑥));
8: ̃−

𝑖 (𝐶𝑆(𝑥)) = ̃−
𝑖−1(𝐶𝑆(𝑥));

9: end if
0: Learn the fuzzy three-way concept (𝑖̃𝑖(𝐶𝑆(𝑥)) ∩

−
𝑖 ̃

−
𝑖 (𝐶𝑆(𝑥)), (̃𝑖(𝐶𝑆(𝑥)), ̃−

𝑖 (𝐶𝑆(𝑥))));
11: ̃𝐷𝑘

𝑖 ← (𝑖̃𝑖(𝐶𝑆(𝑥)) ∩ −
𝑖 ̃

−
𝑖 (𝐶𝑆(𝑥)), (̃𝑖(𝐶𝑆(𝑥)),

̃−
𝑖 (𝐶𝑆(𝑥))));

12: end for
13: end for
14: return ̃𝐷𝑘

𝑖 .

Meanwhile, note that various concepts carry different informa-
tion values and importance in fuzzy-based concept learning for con-
cept recognition. In order to evolve suitable fuzzy ontologies for con-
cept recognition, various pseudo-concept learning ways have been
researched, such as fuzzy concept clustering [32], progressive fuzzy
concept learning [33], and progressive weighted fuzzy concept [34].
Accordingly, a concept recognition strategy based on the concept for-
getting mechanism is proposed in this subsection, which can identify
objects effectively and avoid learning pseudo-concepts.

Definition 10. Let (𝛺,𝛹, 𝐼,𝐷, 𝐽 ) be a fuzzy decision formal context.
or ̃𝐷𝑘

𝑖 ∈ ̃𝑖, ̃
𝐷𝑘
𝑖 is an object-oriented fuzzy three-way concept space

ased on concept forgetting about ̃𝐷𝑘
𝑖 under 𝑖th cognitive state if the

ollowing statements hold:

(1) For any (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘
𝑖 , there does not exist a fuzzy three-way

concept (𝑋′
𝑖 , (𝑇

′
1 , 𝑇

′
2 )) ∈ ̃𝐷𝑘

𝑖 that is the sub-concept of (𝑋𝑖, (𝑇1, 𝑇2));
(2) For any (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘

𝑖 , there exist at least one fuzzy three-
way concept (𝑋′

𝑖 , (𝑇
′
1 , 𝑇

′
2 )) ∈ ̃𝐷𝑘

𝑖 that makes 𝑋𝑖 ⊆ 𝑋′
𝑖 ;

(3) For any (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘
𝑖 , the statement (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘

𝑖 is
hold.

heorem 3. Let ̃𝐷𝑘
𝑖 be an object-oriented fuzzy three-way concept

pace based on concept forgetting about ̃𝐷𝑘
𝑖 under 𝑖th cognitive state. The

ollowing property holds

≤ |̃𝐷𝑘
𝑖 | ≤ |̃𝐷𝑘

𝑖 |. (18)

here | ⋅ | denotes the cardinality.

roof. To prove this theorem, one can divide it into three steps:

(1) For any (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘
𝑖 , if there exist a fuzzy three-way

concept (𝑋′
𝑖 , (𝑇

′
1 , 𝑇

′
2 )) ∈ ̃𝐷𝑘

𝑖 that makes 𝑋𝑖 ⊆ 𝑋′
𝑖 , from item (1)

of Definition 10, then |̃𝐷𝑘
𝑖 | = 1;

(2) For any (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘
𝑖 , if there exist a fuzzy three-way

concept (𝑋′
𝑖 , (𝑇

′
1 , 𝑇

′
2 )) ∈ ̃𝐷𝑘

𝑖 that makes 𝑋𝑖 ⊈ 𝑋′
𝑖 , from item (2)

�̃�𝑘
of Definition 10, then |𝑖 | > 1
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Fig. 3. Illustration of the overall procedure for M-FCCL, taking the update of fuzzy three-way concept space-2 as an example.
(3) For (𝑋𝑖, (𝑇1, 𝑇2)) ∈ ̃𝐷𝑘
𝑖 , if there does not exist a fuzzy three-way

concept (𝑋′
𝑖 , (𝑇

′
1 , 𝑇

′
2 )) ∈ ̃𝐷𝑘

𝑖 that makes 𝑋𝑖 ⊂ 𝑋′
𝑖 , from item (3) of

Definition 10, then |̃𝐷𝑘
𝑖 | ≤ |̃𝐷𝑘

𝑖 |.

By combining (1), (2) and (3), this theorem is proven.

From a memory perspective, Definition 10 can completely char-
acterize a forgetting process of concept: forgetting some unnecessary
knowledge (i.e., sub-concept) and retaining some necessary knowledge
in knowledge space(i.e., concept space). For brevity, ̃𝐷𝑘

𝑖 is referred to
as forgetting space of object-oriented fuzzy three-way concept about
̃𝐷𝑘
𝑖 , then ̃𝑖 = {̃𝐷1

𝑖 , ̃𝐷2
𝑖 ,… , ̃𝐷𝑙

𝑖 }.
According to the discussion of the concept recalling mechanism in

Section 3.1, it only needs recalling some related knowledge (i.e., co-
sine similarity granule 𝐶𝑆(𝑥)) connected to the new information and
updating the corresponding fuzzy three-way concepts. Furthermore, a
concept recognition based on the concept forgetting method is defined
as follows.

Definition 11. Let 𝑥 be a new object and (𝑥, (̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑥), ̃−

𝛥𝛺𝐷𝑘
𝑖−1

(𝑥)))

be a new fuzzy three-way concept, for any (𝑋ℎ,𝑘, (𝑇ℎ,𝑘, 𝑇 −
ℎ,𝑘)) ∈ ̃𝐷𝑘

𝑖
(ℎ ∈ {1, 2,… , |̃𝐷𝑘

𝑖 |}), the concept recognition degree between two
concepts can be defined by:

ℎ,𝐷𝑘
=
√

‖𝑇ℎ,𝑘 − ̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑥)‖2 + ‖𝑇 −

ℎ,𝑘 − ̃−
𝛥𝛺𝐷𝑘

𝑖−1

(𝑥)‖2. (19)

where || ⋅ ||2 denotes the 2-norm.

The smaller the value of ℎ,𝐷𝑘
, the stronger the relationship be-

tween the two concepts. Thus, for any added object 𝑥, according to
Definition 11, one can compute the recognition degree between 𝑥 and
any concept in ̃𝐷𝑘

𝑖 . Additionally, one can compute the global minimum
recognition degree between the added object 𝑥 and ̃𝑖, denoted by
∗

ℎ,𝐷𝑘
= 𝑎𝑟𝑔𝑚𝑖𝑛ℎ,𝐷𝑘

ℎ,𝐷𝑘
.

Definition 12. Let 𝑥 be a new object and (𝑥, (̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑥), ̃−

𝛥𝛺𝐷𝑘
𝑖−1

(𝑥))) be

a new fuzzy three-way concept. Then, (𝑥, (̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑥), ̃−

𝛥𝛺𝐷𝑘
𝑖−1

(𝑥))) can be

fused into ̃𝐷𝑘
𝑖 , if ∗

ℎ,𝐷𝑘
is the global minimum recognition degree.

From Definitions 10–12, concept recognition via concept forgetting
consists of three steps: (1) learning fuzzy three-way concept space
based on concept forgetting; (2) computing concept recognition degree
7

between different concepts; (3) getting the global minimum recogni-
tion. The details are shown in Algorithm 3, and its time complexity is
𝑂(|𝛺|(|𝛺|

2 + |𝛹 |)).

Algorithm 3 Concept recognition via concept forgetting

Input: A formal context (𝛺,𝛹, 𝐼,𝐷, 𝐽 ), fuzzy three-way concept space
̃𝑖 = {̃𝐷1

𝑖 , ̃𝐷2
𝑖 ,… , ̃𝐷𝑙

𝑖 }, the added object 𝑦.
Output: ∗

ℎ,𝐷𝑘
and 𝐷∗

𝑘;
1: Get the fuzzy three-way concept space based on concept forgetting

̃𝑖 = {̃𝐷1
𝑖 , ̃𝐷2

𝑖 ,… , ̃𝐷𝑙
𝑖 } according to Definition 10;

2: Get the fuzzy three-way concept (𝑦, (̃
𝛥𝛺𝐷𝑘

𝑖−1
(𝑦), ̃−

𝛥𝛺𝐷𝑘
𝑖−1

(𝑦)));

3: for all ̃𝐷𝑘
𝑖 ⊆ ̃𝑖 do

4: for all (𝑋ℎ,𝑘, (𝑇ℎ,𝑘, 𝑇 −
ℎ,𝑘)) ∈ ̃𝐷𝑘

𝑖 do
5: Compute the recognitive degree ℎ,𝐷𝑘

according to Defini-
tion 11;

6: ∗
ℎ,𝐷𝑘

← 𝑚𝑖𝑛{ℎ,𝐷𝑘
};

7: 𝐷∗
𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑘∈𝛺∕𝐷𝑅∗

ℎ,𝐷𝑘
;

8: end for
9: end for

10: return ∗
ℎ,𝐷𝑘

and 𝐷∗
𝑘.

3.4. Overall procedure

In this subsection, Fig. 3 is utilized to show the overall proce-
dure of M-FCCL (i.e., memory-based concept-cognitive learning), which
includes three main stages: concept learning, concept cognition, and
concept recognition. Take the update of the fuzzy three-way concept
space-2 for brevity as an example. The concept learning stage involves
learning the object-oriented fuzzy three-way concept via cosine simi-
larity granule based on information granulation. According to the fuzzy
three-way concept in the first stage, the fuzzy three-way concept space
is constructed, and then the stage of concept cognition is to forget some
unnecessary concepts in the fuzzy concept space.

In the stage of concept recognition, for any new object and its cor-
responding fuzzy three-way concept, the global minimum recognition
degree is further used to compute the recognition degree between the
new concept and the fuzzy three-way concept spaces. Then there is
only a need to recall the related knowledge with the new concept in
this fuzzy three-way concept space to fuse it. For any new concept, the
above process can be repeated.

Combined with the theoretical analysis of M-FCCL in Sections 3.1–
3.3, the memory-based concept-cognitive learning method details are
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Fig. 4. The performance comparison of memory and non-memory mechanisms on 16 datasets.
Table 1
Detailed information of 16 selected datasets.

No.s Datasets Objects Features Classes

1 BreastTissue 106 10 6
2 Hill 606 101 2
3 Mice Protein Expression 1077 68 8
4 Cardiotocography 2126 23 3
5 Spambase 4597 57 2
6 Ring 7400 20 2
7 DryBean 13 611 17 6
8 South German Credit 1000 21 2
9 Abalone 4177 9 3
10 EGS 10 000 14 2
11 Wdbc 569 31 2
12 Heart 270 14 2
13 Climate Model Simulation Crashes 540 18 2
14 Balance 625 5 3
15 Urbanlandcover 168 148 9
16 Spectfheart 267 45 2

shown in Algorithms 1–3. Meanwhile, according to the introduction of
the overall procedure of M-FCCL in this subsection, the process can be
briefly described into four steps as follows.

• Step 1 Given a fuzzy decision formal context (𝛺,𝛹, 𝐼,𝐷, 𝐽 ). For
any 𝑥 ∈ 𝛺 and 𝐷𝑘 ∈ 𝛺∕𝐷, get the cosine similarity granule 𝐶𝑆(𝑥)
and fuzzy three-way concept (̃(𝐶𝑆(𝑥)) ∩−̃−(𝐶𝑆(𝑥)), (̃(𝐶𝑆
8

(𝑥)), ̃−(𝐶𝑆(𝑥)))), and then construct fuzzy three-way concept
space ̃ = {̃𝐷1 , ̃𝐷2 ,… , ̃𝐷𝑙}.

• Step 2 For any ̃𝐷𝑘 ∈ ̃, construct object-oriented fuzzy three-
way concept space based on concept forgetting ̃𝐷𝑘 according the
method in Definition 10, and then get the fuzzy three-way concept
space via knowledge fusion, i.e., ̃ = {̃𝐷1 , ̃𝐷2 ,… , ̃𝐷𝑙}.

• Step 3 For a new fuzzy three-way concept (𝑥, (̃𝛥𝛺𝐷𝑘 (𝑥), ̃−
𝛥𝛺𝐷𝑘

(𝑥))), the concept recognition degree ℎ,𝐷𝑘
with each granular

concept (𝑋ℎ,𝑘, (𝑇ℎ,𝑘, 𝑇 −
ℎ,𝑘)) ∈ ̃𝐷𝑘 (ℎ ∈ {1, 2,… , |̃𝐷𝑘

|}), and then
get the fuzzy three-way concept space and its corresponding class
label according to 𝐷𝑘

∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑘
∗

ℎ,𝐷𝑘
.

• Step 4 For different cognitive states, the fuzzy three-way concept
space ̃𝑖 = {̃𝐷1

𝑖 , ̃𝐷2
𝑖 ,… , ̃𝐷𝑙

𝑖 } needs to be updated by six pairs of
cognitive operators in Definition 8 and the cognitive mechanism
in Theorem 2, and then repeat steps 2-3. The final fuzzy three-way
concept space can be obtained using the recursive approach.

4. Experiments

In this section, the effectiveness of M-FCCL is validated for the per-
formance of concept learning based on a fuzzy formal context. Specif-
ically, M-FCCL with some popular classification methods is compared.
All experimental setup of comparison methods is consistent with corre-
sponding references. The experimental computing program on a public
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Table 2
Accuracy comparison of two concept learning mechanisms on 16 datasets.

Dataset Mechanisms Parameter 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 Ave. ± SD

1 Memory 0.05 1.0000 1.0000 1.0000 0.8750 0.9000 0.7500 0.7857 0.7500 0.7778 0.8000 0.8639 ± 0.1057
Non-memory 0.05 1.0000 1.0000 1.0000 0.8750 0.9000 0.7500 0.6429 0.6250 0.6111 0.6500 0.8054 ± 0.1671

2 Memory 0.30 1.0000 0.5556 0.7037 0.7778 0.8222 0.6944 0.6111 0.6597 0.6975 0.7278 0.7250 ± 0.1229
Non-memory 0.50 0.6667 0.7222 0.6481 0.6528 0.6556 0.6296 0.6111 0.6181 0.6235 0.6056 0.6433 ± 0.0345

3 Memory 0.15 0.6129 0.5161 0.4194 0.5565 0.4710 0.4624 0.4747 0.5040 0.5520 0.4968 0.5066 ± 0.0557
Non-memory 0.05 0.9032 0.8387 0.5591 0.5887 0.4774 0.3978 0.3410 0.2984 0.2652 0.2387 0.4908 ± 0.2329

4 Memory 0.50 0.8095 0.8651 0.9101 0.9325 0.9460 0.9550 0.8299 0.8274 0.8466 0.8619 0.8784 ± 0.0533
Non-memory 0.35 0.7302 0.8016 0.8042 0.7738 0.7270 0.7116 0.6213 0.5437 0.4832 0.4349 0.6632 ± 0.1345

5 Memory 0.40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8717 0.8878 0.9002 0.8241 0.9484 ± 0.0694
Non-memory 0.15 1.0000 1.0000 1.0000 1.0000 0.9985 0.9988 0.8717 0.7655 0.6813 0.6161 0.8932 ± 0.1514

6 Memory 0.05 0.9910 0.9955 0.9970 0.9977 0.9928 0.9932 0.9942 0.9949 0.9955 0.9959 0.9948 ± 0.0020
Non-memory 0.05 1.0000 1.0000 1.0000 1.0000 0.9946 0.8288 0.7104 0.6216 0.5525 0.4973 0.8205 ± 0.2074

7 Memory 0.00 0.3309 0.6127 0.7026 0.7763 0.8206 0.8435 0.8648 0.8640 0.8739 0.8142 0.7504 ± 0.1689
Non-memory 0.00 0.8382 0.7475 0.8301 0.8113 0.8211 0.8105 0.7997 0.7558 0.6863 0.6176 0.7718 ± 0.0715

8 Memory 0.50 0.9310 0.9655 0.9770 0.7500 0.6690 0.7184 0.7586 0.7845 0.8084 0.8241 0.8187 ± 0.1061
Non-memory 0.15 0.7931 0.8103 0.8506 0.6983 0.5931 0.5517 0.5123 0.5172 0.4866 0.4621 0.6275 ± 0.1473

9 Memory 0.20 0.9120 0.8400 0.8453 0.8060 0.8448 0.7427 0.7063 0.7070 0.6889 0.6952 0.7788 ± 0.0801
Non-memory 0.25 1.0000 1.0000 1.0000 0.9160 0.7328 0.6107 0.5234 0.4580 0.4071 0.3664 0.7014 ± 0.2609

10 Memory 0.25 1.0000 0.9983 0.9989 0.9064 0.8582 0.8818 0.8987 0.9114 0.9212 0.9291 0.9304 ± 0.0514
Non-memory 0.50 1.0000 1.0000 1.0000 0.9749 0.9251 0.8907 0.8696 0.8512 0.8369 0.8278 0.9176 ± 0.0713

11 Memory 0.15 1.0000 1.0000 1.0000 0.9265 0.9412 0.9510 0.9580 0.9632 0.9673 0.9706 0.9678 ± 0.0257
Non-memory 0.00 1.0000 0.9706 0.9608 0.9706 0.9529 0.9608 0.9496 0.9559 0.9477 0.9471 0.9616 ± 0.0160

12 Memory 0.50 1.0000 0.9286 0.9524 0.9643 0.9714 0.9762 0.8571 0.8214 0.8254 0.8429 0.9140 ± 0.0695
Non-memory 0.15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8980 0.7857 0.7143 0.6429 0.9041 ± 0.1388

13 Memory 0.40 0.8125 0.7812 0.8542 0.8906 0.9125 0.9271 0.9375 0.9453 0.9514 0.9563 0.8969 ± 0.0615
Non-memory 0.00 0.3750 0.5938 0.7083 0.7812 0.8000 0.8333 0.8393 0.8516 0.8681 0.8812 0.7532 ± 0.1587

14 Memory 0.25 0.8889 0.9444 0.9630 0.9722 0.9778 0.9074 0.8492 0.8681 0.8765 0.8889 0.9136 ± 0.0469
Non-memory 0.45 0.5000 0.7500 0.8333 0.8750 0.9000 0.9167 0.8810 0.7708 0.6852 0.6167 0.7729 ± 0.1373

15 Memory 0.15 1.0000 0.7500 0.8333 0.8125 0.8500 0.7500 0.7857 0.7188 0.6667 0.6750 0.7842 ± 0.0980
Non-memory 0.00 1.0000 0.8750 0.7500 0.6250 0.6500 0.6667 0.7143 0.7188 0.6944 0.7000 0.7394 ± 0.1142

16 Memory 0.05 1.0000 1.0000 0.7619 0.6429 0.7143 0.7619 0.7755 0.6964 0.6190 0.6286 0.7601 ± 0.1384
Non-memory 0.10 1.0000 1.0000 0.7619 0.5714 0.4571 0.4048 0.4082 0.3750 0.3333 0.3429 0.5655 ± 0.2621
4
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computer with OS: Microsoft Win10; Processor: Intel(R) Core(TM) i7-
6800K CPU @ 3.4 GHz×12; Memory: 62.7 GB; Programming language:

atlab.
To extensively verify the performance of different approaches, 16

atasets with different scales are randomly selected from UCI (see https:
/www.uci.edu/), and the detailed information about them is shown in
able 1. For convenience, 16 datasets are denoted Dataset 1–16. The
ource data have been fuzzified into values ranging from 0 to 1 using
he following method in [44].

(̃𝑥, 𝑎𝑗 ) =
𝑓 (𝑥, 𝑎𝑗 ) − 𝑚𝑖𝑛(𝑓 (𝑎𝑗 ))

𝑚𝑎𝑥(𝑓 (𝑎𝑗 )) − 𝑚𝑖𝑛(𝑓 (𝑎𝑗 ))
, (20)

where 𝑓 (𝑥, 𝑎𝑗 ) represents the value of object 𝑥 in feature 𝑎𝑗 , the
𝑚𝑎𝑥(𝑓 (𝑎𝑗 )) and 𝑚𝑖𝑛(𝑓 (𝑎𝑗 )) denote the maximum and minimum value
f all objects in 𝑎𝑗 .

To clearly show the performance of the proposed method in the
ynamic concept learning process, 70% data of each dataset as training
amples set is selected to construct the initial concept space. The
emaining data is divided into ten chunks and added to the testing
amples set at different times in dynamic concept learning. The ten
ifferent times are denoted 𝑡1, 𝑡2,… , 𝑡10 for convenience. Note that

the cosine similarity degree in the proposed method is an important
parameter influencing the construction of the cosine similarity granule.
Hence, this experiment sets the parameter 𝛿 from 0 to 0.5 in steps of
0.05 to learn the cosine similarity granule. For a fair comparison, ten
trials were conducted for each method on the same training and testing
samples. The average accuracy(Ave.) and the standard deviation(SD)
are reported in this section.
9

.1. Evaluating the performance of memory mechanism

Based on the proposed method in Section 2, we can know that
-FCCL can naturally achieve dynamic concept learning. Hence, the

oncept classification accuracy and running time of two concept learn-
ng mechanisms (i.e., memory and non-memory mechanisms) on 16
atasets for different time nodes to demonstrate the significance of the
emory mechanism in M-FCCL method. The more intuitive remarkable

omparison is shown in Fig. 4. It can be found that the performance
f the memory mechanism of M-FCCL is significantly better than the
on-memory mechanism in most cases.
(1) Concept classification accuracy: This part mainly demonstrates

he concept classification accuracy of two concept learning mecha-
isms. Subsequently, the details of average accuracy and the standard
eviation of ten-time results on 16 datasets are shown in Table 2. As
een from this table, the memory mechanism performs well for dynamic
ata classification on all datasets as time goes on. Table 2 shows that
he dynamic data classification performance of the memory mechanism
s almost more significant than the non-memory mechanism, except
or dataset 7. Consequently, the classification results of two memory
echanisms in this table show that the proposed method performs

easonably efficiently for the 16 selected datasets from two aspects: (a)
he average overall accuracy and (b) dynamic classification accuracy as
he times go. In addition, the concept-cognitive learning mechanism is
imilar to human cognitive processes, the concept-learning results can
e stored, and the subsequent concept-learning does not need to start
rom scratch.
(2) Runing time: This part mainly verifies the running time of

wo concept learning mechanisms on different datasets. Meanwhile,
o reduce the randomness of the experiment, this part still ran ten

https://www.uci.edu/
https://www.uci.edu/
https://www.uci.edu/
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Table 3
Runing time of two concept learning mechanisms on 16 datasets.

Dataset Mechanisms 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 Ave.

1 Memory 0.05 0.09 0.11 0.15 0.17 0.19 0.21 0.26 0.29 0.31 0.18
Non-memory 0.09 0.13 0.17 0.19 0.22 0.25 0.28 0.31 0.34 0.37 0.24

2 Memory 0.68 1.37 2.05 2.74 3.43 4.17 4.90 5.63 6.35 7.08 3.84
Non-memory 0.75 1.50 2.24 2.99 3.75 4.55 5.34 6.12 6.90 7.69 4.18

3 Memory 0.61 0.62 0.63 0.60 0.61 0.61 0.61 0.61 0.60 0.60 0.61
Non-memory 0.70 0.70 0.69 0.64 0.65 0.64 0.64 0.63 0.63 0.65 0.66

4 Memory 6.17 12.36 18.53 24.70 30.88 37.05 43.27 49.37 55.47 61.56 33.94
Non-memory 6.26 13.16 13.36 13.01 13.33 13.67 13.94 13.38 12.65 12.58 12.53

5 Memory 101.67 203.94 307.67 410.12 515.88 621.89 701.55 752.10 802.65 853.27 527.07
Non-memory 104.51 211.55 314.68 419.15 521.88 626.91 730.08 784.54 838.12 891.95 544.34

6 Memory 149.08 298.06 447.19 596.07 745.37 891.30 1037.19 1183.03 1328.84 1474.74 815.09
Non-memory 184.88 369.89 553.39 735.05 904.04 1067.11 1230.05 1393.28 1556.23 1719.18 971.31

7 Memory 164.68 329.29 493.91 661.99 807.55 953.05 1099.29 1244.56 1389.81 1535.06 867.92
Non-memory 169.66 339.38 512.18 690.12 845.21 1000.12 1148.00 1299.72 1452.21 1605.14 906.17

8 Memory 1.79 3.57 5.36 7.21 9.03 10.86 12.69 14.51 16.34 18.16 9.95
Non-memory 1.91 3.81 5.71 7.68 9.65 11.60 13.56 15.50 17.45 19.40 10.63

9 Memory 16.76 33.52 50.29 67.36 84.04 100.70 117.52 134.13 150.74 167.35 92.24
Non-memory 32.92 67.31 100.98 139.19 169.95 199.16 229.27 256.29 282.93 309.24 178.73

10 Memory 182.40 364.80 547.17 735.45 918.98 1102.50 1286.03 1469.54 1653.08 1836.59 1009.65
Non-memory 612.35 1224.28 1835.86 2476.07 3106.56 3736.50 4366.37 4996.18 5625.92 6255.58 3423.57

11 Memory 0.54 1.09 1.63 2.20 2.76 3.31 3.86 4.41 4.96 5.51 3.03
Non-memory 32.92 67.31 100.98 139.19 169.95 199.16 229.27 256.29 282.93 309.24 178.73

12 Memory 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 0.72
Non-memory 0.21 0.40 0.59 0.76 0.94 1.10 1.29 1.48 1.64 1.81 1.02

13 Memory 0.75 1.49 2.23 2.98 3.72 4.46 5.21 5.95 6.70 7.44 4.09
Non-memory 0.89 1.79 2.69 3.57 4.46 5.34 6.22 7.10 7.97 8.85 4.89

14 Memory 0.52 1.04 1.54 2.04 2.54 3.05 3.55 4.05 4.54 5.04 2.79
Non-memory 0.59 1.19 1.78 2.35 2.93 3.53 4.11 4.68 5.26 5.86 3.23

15 Memory 0.10 0.19 0.18 0.15 0.13 0.13 0.12 0.12 0.12 0.12 0.14
Non-memory 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.27 0.31 0.34 0.19

16 Memory 0.22 0.43 0.63 0.84 1.04 1.24 1.44 1.64 1.84 2.04 1.14
Non-memory 0.23 0.43 0.67 0.88 1.09 1.29 1.50 1.70 1.90 2.11 1.18
times on each time node to obtain the average results. The perfor-
mance of dynamic data classification has been verified in the above
discussion. This part will mainly compare the running time of two
mechanisms for dynamic data to explain the advantage of memory in
the proposed method. Next, the running time on 16 datasets is shown
in Table 3, where results of the concept learning mechanism with less
time are displayed in bold. As seen from the comparison of running
time and classification for two mechanisms in Fig. 4, compared with
the non-memory mechanism, the memory mechanism performs better
classification accuracy and running time when facing dynamic data
updates.

4.2. Evaluating the performance of CCL

In Section 4.2, the superior performance of the memory mech-
anism is analyzed for concept-cognitive learning in dynamic fuzzy
data classification. To further verify the performance of memory-based
concept-cognitive learning in the fuzzy formal context, the proposed
method (M-FCCL) with two advanced concept-cognitive learning mech-
anisms [33,34], including IPFC and IWFC methods, is compared. IPFC
is an incremental learning mechanism based on the progressive fuzzy
three-way concept, and IWFC is an incremental CCL based on weighted
fuzzy concepts. In addition, this subsection mainly validates the su-
perior performance of M-FCCL from two aspects: classification perfor-
mance evaluation with other CCL methods and running time compari-
son at different times.

This part mainly verifies the performance of dynamic data clas-
sification for the M-FCCL method compared with other fuzzy-based
CCL methods. Therefore, the classification accuracy and average accu-
racy at different time nodes on 16 datasets are selected to compare
10
the performance for different methods. Table 4 records the optimal
threshold 𝛿 and M-FCCL, IPFC, and IWFC accuracy in these datasets.
The last column shows the average accuracy and standard deviation,
with excellent results in bold. As shown in this table, M-FCCL has
higher accuracy and lower variance (indicating system stability) than
other methods, which means that the classification permanence of the
proposed method is superior to two CCL mechanisms. Moreover, the
average classification accuracy of M-FCCL and the other CCL methods
on 16 datasets are 0.8408, 0.7185, and 0.5128. Then the M-FCCL
achieves a 17.02% gain in classification accuracy compared with the
existing best CCL method, i.e., IPFC. All in all, these results indicate
the superiority of the M-FCCL compared with the other two fuzzy-based
CCL mechanisms in dynamic fuzzy data classification.

4.3. Evaluating the performance with other methods

In Section 4.3, the advantages of M-FCCL with the other CCL
methods are compared for dynamic classification problems. Moreover,
considering that M-FCCL is constructed based on the fuzzy concept,
it is a fuzzy classifier based on concept recognition degree. Thus, to
further verify the classification performance with other machine learn-
ing methods, this subsection needs to compare it with some popular
distance-based classification methods [45–47]: IF_KNN, MFuzzKNN,
FENN, KNN, TreeBigger, and Decision Tree.

In addition, note that these methods cannot directly achieve dy-
namic data classification. Therefore, the average classification perfor-
mance (i.e., accuracy, precision, recall, and F1-score) between these
methods is used to demonstrate the advantage of the proposed method
on 16 datasets. The more intuitive remarkable comparison is shown in
Fig. 5. It can be found clearly that the performance of the proposed
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Table 4
Accuracy (Ave. ± SD) comparison with other concept-cognitive learning mechanisms at different time on 16 datasets.

Dataset Methods Parameter 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 Ave. ± SD

1
M-FCCL 0.05 1.0000 1.0000 1.0000 0.8750 0.9000 0.7500 0.7857 0.7500 0.7778 0.8000 0.8639 ± 0.1057
IPFC 0.30 1.0000 1.0000 1.0000 0.8750 0.8000 0.8333 0.7857 0.6875 0.6111 0.6000 0.8193 ± 0.1533
IWFC 0.30 0.5000 0.7500 0.8333 0.7500 0.7000 0.7500 0.7143 0.6250 0.5556 0.5500 0.6728 ± 0.1091

2
M-FCCL 0.30 1.0000 0.5556 0.7037 0.7778 0.8222 0.6944 0.6111 0.6597 0.6975 0.7278 0.7250 ± 0.1229
IPFC 0.00 1.0000 0.8611 0.8704 0.8750 0.8889 0.7685 0.6667 0.5903 0.5370 0.4889 0.7547 ± 0.1733
IWFC 0.30 0.0556 0.0278 0.0185 0.0139 0.0111 0.1667 0.2857 0.3750 0.4444 0.4944 0.1893 ± 0.1938

3
M-FCCL 0.15 0.6129 0.5161 0.4194 0.5565 0.4710 0.4624 0.4747 0.5040 0.5520 0.4968 0.5066 ± 0.0557
IPFC 0.50 0.7419 0.5806 0.5914 0.5242 0.4968 0.5108 0.4977 0.5161 0.4910 0.5355 0.5486 ± 0.0761
IWFC 0.30 0.4516 0.2419 0.1613 0.1210 0.1032 0.1505 0.2304 0.2379 0.3190 0.3161 0.2333 ± 0.1073

4
M-FCCL 0.50 0.8095 0.8651 0.9101 0.9325 0.9460 0.9550 0.8299 0.8274 0.8466 0.8619 0.8784 ± 0.0533
IPFC 0.15 0.6190 0.6984 0.6402 0.6468 0.6762 0.7037 0.6712 0.6865 0.6949 0.7032 0.6740 ± 0.0295
IWFC 0.30 0.6032 0.6746 0.5344 0.5119 0.4952 0.5026 0.5057 0.5456 0.5785 0.5889 0.5541 ± 0.0572

5
M-FCCL 0.40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8717 0.8878 0.9002 0.8241 0.9484 ± 0.0694
IPFC 0.45 0.9416 0.9489 0.9489 0.9124 0.9139 0.9148 0.8488 0.7856 0.7486 0.7241 0.8688 ± 0.0862
IWFC 0.75 0.0949 0.0949 0.0657 0.0493 0.0394 0.0328 0.1564 0.2619 0.3439 0.4088 0.1548 ± 0.1359

6
M-FCCL 0.05 0.9910 0.9955 0.9970 0.9977 0.9928 0.9932 0.9942 0.9949 0.9955 0.9959 0.9948 ± 0.0020
IPFC 0.30 0.9321 0.9434 0.9412 0.9480 0.9466 0.9118 0.8533 0.8150 0.7803 0.7502 0.8822 ± 0.0762
IWFC 0.30 0.1357 0.1267 0.1463 0.1459 0.1493 0.2903 0.3911 0.4661 0.5239 0.5710 0.2946 ± 0.1784

7
M-FCCL 0.00 0.3309 0.6127 0.7026 0.7763 0.8206 0.8435 0.8648 0.8640 0.8739 0.8142 0.7504 ± 0.1689
IPFC 0.00 0.8382 0.7659 0.8423 0.8388 0.8471 0.8358 0.8403 0.7914 0.7342 0.6618 0.7996 ± 0.0620
IWFC 0.30 0.3309 0.4608 0.5948 0.5141 0.5990 0.6548 0.6800 0.6881 0.6895 0.6711 0.5883 ± 0.1193

8
M-FCCL 0.50 0.9310 0.9655 0.9770 0.7500 0.6690 0.7184 0.7586 0.7845 0.8084 0.8241 0.8187 ± 0.1061
IPFC 0.35 0.4138 0.3621 0.4138 0.4828 0.5724 0.5747 0.5764 0.6121 0.6169 0.6310 0.5256 ± 0.0987
IWFC 0.80 0.4138 0.3448 0.3793 0.4914 0.5586 0.5460 0.5616 0.5560 0.5824 0.6000 0.5034 ± 0.0915

9
M-FCCL 0.20 0.9120 0.8400 0.8453 0.8060 0.8448 0.7427 0.7063 0.7070 0.6889 0.6952 0.7788 ± 0.0801
IPFC 0.00 0.4960 0.4760 0.4533 0.4520 0.4800 0.4960 0.5234 0.5050 0.4924 0.4896 0.4864 ± 0.0220
IWFC 0.30 0.0000 0.0000 0.0000 0.0000 0.0192 0.0213 0.0434 0.1630 0.2560 0.3304 0.0833 ± 0.1223

10
M-FCCL 0.25 1.0000 0.9983 0.9989 0.9064 0.8582 0.8818 0.8987 0.9114 0.9212 0.9291 0.9304 ± 0.0514
IPFC 0.50 0.8462 0.8144 0.8094 0.8110 0.8334 0.8428 0.8466 0.8499 0.8532 0.8565 0.8363 ± 0.0182
IWFC 0.30 0.9365 0.9097 0.9186 0.8662 0.7652 0.6979 0.6536 0.6137 0.5831 0.5629 0.7507 ± 0.1475

11
M-FCCL 0.15 1.0000 1.0000 1.0000 0.9265 0.9412 0.9510 0.9580 0.9632 0.9673 0.9706 0.9678 ± 0.0257
IPFC 0.00 1.0000 0.9706 0.9608 0.9706 0.9 529 0.9608 0.9496 0.9559 0.9477 0.9529 0.9622 ± 0.0155
IWFC 0.30 0.8824 0.8529 0.8627 0.8676 0.8941 0.9118 0.9244 0.9338 0.9412 0.9471 0.9018 ± 0.0346

12
M-FCCL 0.50 1.0000 0.9286 0.9524 0.9643 0.9714 0.9762 0.8571 0.8214 0.8254 0.8429 0.9140 ± 0.0695
IPFC 0.00 0.8571 0.7857 0.7143 0.7143 0.7429 0.7857 0.7959 0.7679 0.7619 0.7571 0.7683 ± 0.0420
IWFC 0.30 1.0000 0.9286 0.9048 0.8929 0.9143 0.8810 0.8980 0.8750 0.8413 0.8143 0.8950 ± 0.0501

13
M-FCCL 0.40 0.8125 0.7812 0.8542 0.8906 0.9125 0.9271 0.9375 0.9453 0.9514 0.9563 0.8969 ± 0.0615
IPFC 0.00 0.3750 0.5938 0.7083 0.7812 0.8000 0.8333 0.8393 0.8516 0.8681 0.8812 0.7532 ± 0.1587
IWFC 0.30 0.6875 0.6562 0.6250 0.5781 0.5625 0.5833 0.5982 0.5781 0.5694 0.5625 0.6001 ± 0.0427

14
M-FCCL 0.25 0.8889 0.9444 0.9630 0.9722 0.9778 0.9074 0.8492 0.8681 0.8765 0.8889 0.9136 ± 0.0469
IPFC 0.00 0.3889 0.6111 0.7407 0.8056 0.8444 0.8333 0.8095 0.8333 0.7840 0.7778 0.7429 ± 0.1417
IWFC 0.30 0.9444 0.7778 0.6667 0.6111 0.5889 0.4907 0.4286 0.3750 0.3333 0.3000 0.5517 ± 0.2067

15
M-FCCL 0.15 1.0000 0.7500 0.8333 0.8125 0.8500 0.7500 0.7857 0.7188 0.6667 0.6750 0.7842 ± 0.0980
IPFC 0.00 1.0000 0.8750 0.7500 0.6250 0.6500 0.6667 0.7143 0.7188 0.6944 0.7000 0.7394 ± 0.1142
IWFC 0.30 1.0000 0.5000 0.5000 0.4375 0.4500 0.5000 0.5357 0.5625 0.5278 0.5250 0.5539 ± 0.1612

16
M-FCCL 0.05 1.0000 1.0000 0.7619 0.6429 0.7143 0.7619 0.7755 0.6964 0.6190 0.6286 0.7601 ± 0.1384
IPFC 0.50 0.2857 0.5000 0.4762 0.5357 0.5143 0.5476 0.6122 0.6607 0.6508 0.6714 0.5455 ± 0.1155
IWFC 0.30 0.2857 0.1429 0.2857 0.4643 0.5143 0.5476 0.5306 0.5357 0.5873 0.5857 0.4480 ± 0.1539
1
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M-FCCL method is significantly better than the other six methods in
most cases.

Table 5 records the average classification accuracy of ten-fold cross-
validation for M-FCCL and six other classical methods. Table 5 shows
that the M-FCCL achieves a maximum value of thirteen times on
16 datasets, except in datasets 7, 10, and 11. Meanwhile, M-FCCL’s
average accuracy and rank are 0.8395 and 1.56. In particular, the M-
FCCL improves 18.54% of average classification accuracy compared to
the TreeBigger method on 16 datasets.

Similarly, Tables 6–8 records the value of average precision, recall,
and F1-score results for these methods, respectively. While the aver-
age results in 16 datasets are the highest among these methods, the
classification performance of the proposed method is better than other
methods as the number of objects increases. Among these tables, rank
is the average order of sixteen datasets under different approaches,
and the outstanding results are in bold and underlined. Overall, the
results show that the proposed M-FCCL is an excellent dynamic fuzzy
11

m

data classification method compared to some popular machine learning
methods.

To evaluate whether M-FCCL is significantly different from these
compared classical methods in classification performance, a Friedman’s
test is performed on 16 datasets at a significance level of 𝑃 = 0.1.
The resulting P-values are 1.21 × 10−7, 4.98 × 10−8, 9.96 × 10−9, and
.55 × 10−8, which are lower than the significance level, indicating a
tatistically significant difference between M-FCCL and the six classical
ethods.

Consequently, a post hoc test using nemenyi’s method is conducted
o determine whether there is a significant difference between any
wo methods. Specifically, the two methods are considered significantly
ifferent when the difference between these average ranks is equal to
r greater than the critical value. At a confidence level of 𝛼 = 0.1, the
ritical values for nemenyi’s post hoc test are 1.7125 when comparing
even methods on the 16 datasets.

Fig. 6 indicates the nemenyi’s test results of M-FCCL and six other
achine learning methods in classification performance. This figure
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Fig. 5. Comparison of classification performance with other methods.
Table 5
Accuracy (Ave. ± SD) comparison with other classification methods on 16 datasets.

Dataset IF_KNN MFuzzyKNN FENN KNN TreeBigger Decision Tree M-FCCL

1 0.7008 ± 0.1882 0.5877 ± 0.1021 0.6093 ± 0.1044 0.7008 ± 0.1882 0.6673 ± 0.2241 0.5869 ± 0.2513 0.8639 ± 0.1057
2 0.6214 ± 0.0390 0.6241 ± 0.0264 0.4468 ± 0.0686 0.6083 ± 0.0355 0.6879 ± 0.0834 0.4791 ± 0.0251 0.7250 ± 0.1229
3 0.3915 ± 0.1503 0.3822 ± 0.1416 0.3822 ± 0.1416 0.3915 ± 0.1503 0.4097 ± 0.0829 0.2025 ± 0.0573 0.5066 ± 0.0557
4 0.6270 ± 0.0270 0.6158 ± 0.0294 0.5965 ± 0.0369 0.6110 ± 0.0335 0.7003 ± 0.0667 0.6107 ± 0.0754 0.8784 ± 0.0533
5 0.8257 ± 0.0478 0.8236 ± 0.0494 0.8188 ± 0.0490 0.8155 ± 0.0481 0.9187 ± 0.0480 0.7801 ± 0.0513 0.9484 ± 0.0694
6 0.3847 ± 0.1570 0.3733 ± 0.1618 0.2375 ± 0.1951 0.5089 ± 0.1207 0.9317 ± 0.0327 0.8118 ± 0.0204 0.9948 ± 0.0020
7 0.8402 ± 0.0666 0.8401 ± 0.0674 0.8512 ± 0.0636 0.4766 ± 0.2037 0.4039 ± 0.2698 0.1163 ± 0.0477 0.7504 ± 0.1689
8 0.4991 ± 0.1059 0.5237 ± 0.1027 0.4967 ± 0.1334 0.5322 ± 0.0825 0.6113 ± 0.0658 0.3962 ± 0.0404 0.8187 ± 0.1061
9 0.5380 ± 0.0397 0.5370 ± 0.0343 0.5217 ± 0.0490 0.5317 ± 0.0259 0.5881 ± 0.0603 0.2898 ± 0.0221 0.7788 ± 0.0801
10 0.8429 ± 0.0357 0.8378 ± 0.0374 0.8281 ± 0.0450 0.8502 ± 0.0328 0.9985 ± 0.0013 1.0000 ± 0.0000 0.9304 ± 0.0514
11 0.9783 ± 0.0115 0.9783 ± 0.0115 0.9836 ± 0.0074 0.9783 ± 0.0115 0.9220 ± 0.0574 0.9088 ± 0.0704 0.9678 ± 0.0257
12 0.8957 ± 0.0457 0.8543 ± 0.0277 0.8267 ± 0.0409 0.8308 ± 0.0299 0.8201 ± 0.0510 0.6698 ± 0.0314 0.9140 ± 0.0695
13 0.8170 ± 0.1733 0.8170 ± 0.1733 0.7621 ± 0.2253 0.8232 ± 0.1559 0.8230 ± 0.0492 0.6989 ± 0.1978 0.8969 ± 0.0615
14 0.7121 ± 0.1856 0.7108 ± 0.1855 0.7041 ± 0.1841 0.6603 ± 0.1759 0.6258 ± 0.1696 0.5015 ± 0.2191 0.9136 ± 0.0469
15 0.7520 ± 0.1040 0.7091 ± 0.1300 0.7220 ± 0.1167 0.7161 ± 0.1102 0.6352 ± 0.1124 0.6133 ± 0.2124 0.7842 ± 0.0980
16 0.5975 ± 0.2059 0.5934 ± 0.1906 0.5984 ± 0.2301 0.5914 ± 0.1851 0.5870 ± 0.0513 0.4653 ± 0.2061 0.7601 ± 0.1384

Ave. ± SD 0.6890 ± 0.0990 0.6755 ± 0.0919 0.6491 ± 0.1057 0.6642 ± 0.0994 0.7082 ± 0.0891 0.5707 ± 0.0955 0.8395 ± 0.0785
Rank 3.13 4.13 4.81 4.00 3.69 6.25 1.56
Win/tie/loss 1/0/15 0/0/16 1/0/15 0/0/16 0/0/16 1/0/15 13/0/3
shows that the proposed M-FCCL ranks first on compared algorithms in
all test indicators and is significantly higher than other methods. These
results verify the effectiveness of M-FCCL in object classification.

4.4. Parameters analysis

According to algorithm 1, the parameter 𝛿 plays an essential role
in constructing cosine similarity granules and fuzzy three-way con-
cepts for the following concept learning process. In order to further
12
investigate the impact of this parameter in the proposed M-FCCL,
this subsection record and analyze the classification accuracy of the
memory mechanism on 16 datasets.

The classification accuracy of M-FCCL under different parameters
with time goes is shown in Fig. 7. This figure shows that the accuracy
changes significantly with threshold parameter changes, indicating that
the memory mechanism is sensitive to this parameter. Consequently, it
is necessary to determine an optimal parameter to enhance the concept
learning performance. Meanwhile, the classification accuracy varies
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Fig. 6. Test of Nemenyi on M-FCCL and six classical methods. (a)–(d) show the test results of M-FCCL with the other six classical methods in Accuracy, Precision, Recall, and
f1-score in classification.

Fig. 7. The accuracy comparison under different parameters on 16 datasets.
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Table 6
Precision (Ave. ± SD) comparison with other classification methods on 16 datasets.

Dataset IF_KNN MFuzzyKNN FENN KNN TreeBigger Decision Tree M-FCCL

1 0.6674 ± 0.1930 0.4537 ± 0.1219 0.5394 ± 0.0919 0.6755 ± 0.1927 0.5488 ± 0.2570 0.3899 ± 0.3374 0.8735 ± 0.1482
2 0.5280 ± 0.0311 0.5386 ± 0.0416 0.5039 ± 0.0107 0.5267 ± 0.0304 0.5289 ± 0.0344 0.0968 ± 0.0380 0.5871 ± 0.1835
3 0.3138 ± 0.0243 0.2939 ± 0.0265 0.2942 ± 0.0266 0.3138 ± 0.0243 0.2565 ± 0.0427 0.1411 ± 0.0163 0.4513 ± 0.1156
4 0.5564 ± 0.0569 0.5415 ± 0.0524 0.5082 ± 0.0558 0.5199 ± 0.0556 0.5244 ± 0.0752 0.1111 ± 0.0675 0.8348 ± 0.1083
5 0.6006 ± 0.1335 0.6004 ± 0.1335 0.5983 ± 0.1308 0.5974 ± 0.1296 0.6322 ± 0.1719 0.0914 ± 0.0156 0.9196 ± 0.1746
6 0.6067 ± 0.1208 0.6059 ± 0.1199 0.5946 ± 0.1083 0.6191 ± 0.1332 0.7043 ± 0.2042 0.0649 ± 0.0152 0.7471 ± 0.2611
7 0.7138 ± 0.1813 0.7115 ± 0.1815 0.7245 ± 0.1846 0.3470 ± 0.0638 0.2419 ± 0.2833 0.0343 ± 0.0146 0.6546 ± 0.2131
8 0.5395 ± 0.0377 0.5549 ± 0.0465 0.5475 ± 0.0393 0.5526 ± 0.0444 0.5594 ± 0.0491 0.0983 ± 0.0206 0.6675 ± 0.1742
9 0.4595 ± 0.0935 0.4584 ± 0.0923 0.4620 ± 0.0959 0.4485 ± 0.0855 0.4170 ± 0.0635 0.0264 ± 0.0029 0.6450 ± 0.1384
10 0.7350 ± 0.1757 0.7324 ± 0.1745 0.7319 ± 0.1745 0.7377 ± 0.1774 0.9984 ± 0.0016 1.0000 ± 0.0000 0.7960 ± 0.2168
11 0.8742 ± 0.1984 0.8742 ± 0.1984 0.8801 ± 0.2015 0.8742 ± 0.1984 0.8134 ± 0.1743 0.5201 ± 0.2566 0.9243 ± 0.1629
12 0.7081 ± 0.1937 0.6475 ± 0.1606 0.6415 ± 0.1594 0.6286 ± 0.1415 0.6152 ± 0.1280 0.2002 ± 0.0563 0.6388 ± 0.2004
13 0.8978 ± 0.1082 0.8978 ± 0.1082 0.3810 ± 0.1127 0.8128 ± 0.0783 0.7143 ± 0.0895 0.2276 ± 0.0442 0.7831 ± 0.1324
14 0.4493 ± 0.1573 0.4497 ± 0.1577 0.4470 ± 0.1555 0.4545 ± 0.1649 0.6026 ± 0.0527 0.2206 ± 0.1018 0.9078 ± 0.1070
15 0.6489 ± 0.1733 0.6371 ± 0.1722 0.6690 ± 0.1556 0.6237 ± 0.1785 0.5094 ± 0.1209 0.4505 ± 0.2854 0.7094 ± 0.1324
16 0.6231 ± 0.0769 0.6081 ± 0.0690 0.6425 ± 0.0821 0.6041 ± 0.0618 0.5437 ± 0.0410 0.1637 ± 0.0593 0.7733 ± 0.1745

Ave. ± SD 0.6201 ± 0.1222 0.6004 ± 0.1160 0.5729 ± 0.1116 0.5835 ± 0.1100 0.5757 ± 0.1118 0.2398 ± 0.0832 0.7446 ± 0.1652
Rank 3.13 3.69 4.25 4.06 4.25 6.63 1.69
Win/tie/loss 1/1/14 0/1/15 1/0/15 0/0/16 0/0/16 1/0/15 12/0/4
Table 7
Recall (Ave. ± SD) comparison with other classification methods on 16 datasets.

Dataset IF_KNN MFuzzyKNN FENN KNN TreeBigger Decision Tree M-FCCL

1 0.6193 ± 0.2355 0.4521 ± 0.1762 0.4688 ± 0.1664 0.6193 ± 0.2355 0.5369 ± 0.2539 0.3832 ± 0.3313 0.8363 ± 0.1356
2 0.4458 ± 0.1260 0.4565 ± 0.1416 0.3541 ± 0.1624 0.4403 ± 0.1285 0.4650 ± 0.0955 0.0582 ± 0.0162 0.5290 ± 0.2207
3 0.2353 ± 0.0839 0.2169 ± 0.0907 0.2169 ± 0.0907 0.2353 ± 0.0839 0.2153 ± 0.0636 0.0527 ± 0.0184 0.3808 ± 0.1037
4 0.4883 ± 0.1074 0.4876 ± 0.1078 0.4463 ± 0.1031 0.4955 ± 0.1138 0.5634 ± 0.0845 0.1049 ± 0.0718 0.8485 ± 0.1388
5 0.5776 ± 0.2035 0.5775 ± 0.2050 0.5738 ± 0.2029 0.5717 ± 0.2027 0.6263 ± 0.1983 0.0798 ± 0.0213 0.8883 ± 0.1687
6 0.4244 ± 0.2586 0.4177 ± 0.2602 0.3346 ± 0.2593 0.4995 ± 0.2544 0.7115 ± 0.2015 0.0607 ± 0.0166 0.7450 ± 0.2604
7 0.6914 ± 0.1880 0.6908 ± 0.1873 0.7006 ± 0.1918 0.3134 ± 0.0749 0.3518 ± 0.2460 0.0086 ± 0.0020 0.5678 ± 0.2788
8 0.4415 ± 0.1835 0.4600 ± 0.1851 0.4411 ± 0.1953 0.4660 ± 0.1777 0.5175 ± 0.1263 0.0557 ± 0.0157 0.6536 ± 0.1688
9 0.3833 ± 0.1618 0.3816 ± 0.1585 0.3787 ± 0.1681 0.3649 ± 0.1447 0.3670 ± 0.1125 0.0123 ± 0.0044 0.6316 ± 0.1783
10 0.7286 ± 0.2256 0.7246 ± 0.2245 0.7205 ± 0.2291 0.7328 ± 0.2247 0.9981 ± 0.0016 1.0000 ± 0.0000 0.7783 ± 0.2039
11 0.8824 ± 0.2083 0.8824 ± 0.2083 0.8871 ± 0.2106 0.8824 ± 0.2083 0.8150 ± 0.1777 0.5028 ± 0.2689 0.9192 ± 0.1514
12 0.7242 ± 0.2440 0.6423 ± 0.2316 0.6407 ± 0.2495 0.6266 ± 0.2218 0.5800 ± 0.1729 0.1393 ± 0.0324 0.6062 ± 0.1860
13 0.6154 ± 0.0000 0.6154 ± 0.0000 0.5000 ± 0.0000 0.6458 ± 0.0075 0.7715 ± 0.0296 0.1982 ± 0.0436 0.8936 ± 0.1466
14 0.5143 ± 0.0225 0.5130 ± 0.0223 0.5099 ± 0.0253 0.4699 ± 0.0248 0.4596 ± 0.0831 0.1521 ± 0.0600 0.8553 ± 0.1048
15 0.6003 ± 0.2054 0.5796 ± 0.2150 0.5807 ± 0.2061 0.5774 ± 0.2107 0.4401 ± 0.1842 0.4084 ± 0.3018 0.6518 ± 0.1404
16 0.5225 ± 0.2144 0.5180 ± 0.2045 0.5117 ± 0.2165 0.5274 ± 0.2093 0.5172 ± 0.1169 0.1215 ± 0.0539 0.7753 ± 0.1567

Ave. ± SD 0.5559 ± 0.1668 0.5385 ± 0.1637 0.5166 ± 0.1673 0.5293 ± 0.1577 0.5585 ± 0.1343 0.2087 ± 0.0786 0.7225 ± 0.1715
Rank 3.00 3.94 4.63 3.88 3.94 6.63 1.56
Win/tie/loss 1/0/15 0/0/16 1/0/15 0/0/16 0/0/16 1/0/15 13/0/3
Table 8
F1-score (Ave. ± SD) comparison with other classification methods on 16 datasets.

Dataset IF_KNN MFuzzyKNN FENN KNN TreeBigger Decision Tree M-FCCL

1 0.6387 ± 0.2161 0.4458 ± 0.1431 0.4958 ± 0.1349 0.6430 ± 0.2164 0.5395 ± 0.2529 0.3848 ± 0.3346 0.8532 ± 0.1391
2 0.4778 ± 0.0874 0.4879 ± 0.1011 0.3966 ± 0.1197 0.4734 ± 0.0892 0.4924 ± 0.0689 0.0718 ± 0.0211 0.5523 ± 0.2037
3 0.2614 ± 0.0539 0.2420 ± 0.0622 0.2421 ± 0.0624 0.2614 ± 0.0539 0.2326 ± 0.0552 0.0753 ± 0.0194 0.4101 ± 0.1051
4 0.5158 ± 0.0761 0.5090 ± 0.0744 0.4715 ± 0.0749 0.5036 ± 0.0780 0.5427 ± 0.0778 0.1076 ± 0.0694 0.8363 ± 0.1107
5 0.5860 ± 0.1683 0.5857 ± 0.1691 0.5827 ± 0.1668 0.5811 ± 0.1662 0.6286 ± 0.1844 0.0849 ± 0.0188 0.9022 ± 0.1691
6 0.4675 ± 0.2346 0.4609 ± 0.2384 0.3775 ± 0.2729 0.5319 ± 0.2133 0.7059 ± 0.1998 0.0623 ± 0.0153 0.7460 ± 0.2607
7 0.7022 ± 0.1846 0.7009 ± 0.1843 0.7122 ± 0.1881 0.3276 ± 0.0649 0.2732 ± 0.2746 0.0134 ± 0.0029 0.6013 ± 0.2592
8 0.4674 ± 0.1439 0.4871 ± 0.1456 0.4678 ± 0.1578 0.4916 ± 0.1370 0.5338 ± 0.0936 0.0699 ± 0.0160 0.6583 ± 0.1681
9 0.4114 ± 0.1387 0.4103 ± 0.1359 0.4087 ± 0.1447 0.3971 ± 0.1257 0.3874 ± 0.0933 0.0164 ± 0.0042 0.6350 ± 0.1505
10 0.7287 ± 0.1992 0.7252 ± 0.1980 0.7224 ± 0.2004 0.7324 ± 0.1996 0.9983 ± 0.0014 1.0000 ± 0.0000 0.7859 ± 0.2080
11 0.8781 ± 0.2030 0.8781 ± 0.2030 0.8834 ± 0.2057 0.8781 ± 0.2030 0.8140 ± 0.1755 0.5109 ± 0.2629 0.9215 ± 0.1567
12 0.7132 ± 0.2145 0.6412 ± 0.1917 0.6355 ± 0.2006 0.6232 ± 0.1766 0.5948 ± 0.1492 0.1640 ± 0.0408 0.6216 ± 0.1918
13 0.7276 ± 0.0419 0.7276 ± 0.0419 0.4213 ± 0.0981 0.7182 ± 0.0347 0.7399 ± 0.0556 0.2119 ± 0.0440 0.8341 ± 0.1374
14 0.4649 ± 0.1187 0.4644 ± 0.1184 0.4616 ± 0.1171 0.4429 ± 0.1079 0.5156 ± 0.0514 0.1749 ± 0.0671 0.8792 ± 0.0994
15 0.6223 ± 0.1913 0.6044 ± 0.1972 0.6188 ± 0.1865 0.5982 ± 0.1963 0.4664 ± 0.1633 0.4275 ± 0.2946 0.6782 ± 0.1344
16 0.5479 ± 0.1942 0.5402 ± 0.1826 0.5490 ± 0.2030 0.5432 ± 0.1833 0.5260 ± 0.0842 0.1366 ± 0.0559 0.7712 ± 0.1620

Ave. ± SD 0.5757 ± 0.1542 0.5569 ± 0.1492 0.5279 ± 0.1584 0.5467 ± 0.1404 0.5619 ± 0.1238 0.2195 ± 0.0792 0.7304 ± 0.1660
Rank 3.06 4.00 4.38 4.19 3.88 6.63 1.56
Win/tie/loss 1/0/15 0/0/16 1/0/15 0/0/16 0/0/16 1/0/15 13/0/3
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at different times due to the objective nature of the concept-learning
process. Thus, the average accuracy in dynamic data is adopted to
determine the optimal parameter.

5. Conclusion

M-FCCL is a practical extension of existing fuzzy-based CCL methods
to characterize knowledge from the perspective of fuzzy three-way
concepts. It can achieve the dynamic data classification task. The
significance of the memory mechanism in M-FCCL contains two mean-
ings: (1) recalling the necessary knowledge in the process of concept
space update and (2) forgetting some unnecessary knowledge in the
process of cognitive recognition. The essence of M-FCCL is learning
concepts mainly from a cosine similarity granule and then knowledge
representation via a fuzzy three-way concept. The theory of M-FCCL has
been rigorously verified, and simulations in real datasets also validate
the practicability of M-FCCL in this study.

Concept-cognitive learning theory is an efficacious data analy-
sis tool for a study concerning knowledge representation and learn-
ing in artificial intelligence. Currently, however, fuzzy-based concept-
cognitive learning represents and discovers knowledge mainly focused
on pseudo-concept learning, which causes a series of issues, such as
incomplete and complex cognition concept learning. Moreover, there
is also a need to answer some research questions: Does the proposed
method outperforms other FCCL methods? How to improve the inter-
pretability of FCCL? What are the differences between these methods?
This work mainly explores a novel Memory-based concept-cognitive
learning method to answer the above questions.

The current article studies the cognitive-cognitive learning model
by introducing recalling and forgetting mechanisms for dynamic data
classification and knowledge representation. Hence, some limitations
still need to be considered, such as how to apply the proposed method
to high-dimensional data analysis or multi-source information fusion,
especially in handling incomplete data. Although M-FCCL can signifi-
cantly improve the efficiency of concept learning and save time for a
dynamic data environment, it still cannot be learned for billions of data.
Hence, how to combine machine learning and deep learning theory into
CCL theory also deserves to be investigated. Our future work will persist
in focusing on these topics.
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