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Medical decision-making with high-dimensional complex data has recently become a focus and 
difficulty in artificial intelligence and the medical field. Tumor diagnosis using data mining 
technology, from the perspective of gene analysis, can effectively improve the prediction accuracy 
of patients. For gene databases of tumors with high-dimensional attributes and small sample 
sizes, tumor classification based on gene analysis is a significant step in the intervention and 
treatment of tumors. The existing research on the tumor classification of gene data has one 
prevalent disadvantage: gene obtained via the classification performance evaluation has weak 
interpretability and universality. This paper presents a concept-cognitive learning system with 
the three-way analysis (CCL3S) in the fuzzy context for the problem of tumor diagnosis with 
high-dimensional data, a new fuzzy classifier good at tumor diagnosis. The main steps of the 
CCL3S include: designing fuzzy recognition to extract the core gene, constructing a fuzzy three-

way concept space via the core gene, and finally completing the tumor diagnosis based on 
the minimum recognition degree. Experimental results on nine tumor gene expression datasets 
demonstrate that CCL3S achieves better classification performance than some related methods.

1. Introduction

With the development of biochip technology, thousands of gene expression levels in different samples can be measured simulta-

neously, providing a basis for studying the relationship between gene expression profiles and tumor disease classification [1]. It is 
of great significance for the treatment of patients to discover the core genes affecting tumor genesis in the early diagnosis. Tumor 
genes, however, usually have a small sample size and high-dimension complex data characteristics, which brings new challenges to 
data analytics.

Tumor diagnosis based on gene expression profiles is viewed as an emerging and recognized effective method to explore the 
pathogenesis of cancer that implements the analysis and prediction of patients’ conditions at the data level. Then, combining machine 
learning or statistical methods with gene-expression data has become the primary trend in this direction. However, while using these 
technologies to analyze tumor data, many challenges also arise: 1) redundancy of high-dimensional features; 2) class distribution of 
small samples is unbalanced; 3) whether the classification results have corresponding explanations that can be interpreted. As we all 
know, for the characteristics of small samples of gene data, the deep learning method is used to cause the overfitting phenomenon 
in the process of training models, and the results also lack interpretability. Nevertheless, if just considering the high-dimensional 
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characteristics of gene data, it is not easy to understand and interpret the original biological meaning of the feature space after 
dimensionality reduction, which is not conducive to the in-depth exploration of gene data. While tens of thousands of genes, most of 
them do not affect the tumor diagnosis or even interfere with the prediction of the disease [2]. Thus, feature selection technology to 
select core genes related to tumor pathogenesis has become essential for effective tumor diagnosis [3].

As an essential basis to support artificial intelligence and medical decision-making, data is related to the reliability of the whole 
medical diagnosis system. The data-information-knowledge-wisdom (DIKW) hierarchy is one of the fundamental conceptual models 
in artificial intelligence and data sciences [6,7]. Currently, data analysis of genes based on feature selection (as an essential tumor 
diagnosis tool) has received much attention, such as Authors [4] present a locally linear embedding (LLE) and neighborhood rough 
sets-based gene selection method using Lebesgue measure for cancer classification; Paper [5] propose we have proposed a recursive 
particle swarm optimization approach (PSO) for gene selection; Authors [8] establish a weighted general group lasso model to 
select cancer genes in groups. In this process, the feature selection algorithm can reduce the dimension of high-dimension gene 
data, extract core genes, and improve data quality and classification accuracy. From the perspective of DIKW, preprocessing gene 
expression data is equivalent to creating information from data, while feature extraction is equivalent to discovering knowledge from 
information [9,10]. Thus, it is meaningful work for us to obtain the information and knowledge that we can use from the complex 
genetic data and use it to assist us in making some decisions, which is the fundamental motivation for the work of the current article.

Classification problem, which aims to separate objects into specific classes based on a given information system, is another hot 
topic in data mining and artificial intelligence. Meanwhile, determining whether a patient has a disease in medical diagnosis can 
be considered a classification problem. While a gene expression profile often contains many genes that describe a patient, various 
genes contribute to the disease to varying degrees [11,12]. The feature selection method selects important features from a given 
information system, eliminates interfering features, and obtains core features with the same or even better classification ability than 
the entire information system [13–15]. Using the selected core features for data classification and establishing the classifier model 
can reduce the interference of redundant features to the results, ensure the classification ability of the results, and improve the 
reliability of the decision-making system. The current article applies this idea to the problem of tumor diagnosis, which has also 
become a necessary step to ensure the effectiveness of our method.

Moreover, a distinct feature of tumor gene data is its high dimensionality and small sample sizes. Traditional feature selection 
methods are often prone to overfitting when performing gene selection, resulting in a lack of reliability of results. The challenge 
lies in selecting beneficial genes (i.e., the genes with biological significance and interpretability) for the following medical diagnosis 
rather than simply pursuing a single classification accuracy. Some emerging scientific theories, such as cognitive computing and 
interactive granular computing [16–19], promise to address this challenge due to the basic concept and scientific methodology of 
cognitive science built on modern scientific analysis and engineering experiments to study cognition [20–23]. So it is beneficial to 
apply the naive idea of cognitive computing to gene data analysis to think about the utility mechanism of tumor genes and discuss a 
novel tumor classification method from a cognitive viewpoint. Concept-cognitive learning, as the expansion of intelligent computing 
systems modeled on the human brain, is an effective cognitive mechanism [24–26]. Recently, the research of CCL has produced many 
valuable results in a classification problem [27–30]. However, the existing CCL system mainly focuses on the object classification 
of low-dimensional data, and they are not suitable for gene data analysis. Several mathematical concepts were utilized to illustrate 
an explicit concept from its extent and intent, including fuzzy concept [31,32], two-way granule concept [33,34] and three-way 
concept [35,36]. Therefore, how to apply the concept-cognitive learning method to tumor diagnosis to achieve better classification 
performance is another motivation of the current paper.

Concept-cognitive learning is the science of cognition and learning things via concepts. Generally speaking, from the perspective of 
cognition, it is not so easy to accurately determine the extent of a concept, which is one of the reasons for the high misclassification 
of the traditional two-way classification method in the application. In this sense, the three-way decision may be a good choice 
since it emphasizes introducing a third region as a buffer in the face of uncertain or incomplete information. Three-way decision 
(3WD) theory based on the symbols-meaning-value concept, coined by Yao in his seminal paper [37,38], is an effective granular 
computing paradigm for studying knowledge and concept learning. Subsequently, particular models of the three-way decision have 
been investigated in different fields to address different problem needs [39,40]. Inspired by this theory, the authors [41,42] combine 
three-way decisions with the formal concept to study formal concept analysis (FCA) from positive and negative perspectives (i.e., 
positive and negative operators). Through a fruitful marriage of 3WD and FCA, it provides a novel model to investigate the concept 
analysis mechanism, and we also call it a three-way analysis. Simultaneously, many investigations have shown the effectiveness of 
the three-way analysis methods for concept knowledge presentation and learning. Drawing on these works, in the current paper, we 
introduce the thought of three-way analysis into the concept description and use it to learn and recognize concepts.

Following the above analysis, we propose a systematic framework for tumor diagnosis: fuzzy-based concept-cognitive learning 
system with three-way analysis (CCL3S) by introducing core gene selecting, concept-cognitive learning, and the three-way decision 
to tumor diagnosis in a fuzzy context. The block diagram of the proposed approach is shown in Fig. 1. Furthermore, we summarize 
the main contributions of this paper as follows.

• It provides a new thought of tumor diagnosis based on gene data analysis via the core gene for tumor diagnosis and builds a 
classifier model from a cognitive viewpoint. Furthermore, it attempts to construct a new concept-cognitive learning system from 
gene data with high-dimension and small sample data. Compared with other CCL models, CCL3S pays more attention to the 
2

concept-cognitive learning mechanism of gene data.



Information Sciences 639 (2023) 118998D. Guo and W. Xu

Fig. 1. Block diagram of CCL3S. It consists of three stages: the first stage is designing fuzzy recognition to extract the core gene in the gene database; the second 
stage is learning fuzzy three-way concept via core gene and constructing concept space; and the third stage is completing the tumor diagnosis based on the minimum 
recognition degree.

Table 1

Terminology notation.

Terminology Explanation Terminology Explanation

Ω The nonempty finite set of patient Λ The attribute set of gene

𝑅 The attribute set of core gene 𝜇𝑂 The membership degree of objects

𝑇 The gene attribute set 𝛿𝑇 (𝑜) The neighborhood of 𝑜 in 𝑇

𝑑(𝑜, 𝑜′) The euclidean distance 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ) The fuzzy recognition degree

𝑆(𝑜) The fuzzy similar classes 𝐼 The fuzzy binary relation

𝐼−(𝑜, 𝑎𝑗 ) The non-membership degree of (𝑜, 𝑎𝑗 ) to 𝐼 ̃𝑖 The 𝑖− 𝑡ℎ fuzzy 3W-concept space

̃𝐹
𝑖

The fuzzy 3W-concept fusion 𝑅𝑒𝑐(𝑜, ̃𝐹
𝑖
) The recognition degree

̃ ,  The positive cognitive operator ̃−, − The negative cognitive operator

̃∇, ∇ The fuzzy 3W-concept learning operator 𝐼(𝑜, 𝑎𝑗 ) The membership degree of (𝑜, 𝑎𝑗 ) to 𝐼

• It formulates a core gene selection method based on fuzzy recognition relation, and then a novel fuzzy-based concept-cognitive 
learning model grounded on core gene is presented for tumor classification. The core idea does not focus on researching feature 
selection and classification mechanisms but provides a new perspective for gene data analysis in medical decision-making.

• It has interpretability on the premise of improving tumor classification performance compared with several popular classification 
techniques, as it can take full advantage of the object and attribute information simultaneously.

The current article focuses on the problem of tumor diagnosis with high-dimensional data and proposes a fuzzy-based concept-

cognitive learning mechanism with three-way analysis. The remainder of the current article is organized as follows. Section 2 briefly 
reviews basic concepts about fuzzy formal context and the CCL model. Section 3 presents a novel fuzzy concept-cognitive learning 
system based on the core gene. The tumor diagnosis of CCL3S and its corresponding algorithms are presented in Section 4, and the 
experimental analysis is given in Section 5. Finally, some concluding remarks of our paper are in Section 6.

2. Preliminaries

This section briefly reviews some necessary notions regarding two related aspects: 1) fuzzy set in formal context; 2) concept-

cognitive learning with three-way analysis. The details can be obtained from their corresponding papers.

Before starting this section, it is necessary to claim that the three-way analysis for CCL is discussed in the fuzzy formal context 
without the regular formal context. The fuzzy pseudo-concept may be called a fuzzy concept when no confusion exists. Necessary 
symbolic notations are explained in Table 1.

2.1. Fuzzy set in formal context

In this subsection, we start with the notion of a fuzzy formal context [43–45], and several essential notions are presented as 
3

follows.
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Let 𝑊 be a whole of a nonempty and finite set, a fuzzy set 𝑂 of 𝑊 can be defined as follows:

𝑂 = {< 𝑜,𝜇
𝑂
(𝑜) > |𝑜 ∈𝑊 },

where 𝜇
𝑂
∶ 𝑊 → [0, 1], 𝜇

𝑂
(𝑜) denotes the membership degree of object 𝑜 with respect to 𝑂, and 𝜇𝑐

𝑂
(𝑜) = 1 − 𝜇

𝑂
(𝑜) is the non-

membership.

A fuzzy decision formal context (𝑊 , 𝑀, ̃𝐼, 𝐷, 𝐽 ) is a quintuple, where (𝑊 , 𝑀, ̃𝐼) and (𝑊 , 𝐷, 𝐽 ) are two formal contexts. A fuzzy 
formal context (𝑊 , 𝑀, ̃𝐼) is a triple, where 𝑊 = {𝑜1, 𝑜2, … , 𝑜𝑛} and 𝑀 = {𝑎1, 𝑎2, … , 𝑎𝑚} are, respectively, called the object set and the 
conditional attribute set, and 𝐼 = {< (𝑜, 𝑎), 𝑢

𝐼
(𝑜, 𝑎) > |(𝑜, 𝑎) ∈𝑊 ×𝑀} is a fuzzy binary relation. A fuzzy formal context (𝑊 , 𝐷, 𝐽 ) is a 

triple, where 𝐷1, 𝐷2, … , 𝐷𝑙 are decision class of 𝐷, 𝐷 =𝐷1 ∪𝐷2∪, … , ∪𝐷𝑙, 𝐽 ∶𝑊 ×𝐷→ {𝐷1, 𝐷2, … , 𝐷𝑙} is a binary relation.

For any (𝑜, 𝑎) ∈𝑊 ×𝑀 has a membership degree 𝜇𝐼 (𝑜, 𝑎) ∈ [0, 1]. We denote 𝐼(𝑜, 𝑎) = 𝜇𝐼 (𝑜, 𝑎) for convenience. Given 𝐼(𝑜, 𝑎) and 
𝐼(𝑜′, 𝑎), we have 𝐼(𝑜, 𝑎) ⩾ 𝐼(𝑜′, 𝑎) ⇔ 𝜇𝐼 (𝑜, 𝑎) ⩾ 𝜇𝐼 (𝑜′, 𝑎).

A fuzzy formal context (𝑊 , 𝑀, ̃𝐼). For any 𝐸 ⊆𝑊 , 𝑇 ⊆𝑀 and 𝑇 ∈ Γ𝑀 , the derivation operator (⋅)∗ can be defined as follows:

𝐸∗(𝑎) =
⋀
𝑜∈𝐸

𝐼(𝑜, 𝑎), 𝑎 ∈𝑀,

𝑇 ∗ = {𝑜 ∈𝑊 |∀𝑎 ∈ 𝑇 ,𝑇 (𝑎) ⩽ 𝐼(𝑜, 𝑎)},
where Γ𝑀 is the union of all fuzzy sets in 𝑀 .

The triplet (𝑊 , 𝑇 , ̃𝐼) is a fuzzy formal context, for any 𝐸1, 𝐸2, 𝐸 ⊆𝑊 , ̃𝑇1, ̃𝑇2 ⊆ 𝑇 , then we have:

1) 𝐸1 ⊆𝐸2 ⇒𝐸∗
2 ⊆𝐸

∗
1 , ̃𝑇1 ⊆ 𝑇2 ⇒ 𝑇 ∗

2 ⊆ 𝑇
∗
1 ;

2) 𝐸 ⊆𝐸∗∗, ̃𝑇 ⊆ 𝑇 ∗∗;

3) 𝐸 =𝐸∗∗∗, ̃𝑇 = 𝑇 ∗∗∗;

4) 𝐸 ⊆ 𝑇 ∗ ⇔ 𝑇 ⊆ 𝐸∗;

5) (𝐸1 ∪𝐸2)∗ =𝐸∗
1 ∩𝐸

∗
2 , (𝑇1 ∪ 𝑇2)

∗ = 𝑇 ∗
1 ∩ 𝑇 ∗

2 ;

6) (𝐸1 ∩𝐸2)∗ ⊇𝐸∗
1 ∪𝐸

∗
2 , (𝑇1 ∩ 𝑇2)

∗ ⊇ 𝑇 ∗
1 ∪ 𝑇 ∗

2 .

Therefore, (𝑊 , 𝑀, ̃𝐼) is a fuzzy formal context, a pair (𝐸, ̃𝑇 ) is called a fuzzy formal concept or fuzzy concept if only 𝐸∗ = 𝑇 and 
𝑇 ∗ =𝐸 hold, where 𝐸 is the extent and 𝑇 is the intent of the concept (𝐸, ̃𝑇 ). Obviously (𝐸∗∗, 𝐸∗) and (𝑇 ∗, ̃𝑇 ∗∗) are fuzzy concepts. The 
fuzzy concept lattice ̃(𝑊 , 𝑀, ̃𝐼) is the union of all fuzzy concepts in (𝑊 , 𝑀, ̃𝐼). For any fuzzy concept (𝐸1, ̃𝑇1), (𝐸2, ̃𝑇2) ∈ ̃(𝑊 , 𝑀, ̃𝐼), 
the ordered by (𝐸1, ̃𝑇1) ⩽ (𝐸2, ̃𝑇2) ⇔𝐸1 ⊆𝐸2 ⇔ 𝑇2 ⊆ 𝑇1. Moreover, if the meet and join are given by:

(𝐸1, 𝑇1) ∧ (𝐸2, 𝑇2) = (𝐸1 ∩𝐸2, (𝑇1 ∪ 𝑇2)∗∗),

(𝐸1, 𝑇1) ∨ (𝐸2, 𝑇2) = ((𝐸1 ∪𝐸2)∗∗, 𝑇1 ∩ 𝑇2),

then the fuzzy concept lattice ̃(𝑊 , 𝑀, ̃𝐼) is complete lattice.

Considering our paper mainly focuses on applying concept-cognitive learning with three-way analysis to tumor diagnosis rather 
than analyzing its notion. Thus, we only briefly introduce some related notions in the following subsection.

2.2. Concept-cognitive learning with three-way analysis

Let the complement of 𝐼 be denoted by 𝐼− = {< (𝑜, 𝑎), 1 − 𝑢
𝐼(𝑜,𝑎) > |(𝑜, 𝑎) ∈𝑊 ×𝑀}, which reflects the nonmembership degree. 

Similarly, for any 𝐼−(𝑜, 𝑎) and 𝐼−(𝑜′, 𝑎), we have 𝐼−(𝑜, 𝑎) ⩾ 𝐼−(𝑜′, 𝑎) ⇔ 𝜇
𝐼− (𝑜, 𝑎) ⩾ 𝜇𝐼− (𝑜′, 𝑎).

Definition 1. Let (𝑊 , 𝑀, ̃𝐼) be a fuzzy formal context. For any 𝑂 ⊆𝑊 and 𝑇 ∈ Γ𝑀 , the positive cognitive operators ̃ ∶ 2𝑊 → Γ𝑀
and  ∶ Γ𝑀 → 2𝑊 of (𝑊 , 𝑀, ̃𝐼) are defined as:

̃ (𝑂)(𝑎) =
⋀
𝑜∈𝑂

𝐼(𝑜, 𝑎), 𝑎 ∈𝑀,

(𝑇 ) = {𝑜 ∈𝑊 |∀𝑎 ∈ 𝑇 ,𝑇 (𝑎) ⩽ 𝐼(𝑜, 𝑎)}.
The ̃ (𝑂)(𝑎) shows the learning process from object to attribute, and (𝑇 ) also describes the learning process from attribute to 

object, which means that we could learn object or attribute information from the given information. Similarly, the negative cognitive 
operators ̃− ∶ 2𝑊 → Γ𝑀 and − ∶ Γ𝑀 → 2𝑊 of (𝑊 , 𝑀, ̃𝐼−) can be defined as follows:

̃−(𝑂)(𝑎) =
⋀
𝑜∈𝑂

𝐼−(𝑜, 𝑎), 𝑎 ∈𝑀,

−(𝑇 ) = {𝑜 ∈𝑊 |∀𝑎 ∈ 𝑇 ,𝑇 (𝑎) ⩽ 𝐼−(𝑜, 𝑎)},
4

where the 2𝑊 be the power set of 𝑊 .
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Table 2

A fuzzy formal decision context with tumor diagnosis.

Object 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 𝑎13 𝑎14

𝑜1 0.76 0.17 0.72 0.33 0.63 0.78 0.97 0.34 0.65 0.58 0.55 0.55 0.97 1

𝑜2 0.83 0.20 0.72 0.29 0.24 0.48 0.68 0.25 0.65 0.40 0.51 0.86 0.83 1

𝑜3 0.71 0.26 0.83 0.50 0.85 0.52 0.67 0.27 0.35 0.38 0.56 0.86 0.84 1

𝑜4 0.95 0.15 0.54 0.24 0.27 0.60 0.83 0.23 0.65 0.39 0.58 0.55 0.61 1

𝑜5 0.64 0.09 0.60 0.39 0.29 0.67 0.89 0.07 0.60 0.64 0.50 0.84 0.61 1

𝑜6 0.18 0.09 0.44 0.45 0.34 0.30 0.31 0.77 0.09 0.46 0.47 0.01 0.08 2

𝑜7 0.56 0.07 0.37 0.53 0.20 0.33 0.43 0.30 0.13 0.22 0.75 0.38 0.24 2

𝑜8 0.08 0.04 0.53 0.60 0.02 0.87 0.87 0.32 0.61 0.30 0.74 0.56 0.06 2

𝑜9 0.02 0.11 0.77 0.60 0.44 0.25 0.42 0.59 0.26 0.12 0.87 0.28 0.32 2

𝑜10 0.23 0.31 0.61 0.64 0.32 0.05 0.01 0.66 0.10 0.96 0.12 0.03 0.10 3

𝑜11 0.75 0.33 0.74 0.68 0.12 0.17 0.07 0.57 0.35 0.94 0.06 0.06 0.27 3

𝑜12 0.58 0.79 0.72 0.71 0.22 0.17 0.04 0.75 0.27 0.70 0.08 0.08 0.34 3

𝑜13 0.46 0.63 0.74 0.89 0.39 0.21 0.09 0.55 0.42 0.65 0.15 0.23 0.35 3

The negative cognitive operator shows the learning process between objects and attributes from the non-membership degree, 
which can realize comprehensive recognition by combining with the positive cognitive operator.

The ̃ ∶ 2𝑊 → Γ𝑀,  ∶ Γ𝑀 → 2𝑊 , ̃− ∶ 2𝑊 → Γ𝑀 and − ∶ Γ𝑀 → 2𝑊 are considered as four set-valued mappings, and they are 
abbreviated as ̃ , , ̃−, − respectively. The operators (∗, ∗) defined by the basic notions in fuzzy formal context are the cognitive 
operator ̃ and  of (𝑊 , 𝑀, ̃𝐼), respectively. The following example gives the cognitive learning process in detail.

Definition 2. Let (𝑊 , 𝑀, ̃𝐼) be a fuzzy formal context, 𝑂 ⊆𝑊 is an object, and 𝑇1, ̃𝑇2 ∈ Γ𝑀 are two fuzzy sets. The fuzzy 3W-concept 
learning operator ̃∇ ∶ 2𝑊 → Γ𝑀 × Γ𝑀 and ∇ ∶ Γ𝑀 × Γ𝑀 → 2𝑊 are defined as follows:

̃∇(𝑂) = (̃ (𝑂), ̃−(𝑂)),

∇(𝑇1, 𝑇2) =(𝑇1) ∩−(𝑇2).

Then (𝑂, (𝑇1, ̃𝑇2)) is called a fuzzy three-way concept (fuzzy 3W-concept) when the following statement holds: ̃∇(𝑂) =
(𝑇1, ̃𝑇2), ∇(𝑇1, ̃𝑇2) =𝑂. That is, the (𝑂, (𝑇1, ̃𝑇2)) is a fuzzy three-way concept in the learning process when the information learned by 
objects is the same as that learned from attributes according to the positive and negative learning operator. Moreover, (𝑂, (𝑇1, ̃𝑇2)) is 
the supper concept of (𝑂′, (𝑇 ′

1 , ̃𝑇
′
2 )), denoted as (𝑂, (𝑇1, ̃𝑇2)) ≤ (𝑂′, (𝑇 ′

1 , ̃𝑇
′
2 )) when 𝑂 ⊆𝑂′ or (𝑇 ′

1 , ̃𝑇
′
2 ) ≥ (𝑇1, ̃𝑇2).

Intuitively, Definition 1 shows that the membership degree of (𝑜, 𝑎) to 𝐼 on attribute 𝑎 and the non-membership degree of (𝑜, 𝑎)
to 𝐼− on attribute 𝑎 from the positive and negative perspectives. Thus, positive and negative operators have the same properties. In 
order to express both positive and negative information simultaneously, we combine the positive and negative operators to form a 
new operator and concept, which is called the three-way operator and three-way concept, and its corresponding fuzzy concept is the 
fuzzy three-way concept (as shown in Definition 2). According to paper [30], we know the following property hold:

Property 1. Let (𝑊 , 𝑀, ̃𝐼) be a fuzzy formal context. For any 𝑂 ⊆𝑊 , (̃ (𝑂) ∩−̃−(𝑂), (̃ (𝑂), ̃−(𝑂))) is a fuzzy 3W-concept.

Note that fuzzy concept with three-way analysis could depict the relation between objects and attribute more detail to the positive 
and negative cognitive operator. More definitions and properties of the fuzzy three-way concept and the fuzzy three-way operator 
can be found in references [30,35,41].

Example 1. Table 2 is a fuzzy formal decision context with 𝑊 = {𝑜1, 𝑜2, … , 𝑜13}, 𝑀 = {𝑎1, 𝑎2, … , 𝑎14}, where 𝑎14 is the decision 
attribute. The whole objects can be divided into three classes, where 𝐷1 = {𝑜1, 𝑜2, … , 𝑜5}, 𝐷2 = {𝑜6, 𝑜7, … , 𝑜9}, 𝐷3 = {𝑜10, 𝑜11, … , 𝑜13}. 
Given the 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜5} ⊆ 𝑊 and 𝑇1 = {< 𝑎1, 0.64 >, < 𝑎2, 0.09 >, < 𝑎3, 0.60 >, < 𝑎4, 0.29 >, < 𝑎5, 0.24 >, < 𝑎6, 0.48 >, < 𝑎7, 0.67 >, <
𝑎8, 0.07 >, < 𝑎9, 0.35 >, < 𝑎10, 0.38 >, < 𝑎11, 0.50 >, < 𝑎12, 0.55 >, < 𝑎13, 0.61 >}, and 𝑇2 = {< 𝑎1, 0.17 >, < 𝑎2, 0.74 >, < 𝑎3, 0.17 >, < 𝑎4, 0.50 >
, < 𝑎5, 0.15 >, < 𝑎6, 0.22 >, < 𝑎7, 0.03 >, < 𝑎8, 0.66 >, < 𝑎9, 0.35 >, < 𝑎10, 0.36 >, < 𝑎11, 0.44 >, < 𝑎12, 0.14 >, < 𝑎13, 0.03 >}.

According to the positive cognitive operator in Definition 1, we could obtain the ̃ (𝑂) = {< 𝑎1, 0.64 >, < 𝑎2, 0.09 >, < 𝑎3, 0.60 >
, < 𝑎4, 0.29 >, < 𝑎5, 0.24 >, < 𝑎6, 0.48 >, < 𝑎7, 0.67 >, < 𝑎8, 0.07 >, < 𝑎9, 0.35 >, < 𝑎10, 0.38 >, < 𝑎11, 0.50 >, < 𝑎12, 0.55 >, < 𝑎13, 0.61 >} and 
(𝑇1) = {𝑜1, 𝑜2, 𝑜3, 𝑜5}. In this paper, we could obtain the negative membership degree 𝐼−(𝑜, 𝑎) = 1 − 𝐼(𝑜, 𝑎), then, the negative 
cognitive operator can be obtained similarly, ̃−(𝑂) = {< 𝑎1, 0.17 >, < 𝑎2, 0.74 >, < 𝑎3, 0.17 >, < 𝑎4, 0.50 >, < 𝑎5, 0.15 >, < 𝑎6, 0.22 >
, < 𝑎7, 0.03 >, < 𝑎8, 0.66 >, < 𝑎9, 0.35 >, < 𝑎10, 0.36 >, < 𝑎11, 0.44 >, < 𝑎12, 0.14 >, < 𝑎13, 0.03 >} and (𝑇2) = {𝑜1, 𝑜2, 𝑜3, 𝑜5}. Moreover, we 
know ̃∇(𝑂) = (𝑇1, ̃𝑇2), ∇(𝑇1, ̃𝑇2) = 𝑂. Thus, the (𝑂, (𝑇1, ̃𝑇2)) is called the fuzzy three-way concept, which indicates that object set 
5

{𝑜1, 𝑜2, 𝑜3, 𝑜5} has the lowest membership degree 𝑇1 and highest membership degree of attribute set 𝑀 , respectively.
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3. Fuzzy 3W-concept space based on core gene

There is no doubt that only a few are involved in the thousands of tumor genes. We wish to eliminate the negative influence 
between genes and disease that redundant genes interfere with disease diagnosis. Thus, we introduce a method through partial 
genes (i.e., core genes) from gene data and construct the fuzzy concept space for their core gene for the following process of tumor 
diagnosis. In this section, we introduce the notion of a gene database. Based on a gene database, we suggest a fuzzy 3W-concept 
space of core genes for tumor diagnosis.

A tumor gene database generally contains three main elements: patient, gene, and diagnosis. From the perspective of the formal 
context, a gene database is the following quintuple:

Definition 3. A gene database is the following quintuple:

𝐺𝐷 = (Ω,Λ, 𝐼,𝐷,𝐽 ),

where Ω = {𝑜1, 𝑜2, … , 𝑜𝑛} is a nonempty finite set of patient, Λ is an attribute set of gene, 𝑢𝐼(𝑜,𝑎) is the values of patient 𝑜 for gene 
attribute a, that is, 𝐼 = {< (𝑜, 𝑎), 𝑢

𝐼(𝑜,𝑎) > |(𝑜, 𝑎) ∈ Ω × Λ} is a fuzzy binary relation of patient 𝑜 and gene 𝑎, 𝑢
𝐼(𝑜,𝑎) = 𝑣 means that the 

patient 𝑜 have the value 𝑣 on the gene a. Similarly, 𝐷 is the diagnosis, and 𝐽 is a binary relation of patient and diagnosis.

For convenience, hereinafter, patient 𝑜 ∈ Ω is called object 𝑜, gene 𝑎 ∈ Λ is the gene attribute 𝑎, and diagnosis 𝐷 is the decision 
attribute. Without loss of generality, the gene database 𝐺𝐷 denotes all fuzzy decision formal contexts in this paper.

3.1. Fuzzy recognition of core gene

In this subsection, we introduce a fuzzy recognition relation for the core gene selection to measure the recognition degree of the 
various gene for the tumor in the diagnosis process. We define a 𝛿 neighborhood as follows.

Definition 4. Let (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ) be a gene database. For arbitrary 𝑜 ∈Ω and 𝑇 ∈ ΓΛ, the neighborhood 𝛿
𝑇
(𝑜) of 𝑜 in gene attribute set 

𝑇 can be defined as follows:

𝛿
𝑇
(𝑜) = {𝑜′ ∈ Ω|𝑑(𝑜, 𝑜′) ⩽ 𝛿},

where 𝛿 is a threshold and 𝑑(𝑜, 𝑜′) =
√∑

𝑎∈𝑇 ‖𝐼(𝑜, 𝑎)‖2 is the Euclidean distance.

The core genes have better characterized by their ability to recognize sample objects. We wish to use a standard to detect 
undesirable genes for recognizing sample objects and selecting desirable genes. Thus, we introduce the concept of fuzzy recognition 
to obtain core genes for tumor diagnosis.

Definition 5. Given a gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), for any 𝑜𝑖, 𝑜𝑗 ∈ Ω, 𝑎 ∈ Λ, the fuzzy recognition relation of gene attribute a on 𝑜𝑖
and 𝑜𝑗 can be defined as follows:

𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ) =

⎧⎪⎪⎨⎪⎪⎩

0, 𝑜𝑗 ∈ 𝛿𝑎(𝑜𝑖)
0, 𝐽 (𝑜𝑖,𝐷) = 𝐽 (𝑜𝑗 ,𝐷)|𝐼(𝑜𝑖, 𝑎) − 𝐼(𝑜𝑗 , 𝑎)|− 𝛿

1 − 𝛿
, else

where 𝑟𝑒𝑐𝑎 ∶ Ω ×Ω → [0, 1], 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ) denotes the fuzzy recognition degree of the gene attribute a with respect to (𝑜𝑖, 𝑜𝑗 ). Obviously, 
𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑖) = 0 and 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ) = 𝑟𝑒𝑐𝑎(𝑜𝑗 , 𝑜𝑖).

From Definition 5, we can see that for any object, if their decision classes are the same or are similar to each other (i.e., the 
distance between the object is less than 𝛿), then their fuzzy recognition degree is 0.

Definition 6. Given a gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), for any 𝑜𝑖, 𝑜𝑗 ∈ Ω, 𝑎 ∈ Λ, the fuzzy recognition degree of the gene attribute 𝑎 ∈ Λ
and the fuzzy recognition degree of the gene attribute set Λ′ ⊆Λ with respect to a pair of objects (𝑜𝑖, 𝑜𝑗 ) can be calculated as follows::

1) 𝑟𝑒𝑐𝑎 =
∑𝑛
𝑖=1

∑𝑛
𝑗=𝑖 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 );

2) 𝑟𝑒𝑐Λ′ (𝑜𝑖, 𝑜𝑗 ) =
∑
𝑎∈Λ′ 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ).

Hence, for all gene attribute 𝑎 ∈ Λ, the fuzzy recognition degree of 𝑎 reflects the total distinction of gene attribute 𝑎 to all objects, 
and the fuzzy recognition degree of Λ reflects the total distinction of gene attribute set Λ with respect to (𝑜𝑖, 𝑜𝑗 ). The larger its value 
is, the stronger its identification ability is. It can also explain that we can get more information and divide more objects into different 
6

classes by considering gene attribute 𝑎. Consequently, we have:
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Definition 7. Given a gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), a subset of gene attribute set 𝑅 ⊆ Λ is a core gene attribute set by considering 
fuzzy recognition degree 𝑟𝑒𝑐𝑎, if it satisfies the following two conditions:

1) ∀𝑜𝑖, 𝑜𝑖 ∈Ω, ∃𝑎 ∈𝑅, st. 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ) > 0, if 𝑟𝑒𝑐Λ(𝑜𝑖, 𝑜𝑗 ) ≠ 0;

2) ∀𝑎 ∈𝑅, ∃𝑜𝑖, 𝑜𝑗 ∈Ω, st. 𝑟𝑒𝑐Λ−𝑎(𝑜𝑖, 𝑜𝑗 ) > 0, if 𝑟𝑒𝑐Λ(𝑜𝑖, 𝑜𝑗 ) ≠ 0.

According to Definition 7, the first condition ensures that there is always one gene attribute in the core gene attribute set that can 
identify any two objects. The second condition ensures that any gene attribute in the core gene attribute set has a specific effect on 
object recognition. Therefore, we can obtain the core gene attribute set 𝑅 by considering the fuzzy recognition degree. Based on the 
above discussion, the core gene attributes based on fuzzy recognition relation can be obtained. The detail of the core gene attributes 
selection method is shown in Algorithm 1.

Algorithm 1 Core gene attribute selection based on fuzzy recognition relation.

Input: A gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), parameter 𝛿;
Output: Core gene attribute set 𝑅;

1: Initial 𝑅 = ∅;

2: for all 𝑎 ∈Λ do

3: Compute 𝛿𝑎(𝑜𝑖) according to Definition 4;

4: for all 𝑜𝑖 ∈Ω do

5: for 𝑜𝑗 = 𝑜𝑖 ∶ 𝑜|Ω| do

6: Compute 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ), 𝑟𝑒𝑐𝑎 , 𝑟𝑒𝑐Λ(𝑜𝑖, 𝑜𝑗 ) according to Definition 5-6;

7: end for

8: end for

9: end for

10: while
∑
𝑎∈Λ 𝑟𝑒𝑐𝑎 ≠ 0 do

11: Let 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈Λ−𝑅𝑟𝑒𝑐𝑎 ;
12: if 𝑟𝑒𝑐𝑎∗ (𝑜𝑖, 𝑜𝑗 ) > 0 then

13: 𝑅 ←𝑅 ∪ 𝑎∗ ;

14: for all 𝑎 ∈Λ do

15: 𝑟𝑒𝑐𝑎(𝑜𝑖, 𝑜𝑗 ) ← 0;

16: end for

17: end if

18: end while

19: return 𝑅.

Given a gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), we still use |Ω| and |Λ| to represent the number of objects and gene attributes, respectively. 
Running step 1, take 𝑂(1) due to initialized setting. In steps 2-9, the running time is decided by three for-statements. Hence, running 
the step 2-9 take 𝑂(|Λ||Ω|2). Running steps 10-18 take 𝑂(|Λ||Ω|2) due to a while-statement and a for-statement. Hence, the running 
time complexity of Algorithm 1 takes 𝑂(|Λ||Ω|2). A more detailed process of the core attribute is shown in Example 2.

Example 2. In this example, we can further select the core attributes of fuzzy formal decision context shown in Table 2 based on 
fuzzy recognition relation. From Table 2, we calculate the fuzzy recognition relation of attribute according to Definition 5 and select 
the first core attribute 𝑎7, where 𝑟𝑒𝑐𝑎7 = 21.3467. Then, the second core attribute 𝑎13 is selected and the ∑𝑎∈{𝑎7 ,𝑎13} 𝑟𝑒𝑐𝑎 = 3.5733. 
Moreover, the 𝑎3 is also selected to the core attribute set, and then the fuzzy recognition degree becomes 0. Therefore, the final core 
attribute set is {𝑎1, 𝑎7, 𝑎13}. The more detailed process of core analysis can be learned in Algorithm 1.

3.2. Fuzzy 3W-concept generation

Generally speaking, the fuzzy concept with three-way analysis describes a relationship between object and gene attributes from 
two characteristics: the positive and negative cognitive learning operator. Compared with the classical fuzzy concept, it contains a 
more comprehensive description of the information. It is more suitable to replace the fuzzy concept with the fuzzy 3W-concept in 
gene data analysis tasks to improve concept-cognitive learning efficiency. Moreover, considering the concept space is constructed 
based on object-oriented concept cognitive learning under the fuzzy environment, we believe constructing fuzzy concept space in 
gene data is generally not feasible. Hence, the core gene should be introduced into the process of concept-cognitive learning of gene 
data to significantly reduce the amount of calculation.

According to the discussion in subsection 3.1, we can obtain a 𝛿 neighborhood to describe similar objects via a gene database 
(Ω, Λ, ̃𝐼, 𝐷, 𝐽 ) and a parameter 𝛿. And then, we propose a procedure for learning the fuzzy 3W-concept space based on the core gene 
via the neighborhood information in this subsection.

Given a gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), the core gene attributes of Λ can be obtained according to Algorithm 1. We wish to use these 
core gene attribute to construct a fuzzy concept space. Then, we first define a fuzzy formal context via core gene attribute as follows:

Definition 8. Let (Ω, 𝑅, ̃𝐼, 𝐷, 𝐽 ) be a core gene database, 𝑅 ⊆ Λ is the core gene attribute set, Ω∕𝐷 = {Ω1, Ω2, … , Ω𝑘}. For 𝑜 ∈ Ω𝑖(𝑖 =
1, 2, … , 𝑘) and 𝑎𝑗 ∈ 𝑅(𝑗 = 1, 2, … , 𝑟), the membership degree of (𝑜, 𝑎𝑗) to 𝐼 is 𝐼(𝑜, 𝑎𝑗 ), non-membership degree is 𝐼−(𝑜, 𝑎𝑗 ). Then, its 
7

fuzzy similar classes 𝑆(𝑜) is described as follows:
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𝑆(𝑜) = {𝑜′ ∈ Ω𝑖|𝑑(𝑜, 𝑜′) ≤ 𝛿′},
where 𝛿 is a threshold and 𝑑(𝑜, 𝑜′) =

√
1
2
(
∑
𝑎𝑗∈𝑅 ‖𝐼(𝑜, 𝑎𝑗 )‖2 +∑

𝑎𝑗∈𝑅 ‖𝐼−(𝑜, 𝑎𝑗 )‖2) is the Euclidean distance.

Generally, we can believe that the objects are considered the same in the 𝛿′ neighborhood. In this subsection, we set a specific 
value as 𝛿′, and then we could obtain similar classes for all objects. The notions of the fuzzy 3W-concept of core gene attributes can 
be defined according to Property 1. Note that the parameter 𝛿′ plays an essential role in constructing similar classes. Meanwhile, the 
membership and non-membership degrees will be different from various objects, and then the intent will change with the extent so 
that the value of 𝛿′ will influence the fuzzy 3W-concept. Furthermore, the tumor diagnosis system presented in the current article is 
via a fuzzy 3W-concept; Hence, the 𝛿′ is the main factor affecting the tumor recognition performance in our method. Then we can 
get the notions of fuzzy 3W-concept and fuzzy 3W-concept space as follows.

Property 2. Given a core gene database (Ω, 𝑅, ̃𝐼, 𝐷, 𝐽 ), 𝑅 ⊆ Λ, Ω∕𝐷 = {Ω1, Ω2, … , Ω𝑘}. For a similar class 𝑆(𝑜) ⊆ Ω, (̃ (𝑆(𝑜)) ∩
−̃−(𝑆(𝑜)), (̃ (𝑆(𝑜)), ̃−(𝑆(𝑜)))) is a fuzzy 3W-concept.

Proof: According to Definition 2, we only need to prove ∇(̃ (𝑆(𝑜)), ̃−(𝑆(𝑜))) = ̃ (𝑆(𝑜)) ∩ −̃−(𝑆(𝑜)) and ̃∇(̃ (𝑆(𝑜)) ∩
−̃−(𝑆(𝑜))) = (̃ (𝑆(𝑜)), ̃−(𝑆(𝑜))) are valid.

1) It is immediate from the definition of 3W-concept learning operator, that is

∇(̃ (𝑆(𝑜)), ̃−(𝑆(𝑜))) =̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)).

2) According to Definition 1, we have

̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)) = {𝑜 ∈Ω|𝐼(𝑜, 𝑎) ≥ ⋀
𝑜∈𝑆(𝑜)

𝐼(𝑜, 𝑎)} ∩ {𝑜 ∈Ω|𝐼−(𝑜, 𝑎) ≥ ⋀
𝑜∈𝑆(𝑜)

𝐼−(𝑜, 𝑎), 𝑎 ∈𝑅}

= {𝑜 ∈Ω|𝐼(𝑜, 𝑎) ≥ ⋀
𝑜∈𝑆(𝑜)

𝐼(𝑜, 𝑎)} ∩ {𝑜 ∈Ω|1 − 𝐼−(𝑜, 𝑎) ≤ 1 −
⋀
𝑜∈𝑆(𝑜)

𝐼−(𝑜, 𝑎), 𝑎 ∈𝑅}

= {𝑜 ∈Ω|𝐼(𝑜, 𝑎) ≥ ⋀
𝑜∈𝑆(𝑜)

𝐼(𝑜, 𝑎)} ∩ {𝑜 ∈Ω|𝐼(𝑜, 𝑎) ≤ ⋁
𝑜∈𝑆(𝑜)

𝐼(𝑜, 𝑎), 𝑎 ∈𝑅}

= {𝑜 ∈Ω| ⋀
𝑜∈𝑆(𝑜)

𝐼(𝑜, 𝑎) ≤ 𝐼(𝑜, 𝑎) ≤
⋁
𝑜∈𝑆(𝑜)

𝐼(𝑜, 𝑎), 𝑎 ∈𝑅}.

Therefore, we have ̃ (̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜))(𝑎) =⋀
𝑜∈𝑆(𝑜) 𝐼(𝑜, 𝑎) = ̃ (𝑆(𝑜))(𝑎) for 𝑎 ∈𝑅.

Similarly, we also obtain

̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)) = {𝑜 ∈Ω| ⋀
𝑜∈𝑆(𝑜)

𝐼−(𝑜, 𝑎)} ≤ 𝐼−(𝑜, 𝑎) ≤
⋁
𝑜∈𝑆(𝑜)

𝐼−(𝑜, 𝑎), 𝑎 ∈𝑅}.

̃−(̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)))(𝑎) =
⋀
𝑜∈𝑆(𝑜)

𝐼−(𝑜, 𝑎) = ̃−(𝑆(𝑜))(𝑎) ∀𝑎 ∈𝑅.

Hence, ̃∇(̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜))) = (̃ (𝑆(𝑜)), ̃−(𝑆(𝑜))) holds.

By combining 1) and 2), this property is proven. #

Definition 9. Given a core gene database (Ω, 𝑅, ̃𝐼, 𝐷, 𝐽 ), 𝑅 ⊆ Λ, Ω∕𝐷 = {Ω1, Ω2, … , Ω𝑘}. For a similar class 𝑆(𝑜) ⊆ Ω, the object-

oriented fuzzy 3W-concept space ̃𝑖 about 𝑆(𝑜) is defined as follows:

̃𝑖 = {(̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)), (̃ (𝑆(𝑜)), ̃−(𝑆(𝑜))))|𝑜 ∈Ω𝑖}.

From Definition 9, we know that for any object set can also be connected with a label in a real gene database, that is 
{̃1, ̃2, … , ̃𝑘}. Then, the complete algorithm of constructing object-oriented fuzzy 3W-concept space is presented in Algorithm 2. 
Example 3 shows the learning process of fuzzy 3W-concept space.

Example 3. According to the fuzzy formal decision context in Table 2, we first compute the fuzzy similar classes of objects in their 
corresponding decision class according to Definition 8.

𝑆(𝑜1)={𝑜1}, 𝑆(𝑜2)={𝑜2, 𝑜3, 𝑜4}, 𝑆(𝑜3)={𝑜2, 𝑜3}, 𝑆(𝑜4)={𝑜2, 𝑜4}, 𝑆(𝑜5) = {𝑜5};

𝑆(𝑜6)={𝑜6}, 𝑆(𝑜7)={𝑜7}, 𝑆(𝑜8)={𝑜8}, 𝑆(𝑜9)={𝑜9};
8

𝑆(𝑜10)={𝑜10}, 𝑆(𝑜11)={𝑜11, 𝑜12}, 𝑆(𝑜12)={𝑜11, 𝑜12, 𝑜13}, 𝑆(𝑜13)={𝑜12, 𝑜13}.
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Algorithm 2 Constructing fuzzy 3W-concept space.

Input: A gene database (Ω, Λ, ̃𝐼, 𝐷, 𝐽 ), parameter 𝛿′;
Output: Fuzzy three-way concept space ̃= {̃1 , ̃2 , … , ̃𝑘};

1: Initial ̃ = ∅;

2: for all Ω𝑖 ∈Ω∕𝐷 do

3: for all 𝑜 ∈Ω𝑖 do

4: Let ̃ = ∅;

5: Construct the similar class 𝑆(𝑜) of 𝑜 according to Definition 8;

6: Construct the fuzzy 3W-concept (̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)), (̃ (𝑆(𝑜)), ̃−(𝑆(𝑜)));
7: ̃𝑖 ← ̃𝑖 ∪ (̃ (𝑆(𝑜)) ∩−̃−(𝑆(𝑜)), (̃ (𝑆(𝑜)), ̃−(𝑆(𝑜)));
8: end for

9: end for

10: return ̃.

Table 3

The object-oriented fuzzy 3W-concept space.

({𝑜1}, ({< 𝑎1 ,0.97 >,< 𝑎7 ,0.97 >,< 𝑎13,0.76 >},{< 𝑎1 ,0.03 >,< 𝑎7 ,0.03 >,< 𝑎13 ,0.24 >})),
({𝑜2 , 𝑜3 , 𝑜4}, ({< 𝑎1 ,0.67 >,< 𝑎7 ,0.61 >,< 𝑎13 ,0.71 >},{< 𝑎1 ,0.17 >,< 𝑎7 ,0.16 >,< 𝑎13 ,0.05 >}),
({𝑜2 , 𝑜3}, ({< 𝑎1 ,0.67 >,< 𝑎7 ,0.83 >,< 𝑎13 ,0.71 >},< 𝑎1 ,0.32 >,< 𝑎7 ,0.16 >,< 𝑎13 ,0.17 >)),
({𝑜2 , 𝑜4}, ({< 𝑎1 ,0.68 >,< 𝑎7 ,0.61 >,< 𝑎13 ,0.83 >},{< 𝑎1 ,0.17 >,< 𝑎7 ,0.17 >,< 𝑎13 ,0.05 >})),
({𝑜5}, (< 𝑎1 ,0.89 >,< 𝑎7 ,0.61 >,< 𝑎13 ,0.64 >,{< 𝑎1 ,0.11 >,< 𝑎7 ,0.39 >,< 𝑎13 ,0.36 >})),

({𝑜6}, ({< 𝑎1 ,0.31 >,< 𝑎7 ,0.08 >,< 𝑎13 ,0.18 >},{< 𝑎1 ,0.69 >,< 𝑎7 ,0.92 >,< 𝑎13 ,0.82 >})),
({𝑜7}, ({< 𝑎1 ,0.43 >,< 𝑎7 ,0.24 >,< 𝑎13 ,0.56 >},{< 𝑎1 ,0.57 >,< 𝑎7 ,0.76 >,< 𝑎13 ,0.44 >})),
({𝑜8}, ({< 𝑎1 ,0.87 >,< 𝑎7 ,0.06 >,< 𝑎13 ,0.08 >},{< 𝑎1 ,0.13 >,< 𝑎7 ,0.94 >,< 𝑎13 ,0.92 >})),
({𝑜9}, ({< 𝑎1 ,0.42 >,< 𝑎7 ,0.32 >,< 𝑎13 ,0.02 >},{< 𝑎1 ,0.58 >,< 𝑎7 ,0.68 >,< 𝑎13 ,0.98 >})),

({𝑜10},{< 𝑎1 ,0.01 >,< 𝑎7 ,0.10 >,< 𝑎13 ,0.23 >},{< 𝑎1 ,0.99 >,< 𝑎7 ,0.90 >,< 𝑎13 ,0.77 >})),
({𝑜11 , 𝑜12},{< 𝑎1 ,0.04 >,< 𝑎7 ,0.27 >,< 𝑎13 ,0.58 >},{< 𝑎1 ,0.93 >,< 𝑎7 ,0.66 >,< 𝑎13 ,0.25 >})),
({𝑜11 , 𝑜12 , 𝑜13},{< 𝑎1 ,0.04 >,< 𝑎7 ,0.27 >,< 𝑎13 ,0.46 >},{< 𝑎1 ,0.91 >,< 𝑎7 ,0.65 >,< 𝑎13 ,0.25 >})),
({𝑜12 , 𝑜13},{< 𝑎1 ,0.04 >,< 𝑎7 ,0.34 >,< 𝑎13 ,0.46 >},{< 𝑎1 ,0.91 >,< 𝑎7 ,0.65 >,< 𝑎13 ,0.42 >})).

According to Definition 9, the object-oriented fuzzy 3W-concept space can be learned. There are 5, 4 and 4 fuzzy concepts in ̃1, 
̃2 and ̃3, which are shown in Table 3.

4. The concept-cognitive learning mechanism of tumor diagnosis system

Note that concepts influence each other in fuzzy 3W-concept space, with much repetitive and interfering information between 
them. Hence, to verify our proposed method, two tasks need to be done in this section: 1) fuzzy 3W-concept fusion; 2) explore an 
effective concept-cognitive learning mechanism for the tumor diagnosis system.

4.1. Fuzzy 3W-concept fusion

As we all know, the reliability of information from the different fuzzy 3W-concepts is different, namely the importance of fuzzy 
3W-concepts. In order to evolve fuzzy ontologies, a fuzzy concept clustering was proposed in paper [29], and a progressive fuzzy 
concept was discussed in paper [30]. Meanwhile, to use this idea to facilitate our concept-cognitive learning method, we introduce 
concept fusion, where the concept is a fuzzy pseudo-concept. Thus, this subsection mainly focuses on fuzzy concept fusion according 
to the fuzzy 3W-concept space of learning.

Let (Ω, 𝑅, ̃𝐼, 𝐷, 𝐽 ) be a core gene database, 𝑅 ⊆ Λ be a core gene set, ̃𝑖 be a subconcept space of ̃. For any fuzzy 3W-concept 
space ̃𝑖, we say that ̃𝐹

𝑖
is a fuzzy 3W-concept fusion of concept space ̃𝑖 based on core gene attribute if it satisfies the following 

two settings:

1) For any fuzzy 3W-concept fusion (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −
𝑢 (𝑆𝑢))) ∈ ̃𝐹

𝑖
is not supper concept of others fuzzy 3W-concept fusion in ̃𝐹

𝑖
;

2) For any fuzzy 3W-concept (𝑆𝑗, (𝑇𝑗 (𝑆𝑗 ), ̃𝑇 −
𝑗
(𝑆𝑗 ))) ∈ ̃𝑖, there exists at least one extent of a fuzzy three-way concept fusion 𝑆𝑢 such 

that 𝑆𝑗 ⊆ 𝑆𝑢.

Definition 10. Given a fuzzy 3W-concept space ̃𝑖. There exists some fuzzy 3W-concept (𝑆𝜆𝑗 , (𝑇𝜆𝑗 (𝑆𝜆𝑗 ), ̃𝑇
−
𝜆𝑗
(𝑆𝜆𝑗 ))) ∈ ̃𝑖 such that 

𝑆𝜆𝑗 ⊆ 𝑆𝑢, the fuzzy 3W-concept fusion (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −
𝑢 (𝑆𝑢))) ∈ ̃𝐹

𝑖
satisfies the following conditions:

1) 𝑆𝑢 = 𝑆𝜆1 ∪ 𝑆𝜆2 ∪… ∪𝑆𝜆𝑡 ;

2) (𝑇𝑢(𝑆𝑢), ̃𝑇𝑢(𝑆𝑢)−) =
1

2𝑡−1
((𝑇𝜆1 (𝑆𝜆1 ), ̃𝑇

−
𝜆1
(𝑆𝜆1 )) + (𝑇𝜆2 (𝑆𝜆2 ), ̃𝑇

−
𝜆2
(𝑆𝜆2 )) + 21(𝑇𝜆3 (𝑆𝜆3 ), ̃𝑇

−
𝜆3
(𝑆𝜆3 )) +… + 2𝑡−2(𝑇𝜆𝑡 (𝑆𝜆𝑡 ), ̃𝑇

−
𝜆𝑡
(𝑆𝜆𝑡 )));
9

where |𝑆𝜆1 | ≥ |𝑆𝜆2 | ≥… ≥ |𝑆𝜆𝑡 |.
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Table 4

The object-oriented fuzzy 3W-concept space.

({𝑜1}, ({< 𝑎1 ,0.97 >,< 𝑎7 ,0.97 >,< 𝑎13 ,0.76 >},{< 𝑎1 ,0.03 >,< 𝑎7 ,0.03 >,< 𝑎13 ,0.24 >})),
({𝑜5}, ({< 𝑎1 ,0.89 >,< 𝑎7 ,0.61 >,< 𝑎13 ,0.64 >},{< 𝑎1 ,0.11 >,< 𝑎7 ,0.39 >,< 𝑎13 ,0.36 >})),
({𝑜2 , 𝑜3 , 𝑜4}, ({< 𝑎1 ,0.68 >,< 𝑎7 ,0.67 >,< 𝑎13 ,0.77 >},{< 𝑎1 ,0.21 >,< 𝑎7 ,0.16 >,< 𝑎13 ,0.08 >})),

({𝑜6}, ({< 𝑎1 ,0.31 >,< 𝑎7 ,0.08 >,< 𝑎13 ,0.18 >},{< 𝑎1 ,0.69 >,< 𝑎7 ,0.92 >,< 𝑎13 ,0.82 >})),
({𝑜7}, ({< 𝑎1 ,0.43 >,< 𝑎7 ,0.24 >,< 𝑎13 ,0.56 >},{< 𝑎1 ,0.57 >,< 𝑎7 ,0.76 >,< 𝑎13 ,0.44 >})),
({𝑜8}, ({< 𝑎1 ,0.87 >,< 𝑎7 ,0.06 >,< 𝑎13 ,0.08 >},{< 𝑎1 ,0.13 >,< 𝑎7 ,0.94 >,< 𝑎13 ,0.92 >})),
({𝑜9}, ({< 𝑎1 ,0.42 >,< 𝑎7 ,0.32 >,< 𝑎13 ,0.02 >},{< 𝑎1 ,0.58 >,< 𝑎7 ,0.68 >,< 𝑎13 ,0.98 >})),

({𝑜11 , 𝑜12 , 𝑜13}, ({< 𝑎1 ,0.04 >,< 𝑎7 ,0.31 >,< 0.49 >},{< 𝑎1 ,0.92 >,< 𝑎7 ,0.65 >,< 𝑎13 ,0.34 >})),
({𝑜10}, ({< 𝑎1 ,0.01 >,< 𝑎7 ,0.10 >,< 𝑎13 ,0.23 >},{< 𝑎1 ,0.99 >,< 𝑎7 ,0.90 >,< 𝑎13 ,0.77 >})).

The (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −
𝑢 (𝑆𝑢))) is a fuzzy 3W-concept fusion, and the corresponding fuzzy 3W-concept space is ̃𝐹

𝑖
= {(𝑆𝑢, (𝑇𝑢(𝑆𝑢),

𝑇 −
𝑢 (𝑆𝑢)))|𝑢 = 1, 2, … , 𝑢𝑡}, where 𝑖 = 1, 2, … , 𝑘. In the fusion process of fuzzy 3W-concept, we set the weight of the sub-concept mainly 

based on its corresponding extent’s size. Note that the weight of all fuzzy 3W-concepts adds up to 1, ensuring that the sum of the 
total effects is 1. Compared with the original concept, the concept fusion retains the original information based on the concept space 
and reduces the redundant concept, which could enhance the effectiveness of cognitive learning for concept recognition.

Example 4. According to Example 3, we can further learn the fuzzy 3W-concept fusion, and then there are 3, 4 and 2 fuzzy 3W-

concepts fusion in ̃𝐹1 , ̃𝐹2 and ̃𝐹3 , which are shown in Table 4.

4.2. Tumor diagnosis process

In the process of tumor diagnosis, a vital link is to analyze and make decisions on the gene data of patients, that is, to identify the 
class label. In this subsection, we design a recognition indicator of the fuzzy 3W-concept used for tumor diagnosis and then present 
a diagnosis mechanism based on the fuzzy 3W-concept fusion for gene data.

Definition 11. According to the fuzzy 3W-concept fusion space ̃𝐹 = {̃𝐹1 , ̃
𝐹
2 , … , ̃𝐹

𝑘
} learning in subsection 4.1. For the object 𝑜, 

the membership degree and non-membership degree to 𝑅 are 𝑇 and 𝑇 −, respectively. Then, the recognition degree between 𝑜 and 
(𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −

𝑢 (𝑆𝑢))) ∈ ̃𝐹
𝑖

can be reformulated as follows:

𝑅𝑒𝑐(𝑜, ̃𝐹𝑖 ) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑢,(𝑇𝑢(𝑆𝑢),𝑇−
𝑢 (𝑆𝑢)))∈̃𝐹𝑖

√‖𝑇 − 𝑇𝑢(𝑆𝑢)‖2 + ‖𝑇 − − 𝑇 −
𝑢 (𝑆𝑢)‖2.

It should be pointed out that the more substantial the similarity, the minor recognition degree. Hence, the patients can be 
diagnosed according to the following definition.

Definition 12. A patient 𝑜 was diagnosed as 𝐷𝑘∗ , if 𝑅𝑒𝑐(𝑜, ̃𝐹
𝑘∗ ) is global minimum recognition degree, that is,

𝐷𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑘𝑅𝑒𝑐(𝑜, ̃
𝐹
𝑘
).

According to the above analysis, we can easily discover that the tumor diagnosis process is a recognition process in our method. 
Hence, we need to obtain the result with a global minimum recognition degree. The detailed processes of the diagnosis process are 
shown in Algorithm 3.

It should be pointed out that the construct of Algorithm 2 and Algorithm 3 is according to Algorithm 1. The main task of 
Algorithm 2 and Algorithm 3 is to construct a fuzzy 3W-concept space and fusion fuzzy 3W-concept space. Hence, the time complexity 
of these two algorithms mainly focuses on the construction and fusion of fuzzy 3W-concept, and it is easy to verify that their time 
complexity is significantly lower than that of Algorithm 1. In addition, these algorithms need to learn two parameters (𝛿, 𝛿′). Hence, 
it is easy to know that the overall time complexity of our method takes 𝑂(|𝛿||𝛿′||Λ||Ω|2). However, this paper mainly focuses on 
analyzing tumor gene data, i.e., the number of samples is much smaller than the feature dimension. Thus, the time complexity of the 
CCL3S method is linear order.

Example 5. Given an unlabeled object 𝑥0 with the membership degree (< 𝑎1, 0.74 >, < 𝑎7, 0.09 >, < 𝑎13, 0.18 >) of three core attributes, 
we could identify its class label according to the Definition 11. The recognition degree between 𝑥0 and other existing fuzzy 3W-

concept fusion in Example 4 are as follows:

𝑅𝑒𝑐(𝑥0, ̃𝐹1 (𝑆𝑢)) = 1.4206, 𝑅𝑒𝑐(𝑥0, ̃𝐹2 (𝑆𝑢)) = 0.3335, 𝑅𝑒𝑐(𝑥0, ̃𝐹3 (𝑆𝑢)) = 1.4636.
10

According to Definition 12, we have 𝐷2 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑘𝑅𝑒𝑐(𝑥0, ̃
𝐹
𝑘
). Thus, 𝑥0 can be classed to the second class.
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Algorithm 3 Diagnosis process based fusion fuzzy 3W-concept space.

Input: Fuzzy three-way concept space ̃= {̃1 , ̃2 , … , ̃𝑘};

Output: Diagnosis 𝑘∗ ;

1: Initial ̃;

2: for all ̃𝑖 ∈ ̃ do

3: Set supremum fuzzy 3W-concept (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −
𝑢
(𝑆𝑢)));

4: for all (𝑆𝑗 , (𝑇𝑗 (𝑆𝑗 ), ̃𝑇 −
𝑗
(𝑆𝑗 ))) ∈ ̃𝑖 do

5: if (𝑆𝑗 , (𝑇𝑗 (𝑆𝑗 ), ̃𝑇 −
𝑗
(𝑆𝑗 ))) ⊆ (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −

𝑢
(𝑆𝑢))) ∈ ̃𝐹

𝑖
then

6: Get (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −
𝑢
(𝑆𝑢))) by Definition 10;

7: ̃𝐹
𝑖
← ̃𝐹

𝑖
∪ (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −

𝑢
(𝑆𝑢)));

8: end if

9: end for

10: end for

11: Let ̃𝐹 ← ̃𝐹
𝑖

;

12: for all (𝑆𝑢, (𝑇𝑢(𝑆𝑢), ̃𝑇 −
𝑢
(𝑆𝑢))) ∈ ̃𝐹 do

13: Get 𝑅𝑒𝑐(𝑜, ̃𝐹
𝑖
(𝑆𝑢)) by Definition 11;

14: Let 𝑘∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝑅𝑒𝑐(𝑜, ̃𝐹𝑖 (𝑆𝑢));
15: end for

16: return 𝑘∗ .

Table 5

Detailed information of 9 selected datasets.

No.s Tumor name Samples Gene attribute Classes Continuous

1 Allaml 77 7129 2 Yes

2 Colon 62 2000 2 No

3 Glioma 50 4434 4 Yes

4 Leukemia 72 7070 2 No

5 Lung 203 3312 5 Yes

6 Lung_Discrete 73 325 7 No

7 Lymphoma 96 4026 9 No

8 Prostate_Ge 102 5966 2 Yes

9 Tox_171 171 5748 4 Yes

5. Experiments

In this section, we validate the effectiveness of CCL3S for tumor gene data analysis in the fuzzy context. Specifically, our frame-

work is compared with several fuzzy-based methods on public tumor gene datasets (see https://jundongl .github .io /scikitfeature /
datasets .html), whose characteristics are summarized in Table 5. The experimental computing program on a personal computer, and 
its specific configuration is OS: Microsoft Win10; Processor: Intel(R) Core(TM) i7-10750H CPU 2.60 GHz; Memory: 32GB; Program-

ming language: MATLAB 2020a.

Since they could not evaluate the proposed approaches, some pre-processing data methods were applied to the source data. The 
source data have been transformed into values ranging from 0 to 1 according to [46], which can be considered as the membership 
degree.

𝐼(𝑜𝑖, 𝑎𝑗 ) =
𝑠(𝑥𝑖, 𝑎𝑗 ) − min(𝑠(𝑎𝑗 ))

max(𝑠(𝑎𝑗 )) − min(𝑠(𝑎𝑗 ))
,

where 𝑠(𝑥𝑖, 𝑎𝑗 ) denotes the value of 𝑜𝑖 in 𝑎𝑗 , the max(𝑠(𝑎𝑗 )) and min(𝑠(𝑎𝑗 )) denote the maximum and minimum value of objects 𝑜𝑖 in 
𝑎𝑗 .

5.1. Performance evaluation

We demonstrate the performance of CCL3S for tumor diagnosis, and the primary task is to verify the classification accuracy 
of the various methods. This subsection compares CCL3S with other classification methods, including the classic and fuzzy-based 
classification methods. The following experiment comparisons for tumor classification on the selected datasets are adapted with 
10-fold cross-validations to evaluate various methods. The detailed flowchart of the CCL3S is shown in Fig. 2.

In order to illustrate the efficiency of CCL3S, we mainly compare the outcome of CCL3S with some popular classification methods 
on classification performance in this subsection. Consider that CCL3S is constructed based on the fusion fuzzy 3W-concept via core 
gene attribute, a classification method based on concept distance. Thus, we compare it with some popular classification methods, 
including several classic machine learning methods [47,48]: KNN(K=3), SVM, MNB, LR, RNN, and Forest_PA; and several fuzzy-

based methods [30,49]: FENN, IF_KNN, PFRNN, FRNN_FRS, CFKNN, and ILMPFTC.

Tables 6 and 7 record the classification performance of selected classification methods on various gene datasets under the optimal 
(𝛿, 𝛿′). The mean (M) and standard (SD) of classification accuracy are shown in the table. Then we can find it easy that our CCL3S 
method has the highest accuracy and most minor standard in most cases. Specifically, for the six classic classification methods, 
Table 2 indicates that CCL3S performs much better than other methods on gene datasets 2-3 and gene datasets 5-9, and achieves 
11

the best performance on datasets 1 and 4. Moreover, for the fuzzy-based classification methods, Table 3 shows that the classification 
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Fig. 2. Detailed flowchart of CCL3S.

Table 6

Classification performance (M ± SD) of CCL3S and six classic classification methods.

No.s (𝛿, 𝛿′) CCL3S KNN SVM GNB LR RNN Forest_PA

1 (0.4,0.0) 1.0000±0.0000 0.7464±0.2456 0.9571±0.0915 0.8607±0.1242 0.9286±0.1720 0.6429±0.4392 0.9444±0.0985

2 (0.0,0.1) 0.9357±0.1145 0.8357±0.1973 0.8381±0.1494 0.8690±0.1630 0.8548±0.1382 0.6500±0.1920 0.7903±0.1614

3 (0.0,0.0) 0.8950±0.1462 0.6800±0.1327 0.7200±0.2400 0.4000±0.2366 0.6600±0.2973 0.1000±0.1612 0.6600±0.1944

4 (0.4,0.0) 1.0000±0.0000 0.7893±0.1450 0.9714±0.0857 0.8482±0.1400 0.9429±0.1309 0.6429±0.4392 0.9167±0.0738

5 (0.8,0.1) 0.9505±0.0408 0.7400±0.3923 0.7455±0.3898 0.7007±0.3659 0.7355±0.3946 0.6800±0.4490 0.9163±0.0461

6 (0.7,0.0) 0.9054±0.0883 0.8768±0.0996 0.8750±0.0997 0.9036±0.1104 0.8625±0.1110 0.2839±0.1794 0.7397±0.1012

7 (0.5,0.0) 0.9133±0.0871 0.4956±0.2897 0.6378±0.2845 0.7489±0.1375 0.6589±0.2631 0.4633±0.4050 0.8889±0.0998

8 (0.3,0.0) 0.9118±0.0709 0.6982±0.2161 0.8727±0.0770 0.5645±0.2935 0.8636±0.0876 0.0200±0.0600 0.9216±0.0717

9 (0.7,0.0) 0.9765±0.0568 0.3111±0.1773 0.4176±0.3162 0.3350±0.2712 0.3882±0.3002 0.0000±0.0000 0.7251±0.1151

Table 7

Classification performance (M ± SD) of CCL3S and six fuzzy-based classification methods.

No.s (𝛿, 𝛿′) CCL3S FENN IFKNN PFKNN FRNN-FRS CFKNN ILMPFTC

1 (0.4,0.0) 1.0000±0.0000 0.8054±0.1520 0.8750±0.1143 0.8750±0.1143 0.7393±0.1235 0.7911±0.1460 0.7619±0.0338$

2 (0.0,0.1) 0.9357±0.1145 0.8054±0.1520 0.7071±0.1881 0.6595±0.1872 0.6476±0.0381 0.6881±0.2036 0.5294±0.0322

3 (0.0,0.0) 0.8950±0.1462 0.7800±0.1661 0.7800±0.1661 0.8000±0.1265 0.3400±0.1281 0.7400±0.1562 0.8571±0.0312

4 (0.4,0.0) 1.0000±0.0000 0.8482±0.0962 0.8768±0.1142 0.8768±0.0946 0.6536±0.0635 0.8196±0.1096 0.8095±0.0346

5 (0.8,0.1) 0.9505±0.0408 0.9507±0.0381 0.9605±0.0373 0.9410±0.0478 0.8669±0.0550 0.9560±0.0403 0.9483±0.0082

6 (0.7,0.0) 0.9054±0.0883 0.7679±0.1041 0.8536±0.1371 0.8518±0.1250 0.1357±0.0853 0.8946±0.0953 0.8889±0.0329

7 (0.5,0.0) 0.9133±0.0871 0.6044±0.1521 0.7744±0.0961 0.5433±0.0939 0.4778±0.0272 0.6811±0.1515 0.7826±0.0309

8 (0.3,0.0) 0.9118±0.0709 0.8336±0.1326 0.8427±0.1281 0.8518±0.1367 0.6209±0.1131 0.5673±0.1511 0.8621±0.0175

9 (0.7,0.0) 0.9765±0.0568 0.6500±0.1039 0.8314±0.0851 0.7431±0.0731 0.7895±0.0953 0.6147±0.0749 0.4898±0.0206

performance of CCL3S is almost more significant than that of the other methods, except dataset 5. Meanwhile, the more intuitive 
remarkable comparison is shown in Fig. 3 and Fig. 4. It can be found clearly that the mean classification accuracy of CCL3S is 
significantly higher than others in most gene datasets.

To observe a significant difference between CCL3S and other classification methods, we adopt the Wilcoxon pairwise test to 
compare this experiment and set the P-value threshold to 0.01. From the compassion Table 8, we know all the test P-values on 
accuracy are smaller than 0.05, indicating that CCL3S is more efficient and robust than other classification methods in classification 
performance. In conclusion, the proposed CCL3S mechanism is an excellent diagnostic mechanism.

5.2. Robustness analysis

Based on the above experiments, we analyze the robustness of the proposed CCL3S method as follows. In this part, we further 
compare their classification robustness to evaluate the performance of CCL3S and other compared algorithms on different datasets. 
12

Firstly, we have the definition of robustness [50] as follows.
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Fig. 3. The comparison of classification accuracy on 9 selected gene datasets.

Fig. 4. The comparison of classification standard on 9 selected gene datasets.

Table 8

The comparison of average classification and Wilcoxon test result of several methods on 9 selected 
gene datasets.

Classic classification Fuzzy-based classification

Method Average accuracy P-value Method Average accuracy P-value

CCL3S 0.9431 – CCL3S 0.9431 –

KNN 0.6859 0.0039 FENN 0.7828 0.0078

SVM 0.7817 0.0039 IFKNN 0.8335 0.0078

GNB 0.6923 0.0039 PFKNN 0.7936 0.0039

LR 0.7661 0.0039 FRNN-FRS 0.5857 0.0039

RNN 0.3870 0.0039 CFKNN 0.7503 0.0078

Forest_PA 0.8337 0.0078 ILMPFTC 0.7700 0.0039

𝑅𝑀𝑖
(𝐷𝑗 ) =

𝐴𝑐𝑐𝑀𝑖
(𝐷𝑗 )

𝑚𝑖𝑛𝑀𝑖∈𝑀𝐴𝑐𝑐𝑀𝑖
(𝐷𝑗 )

,

where 𝑅𝑀𝑖
(𝐷𝑗 ) denotes the classification accuracy of algorithm 𝑀𝑖 on dataset 𝐷𝑗 and 𝑚𝑖𝑛𝑀𝑖∈𝑀𝐴𝑐𝑐𝑀𝑖

(𝐷𝑗 ) represents the minimum 
classification accuracy of all methods on dataset 𝐷𝑗 . The whole robustness of 𝑀𝑖 =

∑𝑠
𝑗=1𝑅𝑀𝑖

(𝐷𝑗 ) (where 𝑠 represents the number of 
datasets), the higher the value of robustness, the better the performance of the method.

Note that the RNN method showed the worst performance in all datasets, which also reflects that RNN is unsuitable for high-
13

dimensional data classification. Thus, in this part, we only compare the robustness of CCL3S with other methods except for the RNN 
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Fig. 5. Robustness analysis.

Table 9

Classification accuracy of different parameters on Allaml gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.8196 0.6196 0.3821 0.4500 0.3089 0.7464 0.7768 0.7464 0.7179 0.6893 0.6893

0.1 0.9286 0.9286 0.8875 0.8464 0.9018 0.9571 0.7232 0.7232 0.9286 0.8768 0.7786

0.2 0.9286 0.9286 0.9143 0.9000 0.8857 0.9286 0.8571 0.8571 0.8429 0.8143 0.8143

0.3 0.9304 0.9304 0.9304 0.9161 0.9446 0.8911 0.9304 0.9018 0.8321 0.7893 0.8054

0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9714 0.9429 0.9143 0.9714 0.9589

0.5 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9857 0.9857 0.9286 0.9000

0.6 0.9018 0.9018 0.9018 0.9018 0.9018 0.9143 0.9286 0.9429 0.9571 0.9571 0.8571

0.7 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9143 0.9429 0.9571 0.9429

0.8 0.9196 0.9196 0.9196 0.9196 0.9196 0.9196 0.9196 0.9196 0.9196 0.9196 0.9339

0.9 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429

1.0 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446

method, as shown in Fig. 5. From Fig. 5, we intuitively observe that the height of CCL3S is higher than that of other algorithms, 
which can illustrate the robustness and stability of our method.

After the above discussion on classification performance and hypothesis testing, it is not difficult to find that CCL3S still has a 
satisfactory classification performance compared with many popular classifiers. In addition, different from neural network learning, 
classification results obtained through concepts are causal knowledge and have strong interpretability. Meanwhile, CCL3S is still a 
machine-learning method, so parameters play a significant role in the system. In the following subsection, it is necessary to analyze 
the influence of parameters on the CCL3S system.

5.3. Parameters analysis

In the previous subsection, we demonstrated the efficacy of CCL3S in classification by comparing it with several popular classifi-

cation methods. It should be pointed out that the parameter (𝛿, 𝛿′) greatly influences the fuzzy three-way concept space construction 
of the core gene. Therefore, it is necessary to analyze the influence of parameter (𝛿, 𝛿′) changes on the performance of CCL3S. Then, 
we set the step size to 0.1 for all gene datasets in our method, namely, (𝛿, 𝛿′) ∈ {0, 0.1, 0.2, … , 1} × {0, 0.1, 0.2, … , 1}.

For the same parameter (𝛿, 𝛿′), we conducted ten-fold cross-validations on the same gene datasets, and the classification accuracy 
was calculated. Fig. 6 illustrates the changing trend of the mean accuracy of CCL3S along with the parameter differences. More 
details can be found in Tables 9-17. From these tables, we find that the classification accuracy of algorithms varies greatly with 𝛿 at a 
given 𝛿′, but does not change much with 𝛿′ when 𝛿 set in most cases. These two parameters affect the final classification performance 
and must be selected on different datasets.

6. Conclusions

The two emerging studies of artificial intelligence and cognitive computing, namely, cognitive learning and concept learning, can 
achieve the same result by different methods. While cognitive learning explores the learning law of the learning theory of the human 
cognitive process, concept learning reveals the systematic law of the human brain learning concepts from given clues through specific 
cognitive models. Based on the unified viewpoint, many scholars began to research concept cognitive learning, which simulates the 
human cognitive procedure by integrating concept learning and concept learning. Although concept-cognitive learning has made 
14

considerable achievements in theoretical promotion and model construction, its application research is still in its infancy.
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Fig. 6. Relationship between the parameters (𝛿, 𝛿′) and accuracy of CCL3S on 9 selected gene datasets.

Table 10

Classification accuracy of different parameters on Colon gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.9357 0.9357 0.9357 0.9357 0.9357 0.8071 0.8071 0.8071 0.8238 0.7286 0.5595

0.1 0.9333 0.9333 0.9333 0.9333 0.9333 0.7833 0.7833 0.7833 0.7667 0.7190 0.5262

0.2 0.9333 0.9333 0.9333 0.9333 0.9333 0.8024 0.8024 0.8024 0.8024 0.7024 0.5548

0.3 0.8024 0.8024 0.8024 0.8024 0.8024 0.8024 0.8024 0.8024 0.8357 0.7548 0.7071

0.4 0.8571 0.8571 0.8571 0.8571 0.8571 0.8524 0.8524 0.8524 0.7071 0.6905 0.6881

0.5 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8000

0.6 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8000

0.7 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190

0.8 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190 0.8190

0.9 0.8381 0.8381 0.8381 0.8381 0.8381 0.8381 0.8381 0.8381 0.8381 0.8381 0.8214

1.0 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429

This work aims to concentrate on an application problem of concept-cognitive learning for medical decision-making, especially 
in tumor gene data analysis, from an interpretability viewpoint. Hence, it is worth mentioning that, different from neural network 
15

learning, the result of concept-cognitive learning is generally causal knowledge, which has strong interpretability. Moreover, this 
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Table 11

Classification accuracy of different parameters on Glioma gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.8950 0.8550 0.7550 0.5500 0.6750 0.5500 0.7650 0.7050 0.6650 0.6650 0.6250

0.1 0.7350 0.7350 0.7350 0.7350 0.7350 0.6950 0.6150 0.6150 0.5350 0.6400 0.6750

0.2 0.5350 0.5350 0.5550 0.5750 0.5750 0.5700 0.5300 0.5550 0.4750 0.4600 0.4900

0.3 0.5600 0.5600 0.5600 0.5600 0.5600 0.5400 0.5400 0.6000 0.5950 0.5350 0.4350

0.4 0.3900 0.3900 0.3900 0.3900 0.3650 0.3050 0.3050 0.3050 0.2850 0.3300 0.3650

0.5 0.7150 0.7150 0.7150 0.7150 0.7150 0.7150 0.7150 0.7100 0.7100 0.7350 0.7100

0.6 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5450 0.6250

0.7 0.5400 0.5400 0.5400 0.5400 0.5400 0.5400 0.5400 0.5400 0.5400 0.5800 0.5200

0.8 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 0.5750

0.9 0.5950 0.5950 0.5950 0.5950 0.5950 0.5950 0.5950 0.5950 0.5950 0.5950 0.5950

1.0 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700

Table 12

Classification accuracy of different parameters on Leukemia gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.9304 0.9304 0.9304 0.9304 0.9304 0.8196 0.8196 0.8196 0.9304 0.9321 0.8304

0.1 0.9571 0.9571 0.9571 0.9571 0.9571 0.8714 0.8714 0.8714 0.9714 0.9286 0.7911

0.2 0.9321 0.9321 0.9321 0.9321 0.9321 0.8750 0.8750 0.8750 0.8750 0.8875 0.7750

0.3 0.9571 0.9571 0.9571 0.9571 0.9571 0.8429 0.8429 0.8429 0.9143 0.9286 0.8179

0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.5 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875 0.9750 0.9750 0.9482

0.6 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9446 0.9714 0.9714

0.7 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9589 0.9732 0.9589

0.8 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9571 0.9571

0.9 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9714 0.9429

1.0 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500

Table 13

Classification accuracy of different parameters on Lung gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.7136 0.6186 0.5840 0.5743 0.6143 0.5690 0.3800 0.2726 0.2471 0.2476 0.2179

0.1 0.8610 0.8610 0.8610 0.8510 0.8162 0.7817 0.6874 0.5986 0.3157 0.2919 0.3569

0.2 0.9105 0.9105 0.9105 0.8955 0.9105 0.9052 0.8757 0.8362 0.7671 0.6686 0.5000

0.3 0.8810 0.8810 0.8810 0.8810 0.8757 0.8757 0.8507 0.7967 0.7093 0.6102 0.5119

0.4 0.8964 0.8964 0.8964 0.8964 0.8914 0.8864 0.8862 0.8762 0.8367 0.8021 0.7324

0.5 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8762 0.8664

0.6 0.8960 0.8960 0.8960 0.8960 0.8960 0.8960 0.8960 0.8960 0.8960 0.8910 0.8860

0.7 0.9017 0.9017 0.9017 0.9017 0.9017 0.9017 0.9017 0.9017 0.9017 0.9017 0.9064

0.8 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505 0.9505

0.9 0.9305 0.9305 0.9305 0.9305 0.9305 0.9305 0.9305 0.9305 0.9305 0.9305 0.9305

1.0 0.6840 0.6840 0.6840 0.6840 0.6840 0.6840 0.6840 0.6840 0.6840 0.6840 0.6840

Table 14

Classification accuracy of different parameters on Lung-Discrete gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.5821 0.5821 0.5821 0.5821 0.5821 0.5554 0.5554 0.5554 0.4446 0.4339 0.4179

0.1 0.7250 0.7250 0.7250 0.7250 0.7250 0.6964 0.6964 0.6964 0.7804 0.6964 0.6536

0.2 0.6625 0.6625 0.6625 0.6625 0.6625 0.5946 0.5946 0.5946 0.5000 0.3625 0.3643

0.3 0.6643 0.6643 0.6643 0.6643 0.6643 0.5964 0.5964 0.5964 0.4946 0.3857 0.3732

0.4 0.6643 0.6643 0.6643 0.6643 0.6643 0.6268 0.6268 0.6268 0.6250 0.5679 0.5018

0.5 0.9036 0.9036 0.9036 0.9036 0.9036 0.9036 0.9036 0.9036 0.9036 0.9036 0.8893

0.6 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.8875

0.7 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054 0.9054

0.8 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018

0.9 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.8857

1.0 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661

paper also provides a new thought of tumor diagnosis based on gene data analysis via the selected core gene for data classification 
and builds a classifier model from a cognitive viewpoint.

Our work studies the fuzzy 3W-concept fusion on the basis of the core gene for tumor diagnosis. This idea does not focus on 
researching feature selection and classification mechanisms but provides a new perspective for gene data analysis in medical decision-

making. Hence, some important and interesting problems still exist to be a concern, such as how to transfer learned reasonable 
16

concepts to practical problem-solving. In addition, a concept-cognitive learning system for dynamic data also deserves to be explored.
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Table 15

Classification accuracy of different parameters on Lymphoma gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.7889 0.7889 0.7889 0.7889 0.7889 0.8011 0.8011 0.8011 0.7000 0.5289 0.5022

0.1 0.8000 0.8000 0.8000 0.8000 0.8000 0.8089 0.8089 0.8089 0.7156 0.5989 0.5567

0.2 0.7000 0.7000 0.7000 0.7000 0.7000 0.6789 0.6789 0.6789 0.6033 0.5956 0.5500

0.3 0.7511 0.7511 0.7511 0.7511 0.7511 0.7178 0.7178 0.7178 0.5611 0.5700 0.5667

0.4 0.8433 0.8433 0.8433 0.8433 0.8433 0.8433 0.8433 0.8433 0.6756 0.6067 0.5400

0.5 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133 0.8922

0.6 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8856

0.7 0.8933 0.8933 0.8933 0.8933 0.8933 0.8933 0.8933 0.8933 0.8833 0.8833 0.8722

0.8 0.9044 0.9044 0.9044 0.9044 0.9044 0.9044 0.9044 0.9044 0.9044 0.9044 0.9044

0.9 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8956 0.8856 0.8856 0.8756

1.0 0.4767 0.4767 0.4767 0.4767 0.4767 0.4767 0.4767 0.4767 0.4767 0.4767 0.4767

Table 16

Classification accuracy of different parameters on Prostate-GE gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.7709 0.6818 0.6745 0.7236 0.7527 0.8000 0.7036 0.6545 0.5855 0.7318 0.7418

0.1 0.8318 0.8318 0.8318 0.7618 0.7718 0.8027 0.7736 0.7018 0.7218 0.6527 0.6527

0.2 0.8409 0.8409 0.8409 0.7809 0.8218 0.7818 0.6836 0.6936 0.7436 0.7218 0.6427

0.3 0.9118 0.9118 0.9118 0.9118 0.8927 0.9018 0.8809 0.8809 0.8909 0.8109 0.8218

0.4 0.8836 0.8836 0.8836 0.8836 0.8836 0.8836 0.8545 0.8345 0.8255 0.8127 0.7364

0.5 0.8309 0.8309 0.8309 0.8309 0.8309 0.8309 0.8309 0.8409 0.8318 0.8218 0.8327

0.6 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027 0.7827 0.7827 0.7918 0.7818 0.7918

0.7 0.8418 0.8418 0.8418 0.8418 0.8418 0.8418 0.8418 0.8418 0.8418 0.8518 0.8418

0.8 0.8609 0.8609 0.8609 0.8609 0.8609 0.8609 0.8609 0.8609 0.8609 0.8609 0.8609

0.9 0.8118 0.8118 0.8118 0.8118 0.8118 0.8118 0.8118 0.8118 0.8118 0.8118 0.8118

1.0 0.4845 0.4845 0.4845 0.4845 0.4845 0.4845 0.4845 0.4845 0.4845 0.4845 0.4845

Table 17

Classification accuracy of different parameters on Tox-171 gene data.

𝛿, 𝛿′ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.2235 0.2765 0.2412 0.3176 0.2824 0.2765 0.2353 0.2000 0.3176 0.2824 0.2882

0.1 0.4412 0.4412 0.4353 0.4647 0.4412 0.4412 0.3765 0.4353 0.4059 0.3353 0.3706

0.2 0.5882 0.5882 0.5882 0.5882 0.5941 0.5882 0.6118 0.6000 0.4647 0.4294 0.3941

0.3 0.6059 0.6059 0.6059 0.6059 0.6059 0.6059 0.6176 0.6235 0.5765 0.5235 0.4118

0.4 0.6529 0.6529 0.6529 0.6529 0.6529 0.6529 0.6588 0.6647 0.6706 0.6529 0.7059

0.5 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9235 0.9353

0.6 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588

0.7 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765

0.8 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588 0.9588

0.9 0.9235 0.9235 0.9235 0.9235 0.9235 0.9235 0.9235 0.9235 0.9235 0.9235 0.9235

1.0 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588
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