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The relative decision self-information is a crucial evaluation function of feature selection in
information system. It encapsulates classification information in upper and lower approx-
imations and pays attention to the boundary region of samples. Nevertheless, with the fre-
quent replacement of data, the static feature selection neglects the previous information of
samples, which diminishes the computational efficiency. With the purpose of adapting to
the evolution of the era, incremental learning is widely exerted in the field of data mining.
In combination with incremental technique, it is not cumbersome to update the reduct in
time. Enlightened by this, our work focuses on the mechanism of incremental feature selec-
tion due to the variation of objects in IvFDIS. Firstly, we construct k-fuzzy similarity rela-
tion and introduce k-fuzzy similarity self-information into IvFDIS based on relative
decision self-information. Besides, with the assistance of matrix operation, we recommend
static feature selection according to k-fuzzy similarity self-information. Furthermore, two
relevant incremental algorithms involving the insertion and removal of objects in IvFDIS
are made a research. Finally, some comparative experiments are conducted on twelve pub-
lic data sets to certify the validity of our incremental algorithms. Experimental results
show that comparable to three tested algorithms, the proposed incremental algorithms les-
sen the computation time greatly, and they select fewer features in most instances without
decreasing classification accuracy in IvFDIS.

� 2023 Elsevier Inc. All rights reserved.
1. Introduction

The era of big data makes abundant data within reach. Large amounts of data are sometimes mixed with imprecise and
ambiguous information. Single-valued data can hardly express the characteristics of things precisely, while interval-valued
data better describe the uncertainty in the form of intervals. As an extension of single-valued data, interval-valued data char-
acterize knowledge through interval values with a certain range, which are broadly applied in reality [1–4].

Fuzzy set theory was proposed by Zadeh [5] in 1965, which expressed the concept of fuzziness by means of appropriate
membership function. Rough set theory was put forward by Pawlak [6,7] for the first time in 1982, providing an effective tool
for dealing with uncertain data. In 1990, Dubois and Prade [8] developed the concept of fuzzy rough set by combining fuzzy
set and rough set, which is capable of handling continuous data instead of being restricted to discrete data. Fuzzy similarity
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relation is extremely important for fuzzy rough set, which describes the similarity degree between different objects. On the
basis of fuzzy similarity relation, the notion of fuzzy upper and lower approximations can be obtained, which describe con-
tinuous attribute values. Afterwards, a series of improved fuzzy rough set models were discussed successively [9–13], and
fuzzy rough set was applied in pattern recognition [14], decision analysis [15], machine learning [16] and so on. Fuzzy rough
set theory has been gradually perfected by scholars. Sun et al. [17] came up with the interval-valued fuzzy rough set model
based on the interval-valued fuzzy information systems. Xu et al. [18] established two types of fuzzy rough sets models on
tolerance relations and raised the optimistic and pessimistic multi-granulation fuzzy rough sets with the viewpoint of gran-
ular computing. Wang and Hu [19] developed the granular variable precision fuzzy rough sets with general fuzzy relations
and defined the equivalent expressions of approximation operators.

High-dimensional data is ubiquitous in daily life. In machine learning, some attributes may be irrelevant and contain
redundant information which is supposed to be deleted. It is these inessential information that enlarges the computation
amount and reduces the classification accuracy. For the sake of avoiding dimension disaster, it is necessary to reduce the
dimension of data while guaranteeing the fundamental information of original data, namely picking out significant attribute
subset from multiple attributes by feature selection approach. With the gradual progress of technology, a variety of feature
selectionmethods have been born [20–22], among which the method based on fuzzy rough set has attracted extensive atten-
tion. The inconsistent fuzzy decision system was defined, and discernibility matrix-based algorithms were advanced to find
reducts by He et al. [23]. Lin et al. [24] used different fuzzy relations to measure the similarity between samples under dif-
ferent labels, then proposed a fuzzy rough set model for attribute reduction in multi-label learning. A feature selection
approach based on fuzzy neighborhood multigranulation rough set in neighborhood decision systems was studied by Sun
et al. [25].

Setting up an evaluation function is a vital procedure in feature selection, which is used to measure the classification abil-
ity of attribute subsets and determines the classification accuracy of attribute subsets. In recent years, plenty of researchers
have constructed many feature evaluation functions. Wang et al. [26] introduced distance measures into fuzzy rough set and
researched an iterative computation model based on a variable distance parameter. Employing the entropy to measure the
uncertainty, Zhang et al. [27] used the information entropy for feature selection. A label distribution feature selection algo-
rithm using mutual information was brought up by Qian et al. [28]. Information is generated and transmitted in a variety of
forms. As the founder of information theory, these concepts of information entropy, mutual information, and self-
information were given by Shannon [29,30]. Bringing information theory into fuzzy rough set, Wang et al. [31] constructed
four kinds of uncertainty measures by combining fuzzy rough approximations with self-information. However, the notion of
self-information has not been applied to the interval-valued information system. Motivated by this, we will introduce the
self-information into the interval-valued information system, and utilize k-fuzzy similarity self-information as the evalua-
tion function of feature selection to estimate the classification ability of attribute subsets in IvFDIS.

As the latest data enters the information system, outdated and redundant data ought to be removed in a timely manner.
In the process of data updating, repeated feature selection over and over again will increase calculation amount and consume
a great deal of time. Taking advantage of the previous knowledge, the incremental feature selection method may select fea-
tures from dynamic data and eliminate the need for repeated calculation based on the reduct at the last point in time. In
recent years, incremental feature selection has engaged the attention of numerous scholars [32–44].Thereinto, Ni et al.
[38] proposed incremental mechanisms of information measure by analyzing the basic concepts of fuzzy rough set on incre-
mental datasets. Considering data with a preference-order relation, a matrix-based method was adopted to study incremen-
tal heterogeneous feature selection based on neighborhood rough set by Sang et al. [39]. What is more, Sang et al. [40]
investigated incremental feature selection approaches based on a fuzzy dominance neighborhood rough set for dynamic
interval-valued ordered data. In order to improve the classification accuracy and speed up the calculation time, we attempt
to research the incremental feature selection approach based on k-fuzzy similarity self-information in IvFDIS.

In this paper, some research on two incremental feature selection approaches based on k-fuzzy similarity self-information
are made in dynamic IvFDIS with time-evolving objects. As shown in Fig. 1, the main contributions of our work are as
follows:

� A new relation is constructed named k-fuzzy similarity relation, then the k-fuzzy lower and upper approximations are
defined. In terms of k-fuzzy similarity relation, we present a novel model of fuzzy rough set in IvFDIS.

� The uncertainty metrics called k-fuzzy similarity self-information based on k-fuzzy similarity rough set is recommended.
According to this evaluation function, a static feature selection algorithm is designed in IvFDIS.

� Based on static feature selection algorithm, two incremental feature selection algorithms with respect to the variation of
object set are further analyzed, including deleting or adding multiple objects in IvFDIS.

� Some comparative experiments are performed on twelve data sets. Experimental results show that the proposed incre-
mental feature selection approach is highly efficient and the classification of selected features are considerable.

The arrangement of remanent paper is as following statements. To promote subsequent comprehension, Section 2 starts
with these introductions of some requisite and foundational knowledge about fuzzy rough set, interval-valued fuzzy
decision information system and self-information. In Section 3, a new binary relation termed k-fuzzy similarity relation is
defined, whereafter an k-fuzzy similarity rough set is constructed in IvFDIS. In the light of the above, the concept of k-
fuzzy similarity self-information (k-FSSi) is presented. Section 4 explores the matrix operation of k-FSSi and proposes the
594



Fig. 1. The framework of our work.
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corresponding feature selection algorithm. In Section 5, two types of incremental feature selection algorithms caused by the
alteration of objects are studied in dynamic IvFDIS. The final experimental data are listed and the experimental results are
plotted in Section 6. Eventually, Section 7 ends with a retrospection of the whole text and prospects for the future.

2. Preliminaries

To make the sequel of our essay easier to comprehend, we will make an introduction of some notions concerning fuzzy
rough set, self-information and interval-valued fuzzy decision information systems in this section.

2.1. Fuzzy rough set

Equipped with these typical characteristics of rough set and fuzzy set concurrently, fuzzy rough set came into being. It is a
influential instrument for tackling the uncertainty and ambiguity, which copes with real data rather than just discrete data
effectively. The following are some statements of fuzzy rough set.

Given a mapping A over the universe U;A : U ! ½0;1�; u # AðUÞ 2 ½0;1�, then A is referred as the fuzzy set over U and AðuÞ
is referred as the membership degree of u to A. The whole fuzzy set over U is marked as FðUÞ, namely
FðUÞ ¼ fAjA : U ! ½0;1�g.

Proposition 1. (See [8]) Let U be a universe with finite elements, then a fuzzy similarity relation R over U is required to conform
with the following properties:

(1) Reflexivity: Rðx; xÞ ¼ 1,
(2) Symmetry: Rðx; yÞ ¼ Rðy; xÞ.

Taking the fuzzy similarity relation as a starting point, Dubois and Prade [8] constructed the fuzzy rough set for the first
time.

Definition 1. (See [8]) Let R be a fuzzy similarity relation over U. For any A 2 FðUÞ and x 2 U, the fuzzy lower and upper
approximations of A concerning R are defined as
RAðxÞ ¼ inf
y2U

maxf1� Rðx; yÞ;AðyÞg;

RAðxÞ ¼ sup
y2U

minfRðx; yÞ;AðyÞg; ð1Þ
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where RAðxÞ indicates the certain degree that object x belongs to A, and RAðxÞ indicates the possible degree that object x
belongs to A. For any y 2 U, the fuzzy similarity class of x induced by R is formulated as ½x�R ¼ Rðx; yÞ.

2.2. Interval-valued fuzzy decision information system

A quadruple ðU;A;V ; f Þ is specified as an information system (IS) if the non-empty finite object set U ¼ fx1; x2; � � �; xng, the
non-empty finite attribute set A ¼ fa1; a2; � � �; amg, the domain of attribute set V ¼ [

a2A
Va, and the information function

f : U � A ! V . Noticeably, we describe each object over U by attribute set. When the attribute set consists of condition attri-
butes C and decision attributes D, namely A ¼ C [ D and C \ D ¼ £; ðU;C [ D;V ; f Þ is termed as decision information system

(DIS). In particular, if D is fuzzy decision marked by D
�
, then ðU;C [ D

�
;V ; f Þ is termed as fuzzy decision information system

(FDIS). Provided that the value of object x under attribute a is an interval number for each x 2 U; a 2 C, namely

f ðx; aÞ ¼ f½aðxÞL; aðxÞU �jaðxÞL; aðxÞU 2 R; aðxÞL 6 aðxÞUg, then ðU;C [ D
�
;V ; f Þ is stipulated as interval-valued fuzzy decision

information system (IvFDIS).

Definition 2. (See [42]) In any IvFDIS ¼ ðU;C [ D
�
;V ; f Þ, for any xi; xj 2 U and a 2 C, if two interval numbers f ðxi; aÞ ¼ ½vL;vU �

and f ðxj; aÞ ¼ ½wL;wU �, the similarity degree between xi and xj regarding attribute a is specified as
daij ¼
lðf ðxi; aÞ \ f ðxj; aÞÞ
lðf ðxi; aÞ [ f ðxj; aÞÞ ; ð2Þ
where l signifies the length of interval, \ and [ represent the intersection and union operation of two interval numbers. Par-
ticularly, if either of the intervals is real number, then daij ¼ 0. If both of the intervals are identical, then daij ¼ 1.

It is distinct that 0 6 daij 6 1 and daij ¼ daji. As far as condition attribute set C is concerned, the similarity degree between xi

and xj regarding C is dCij ¼ 1
jCj
P

a2Cd
a
ij.

Definition 3. (See [42]) Given an IvFDIS ¼ ðU;C [ D
�
;V ; f Þ, for any B#C, the d-similarity relation Rd

B is formulated as
Rd
B ¼ fðxi; xjÞ 2 U � UjdBij P dg; ð3Þ
and the d-similarity class of xi with respect to Rd
B is formulated as
½xi�dB ¼ fxj 2 Ujðxi; xjÞ 2 Rd
Bg; ð4Þ
which contains a collection of objects similar to xi at the d-similarity level. d can be made an adjustment in accordance with
actual status, on condition that d ranges from 0 to 1. From the foregoing, a conclusion that the d-similarity relation is reflex-
ive and symmetrical can be reached.

Definition 4. (See [42]) Let Rd
B be a d-similarity relation induced by B for B#C. Suppose that U is partitioned into s crisp

decision classes, namely U=D ¼ fD1;D2; � � �;Dsg, where each decision class belongs to the same category. For any x 2 U, the
fuzzy decision of x is formulated as
D
�
k ¼ j½xi�dB \ Dkj

j½xi�dBj
; ðk ¼ 1;2; � � �; sÞ ð5Þ
indicating the membership degree of object xi with respect to class Dk.

Definition 5. (See [8]) Let Rd
B be a d-similarity relation induced by B for B#C. For any x 2 U, the d-fuzzy lower and upper

approximations of fuzzy decision D
�
k concerning Rd

B are defined as
Rd
BD
�
kðxÞ ¼ inf

y2U
maxf1� Rd

Bðx; yÞ;D
�
kðyÞg;

Rd
BD
�
kðxÞ ¼ sup

y2U
minfRd

Bðx; yÞ;D
�
kðyÞg:

ð6Þ
For any y 2 U, the d-fuzzy similarity class of x induced by Rd
B is formulated as ½x�dB ¼ Rd

Bðx; yÞ.
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2.3. Self-information

Information is intangible, whereas it is measurable. As information is acquired, its uncertainty is lessened, whose result
shows the information is deeply linked to the uncertainty. From the perspective of uncertainty and probability, Shannon
advanced a viewpoint of self-information.

Definition 6. (See [29]) Suppose that the probability of random variable x is pðxÞ, the self-information of x is specified as
IðxÞ ¼ � logpðxÞ; ð7Þ

that is the negative of logarithm about the probability of variable x.

Proposition 2. (See [29]) The self-information IðxÞ of random variable x conforms with the following properties:

(1) IðxÞ is strictly monotonic decreasing function with respect to pðxÞ, namely the smaller the probability is, the larger the uncer-
tainty of x is.
(2) Under the condition of limitation, if pðxÞ ! 0; IðxÞ ! 1, and if pðxÞ ! 1; IðxÞ ! 0.
(3) The joint self-information of random variables x and y is equal to the sum of self-information of x and y, namely
IðxyÞ ¼ IðxÞ þ IðyÞ.
Definition 7. (See [31]) Given an IvFDIS ¼ ðU; C [ D
�
;V ; f Þ;RB is a fuzzy similarity relation induced by B for B#C. For

Dk 2 U=D, the relative decision self-information of Dk is defined as
IBðDkÞ ¼ �bBðDkÞ logaBðDkÞ; ð8Þ

where aBðDkÞ and bBðDkÞ are the relative decision precision and roughness of Dk. aBðDkÞ can be formulated as

aBðDkÞ ¼
Pn

j¼1
RBDkðxjÞPn

j¼1
RBDkðxjÞ

, and bBðDkÞ ¼ 1� aBðDkÞ.

Wang et al. [31,45] evolved the relative decision self-information to measure the uncertainty of fuzzy set. The relative deci-
sion self-information (RDSi) not only considers the consistent classification of samples, but also emphasizes the boundary
information of samples, which is a pretty effective indicator for feature selection. To carry forward this advantage continu-
ally, the RDSi will be apply to IvFDIS in what follows.

3. k-fuzzy similarity rough set and self-information in IvFDIS

In this section, a novel rough set on the basis of k-fuzzy similarity relation is constructed. Whereafter, an uncertainty met-
ric using k-fuzzy similarity self-information is investigated.

3.1. k-fuzzy similarity rough set

In supervised learning, every sample is labeled with crisp integer which is an emblem of its classification. In contrast with
previous decision-making methods, we will obfuscate all labels according to the consistency of condition and decision attri-
butes. Making use of the k-fuzzy similarity class of Definition 3, the fuzzy decision between sample xi and its decision class
which contains all samples with the same label as xi is figured up. Compared with the fuzzy decision mentioned in Definition
4, the similarity lies in that identical calculation formula is adopted, while the difference is reflected from that only this fuzzy
decision about the decision class of sample xi is calculated. The fuzzy decision of sample xi with respect to its decision class is
marked as Df .

Definition 8. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS. For any xi; xj 2 U;B#C and a 2 B, the fuzzy similarity degree between xi and xj

is specified as
Saðxi; xjÞ ¼ 1
2
sinðdaijp� p

2
Þ þ 1

2
; ð9Þ
where daij is the similarity degree between xi and xj regarding a. For the attribute subset B; SBðxi; xjÞ ¼ 1
jBj
P

a2BSaðxi; xjÞ.
There are two classes (class 1 and class 2) containing 20 samples respectively. Given an sample xD in class 1 and attribute

subset B ¼ fa; bg, similarity degree dBij and fuzzy similarity degree Sa between these 40 samples and xD are computed. Con-
sidering that the distance between two samples is inversely proportional to its similarity degree, we mark the distance based
on dBij or S

a as 1� dBij or 1� Sa. Therefore, the function of Sa is to make these samples whose similarity degrees among them are
greater than 0.5 closer, while these samples whose similarity degrees among them are less than 0.5 farther, so as to narrow
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the intra-class distance and enlarge the inter-class distance. As shown in Fig. 2, (a) and (b) represent the distance between 40
objects in two classes and xD under attributes a and b respectively, and xD is marked in red. In comparison with (a), it is dis-
tinct that adopting the distance based on Sa, purple triangles are close to the origin of coordinates and orange stars are far
away from the origin of coordinates in (b). In other words, the distance between these objects in class 1 and the red triangle
lessens significantly. Meanwhile, the distance between these objects in class 2 and the red triangle augments significantly.

Taking k ¼ 0:1 as an example, Fig. 3 is the distribution of fuzzy similarity relation among 10 samples. For one thing, if the
fuzzy similarity degree of xi and xj is not greater than the value of k (blue area), it indicates that the fuzzy similarity relation
between two samples is extremely approximate to 0. Thereupon, xi and xj can be regarded as completely dissimilar samples.
For another, if the fuzzy similarity degree of xi and xj is not less than the value of 1� k (red area), it manifests that the sim-
Fig. 2. Two types of distance between xD and 40 samples.

Fig. 3. The fuzzy similarity degree among 10 samples.
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ilarity relation between two samples is pretty close to 1. Thereupon, we infer that there is hardly any difference between xi
and xj. Accordingly, an improvement of fuzzy similarity relation is discussed.

Definition 9. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS. For any xi; xj 2 U;B#C and a 2 B, the k-fuzzy similarity relation between xi and

xj regarding attribute a is specified as
Skaðxi; xjÞ ¼
0; Saðxi; xjÞ 6 k;

1; Saðxi; xjÞ P 1� k;

Saðxi; xjÞ; otherwise;

8><
>: ð10Þ
where k is a threshold satisfied k 2 ð0;0:3�. Analogously, the k-fuzzy similarity degree between xi and xj regarding attribute

set B is SkBðxi; xjÞ ¼ 1
jBj
P

a2BS
k
aðxi; xjÞ.
Definition 10. Given an IvFDIS ¼ ðU;C [ D
�
;V ; f Þ; SkB is a k-fuzzy similarity relation induced by B for B#C. For any x 2 U, the k-

fuzzy lower and upper approximations of fuzzy decision Df concerning SkB are defined as
SkBDf ðxÞ ¼ inf
y2U

maxf1� SkBðx; yÞ;Df ðyÞg;

SkBDf ðxÞ ¼ sup
y2U

minfSkBðx; yÞ;Df ðyÞg:
ð11Þ
For any y 2 U, the k-fuzzy similarity class of x induced by SkB is formulated as ½x�kB ¼ SkBðx; yÞ.
3.2. k-fuzzy similarity self-information

With the purpose of extracting attribute subsets qualified with powerful classification ability, feature selection accom-
plishes data dimension reduction while maintaining the classification accuracy unaltered or improved. Consequently, we
advance k-fuzzy similarity precision and roughness so as to construct k-fuzzy similarity self-information, which provides
a metric approach to estimate the classification ability of attribute subsets with respect to fuzzy decision Df .

Definition 11. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS. For any B#C, the k-fuzzy similarity precision ak

B and roughness bkB of Df are
formulated as
ak
BðDf Þ ¼

Xn
j¼1

SkBDf ðxÞ

Xn
j¼1

SkBDf ðxÞ
; bk

BðDf Þ ¼ 1� ak
BðDf Þ: ð12Þ
Apparently, ak
B 2 ½0;1� and it embodies the degree that samples are classified correctly. bk

B 2 ½0;1� and it embodies the
degree that samples belong to the boundary region.
Definition 12. Let SkB be a k-similarity relation induced by B for B#C. The k-fuzzy similarity self-information (k-FSSi) of Df is
defined as
IkBðDf Þ ¼ �bk
BðDf Þ logak

BðDf Þ: ð13Þ

It is noted that when B ¼ £, we assume IkBðDf Þ ! 1.
Proposition 3. For any B1;B2 #C, if B1 #B2, then IkB1 ðDf Þ P IkB2 ðDf Þ.
Proof. For any x 2 U, we can achieve that SkB1Df ðxÞ 6 SkB2Df ðxÞ and SkB1Df ðxÞ P SkB2Df ðxÞ according to B1 #B2. That indicates

ak
B1
ðDf Þ 6 ak

B2
ðDf Þ and bk

B1
ðDf Þ P bk

B2
ðDf Þ. Thereby, what can be reasoned out is that 0 6 � logak

B2
ðDf Þ 6 � logak

B1
ðDf Þ. Con-

nected with 0 6 bk
B2
ðDf Þ 6 bk

B1
ðDf Þ 6 1, it is noticeable to obtain IkB1 ðDf Þ P IkB2 ðDf Þ. h
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Definition 13. For any B#C, a k-similarity reduct B of C is required to conform with the following conditions:

(1) Sufficiency: IkBðDf Þ 6 IkCðDf Þ,
(2) Necessity: IkB�fagðDf Þ > IkBðDf Þ for every a 2 B.

Here, (1) manifests that the information contained in attribute subset B is no less than that contained in attribute set C,
namely B and C are equally significant to Df . As revealed from (2), all attributes in B are necessary. That is to say, B is a
minimum attribute subset without any redundant attributes.
Example 1. Table 1 is a complete IvFDIS depending on a k-similarity relation SkA. Collected from a botanical garden, these
data display the growth of three flower cultivars measured by staffs in centimeters. U ¼ fx1; x2; x3; x4; x5; x6; x7g representa-
tive of seven flower samples. A ¼ fa1; a2; a3; a4g representative of four indicators, among which aiði ¼ 1;2;3;4Þ represent
sepal length, sepal width, petal length and petal width in sequence. D is a decision attribute which involves three flower
cultivars.

Through observation, we may discover that seven samples are partitioned into three decision classes, including
D1 ¼ fx1; x3g;D2 ¼ fx2; x5g and D3 ¼ fx4; x6; x7g.

In the first place, we may acquire the similarity degree among all the objects by computation according to Definition 2:
Table 1
A interv

U

x1
x2
x3
x4
x5
x6
x7
dAij ¼

1 0:405 0:608 0:358 0:278 0:125 0:306
0:405 1 0:357 0:575 0:464 0:594 0:617
0:608 0:357 1 0:304 0:292 0:127 0:312
0:358 0:575 0:304 1 0:637 0:567 0:846
0:278 0:464 0:292 0:637 1 0:587 0:667
0:125 0:594 0:127 0:567 0:587 1 0:61
0:306 0:617 0:312 0:846 0:667 0:61 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

7�7

:

Provided that d ¼ 0:5, the d-similarity class is figured out by Definition 3:
½x1�dA ¼ fx1; x3g; ½x2�dA ¼ fx2; x4; x6; x7g; ½x3�dA ¼ fx1; x3g; ½x4�dA ¼ fx2; x4; x5; x6; x7g;

½x5�dA ¼ fx4; x5; x6; x7g; ½x6�dA ¼ fx2; x4; x5; x6; x7g; ½x7�dA ¼ fx2; x4; x5; x6; x7g:

Furthermore, the fuzzy decision Df of xi about its decision class is calculated:
Df ¼ ½1;0:25;1;0:6; 0:25;0:6; 0:6�T
Conforming to Definition 9, we compute the fuzzy similarity degree:
SA ¼

1 0:353 0:667 0:285 0:179 0:038 0:214
0:353 1 0:283 0:617 0:444 0:645 0:679
0:667 0:283 1 0:211 0:196 0:039 0:221
0:285 0:617 0:211 1 0:708 0:604 0:942
0:179 0:444 0:196 0:708 1 0:635 0:75
0:038 0:645 0:039 0:604 0:635 1 0:669
0:214 0:679 0:221 0:942 0:75 0:669 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

7�7

:

al-valued fuzzy decision information system (IvFDIS).

a1 a2 a3 a4 D

½5:7;6:2� ½3:1;3:3� ½2:9;3:3� ½1:1;1:5� 1
½6:1;6:3� ½3;3:3� ½2:7;3:2� ½1:3;1:8� 2
½5:6;6:2� ½3:1;3:2� ½3;3:4� ½1:2;1:7� 1
½5:9;6:3� ½2:7;3:3� ½2:8;3:2� ½1:5;1:9� 3
½5:8;6:4� ½2:6;3:2� ½2:6;3:1� ½1:4;2� 2
½6:1;6:3� ½2:8;3:1� ½2:7;3:1� ½1:5;2:1� 3
½6;6:3� ½2:7;3:2� ½2:8;3:2� ½1:4;1:9� 3
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k is assigned as 0.1 by us, thus it is straightforward to get the k-fuzzy similarity relation in the following step:
SkA ¼

1 0:353 0:667 0:285 0:179 0 0:214
0:353 1 0:283 0:617 0:444 0:645 0:679
0:667 0:283 1 0:211 0:196 0 0:221
0:285 0:617 0:211 1 0:708 0:604 1
0:179 0:444 0:196 0:708 1 0:635 0:75
0 0:645 0 0:604 0:635 1 0:669
0:214 0:679 0:221 1 0:75 0:669 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

7�7

:

4. Feature selection based on k-FSSi using matrix operation in IvFDIS

After analysis, we conclude that k-FSSi contains a large amount of information, which can be used to evaluate the impor-
tance of attribute subsets to Df . If the k-FSSi is smaller, the attribute subset will provide more information and has a strong
classification ability. About subsequent details, We exert k-FSSi as an evaluation function to select feature in IvFDIS. Aimed at
accelerating the computation speed, we define fuzzy similarity matrix to calculate k-FSSi initially.

4.1. Matrix operation about k-fuzzy similarity relation

At the beginning, the k-fuzzy similarity relation is converted into a matrix, and the Df is converted into a vector.

Definition 14. Given an IvFDIS ¼ ðU;C [ D
�
;V ; f Þ; SkB is a k-fuzzy similarity relation induced by B for B#C. The k-fuzzy

similarity matrix concerning SkB is specified as
MSkB ¼ ½mSkB
ij �n�n

; ð14Þ
where mSkB
ij ¼ SkBðxi; xjÞ, and n is the cardinality of U.
Definition 15. Given an IvFDIS ¼ ðU;C [ D
�
;V ; f Þ;U is partitioned into fD1;D2; � � �;Dsg. For any x 2 U and x 2 Dk ð1 6 k 6 sÞ,

the fuzzy decision of x with respect to Dk is formulated as
Dx
f ¼

j½x�dB \ Dkj
j½x�dBj

: ð15Þ
Furthermore, the fuzzy decision Df of U concerning D is specified as:
Df ¼
D

x1
f

x1
þD

x2
f

x2
þD

x3
f

x3
þ � � � þDxn

f

xn
¼

Xn

i¼1

D
xi
f

xi
; ð16Þ
namely a vector VDf ¼ ½Dx1
f ;Dx2

f ;Dx3
f ; � � �;Dxn

f �T .
Definition 16. Given an IvFDIS ¼ ðU;C [ D
�
;V ; f Þ; SkB is a k-fuzzy similarity relation induced by B for B#C. MSkB is the k-fuzzy

similarity matrix concerning SkB, and VDf is the fuzzy decision vector concerning D. For any x 2 U, the k-fuzzy lower and

upper approximations of fuzzy decision Df concerning SkB using matrix operation are defined as
SkBDf ðxÞ ¼ ð1�MSkBÞ �VDf ;

SkBDf ðxÞ ¼ MSkB 	VDf ;
ð17Þ
where SkBDf ðxÞ ¼ ½sij�n�1 ¼ ^n
k¼1

fð1�mSkB
ik Þ _D

xkj
f gði ¼ 1;2; � � �;n; j ¼ 1Þ, and SkBDf ðxÞ ¼ ½�sij�n�1 ¼ _n

k¼1
fmSkB

ik ^D
xkj
f g ði ¼ 1;2; � � �;n;

j ¼ 1Þ.
Even though Defining 16 and Defining 10 are in diverse forms, they are equivalent. Hence the k-fuzzy similarity precision

ak
B and roughness bk

B of Df are still formulated in the shape of Definition 11.

Example 2. (Continued from Example 1) In compliance with formula (17), the calculation results about the k-fuzzy lower
and upper approximations of fuzzy decision Df are shown:
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SkADf ðxÞ ¼ ð1�MSkA Þ �VDf ¼

0 0:647 0:333 0:715 0:821 1 0:786

0:647 0 0:717 0:383 0:556 0:355 0:321

0:333 0:717 0 0:789 0:804 1 0:779

0:715 0:383 0:789 0 0:292 0:396 0

0:821 0:556 0:804 0:292 0 0:365 0:25

1 0:355 1 0:396 0:365 0 0:331

0:786 0:321 0:779 0 0:25 0:331 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

7�7

�

1

0:25

1

0:6

0:25

0:6

0:6

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

7�1

¼

0:647

0:25

0:717

0:292

0:25

0:355

0:25

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

7�1

:

SkADf ðxÞ ¼ MSkA 	VDf ¼

1 0:353 0:667 0:285 0:179 0 0:214
0:353 1 0:283 0:617 0:444 0:645 0:679
0:667 0:283 1 0:211 0:196 0 0:221
0:285 0:617 0:211 1 0:708 0:604 1
0:179 0:444 0:196 0:708 1 0:635 0:75
0 0:645 0 0:604 0:635 1 0:669
0:214 0:679 0:221 1 0:75 0:669 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

7�7

	

1
0:25
1
0:6
0:25
0:6
0:6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

7�1

¼

1
0:6
1
0:6
0:6
0:6
0:6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

7�1

:

For an attribute subset A1 ¼ fa1; a2; a4g, we have IkA1
ðDf Þ ¼ 0:351. By computation, we achieve IkAðDf Þ ¼ 0:384, which

implies that a3 cannot provide additional information despite combining with A1. Since A1 is equipped with more classifica-
tion information than A in line with Definition 13 (1), it is of great essence to examine whether A1 covers redundant attri-
butes to determine whether it is a reduct. Thereby, we get IkA1�fa1gðDf Þ ¼ 0:526; IkA1�fa2gðDf Þ ¼ 0:459; IkA1�fa4gðDf Þ ¼ 0:367. Due

to IkA1�fa1gðDf Þ > IkA1�fa2gðDf Þ > IkA1�fa4gðDf Þ > IkA1 ðDf Þ;A1 ¼ fa1; a2; a4gis a reduct.
4.2. A static algorithm for feature selection based on k-FSSi

The subsequent statements are two measures to distinguish the significance of an attribute in an attribute subset.

Definition 17. Let ðU; C [ D
�
;V ; f Þ be an IvFDIS. For any B#C and a 2 C � B, the outer significance of a to B with respect to Df

is defined as
SIGoutða;B;Df Þ ¼ IkBðDf Þ � IkB[fagðDf Þ: ð18Þ

If SIGoutða;B;Df Þ ¼ 0, it indicates that a does not contain additional information, namely a is a unnecessary attribute for

feature selection.
Choosing k-FSSi as an evaluation indicator and combining the above two measures of significance, Algorithm 1 is

designed for feature selection in a static information system. Three parameters are introduced into the static algorithm. d
is set for obtaining the d-similarity class, which is a preparative course to compute the fuzzy decision Df . k is a threshold
of k-fuzzy similarity relation, which determines the transformation of fuzzy similarity degree. l is used to terminate the
selection of Red, which implies only a slight decrement occurs in k-FSSi. In steps 3–7, we conduct the process of obfuscation
in order to calculate the vector VDf . Steps 8–12 accomplishes the computation of k-fuzzy similarity relation under all the
condition attributes. In steps 13–26, different attributes are combined and their k-FSSi is compared to gain an attribute sub-
set with the greatest outer significance in each loop about B. Thereinto, steps 8–12 estimate whether to stop the selection. If
there is no conspicuous variation in k-FSSi, the calculation is completed. In steps 27–31, those redundant attributes will be
removed from the achieved reduct. Finally, a result of feature selection is output. The time complexity of major steps in Algo-
rithm 1 are shown in Table 2.
Table 2
The time complexity of Algorithm 1

Steps Timecomplexity Steps Timecomplexity

3� 7 OðjCjjUj2Þ 13� 26 OðjBj2jUj2Þ
8� 12 Oð12 ðjUj þ jUj2ÞÞ 27� 31 OðjRedj2jUj2Þ
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Algorithm1 A static algorithm for feature selection based on k-FSSi (FSSi-FS)
5. The incremental mechanism for feature selection in dynamic IvFDIS

In an IvFDIS, information is ever-changing over time. Confronted with time-evolving objects, incremental technique is
exerted to dispose of feature selection with effect. These objects possibly emerge two main variations for a dynamic IvFDIS,
including an increase or a decrease. Relying on the incremental technique, it is not neccessary for us to recalculate the reduct,
which is an excellent time-saving measure. This section considers two incremental algorithms for feature selection aimed at
inserting or removing multiple objects.

5.1. The incremental feature selection about deleting some objects

Since the uncertainty metric plays a pivotal role in feature selection, the computation time of a reduct is dependent upon
k-FSSi to a large extent. In addition, it is not hard to perceive that the updating of k-FSSi is closely associated with the fuzzy

decision vector VDf and the k-fuzzy similarity matrix MSkB . The subsequent research has to do with the incremental mech-
anism when multiple objects are removed from original IvFDIS. The object set composed of deleted objects is denoted by �U.

Proposition 4. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS with n finite objects. For any B#C, the object set

�U ¼ fxo1 ; xo2 ; � � �; xon0 g ð1 6 o1 < o2 < � � � < on0 6 nÞ is deleted from original IvFDIS, then U0 ¼ U � �U in the new IvFDIS. The

new fuzzy decision vector is formulated as �VDf ¼ ½�Dxi
f �ðn�n0Þ�1

, and its updating mechanism is as follows:
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U

x1
x2
x3
x5
x7
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�Dxi
f ¼

D
xiþk�1
f ; ok�1 � kþ 1 < i < ok � kþ 1forany1 6 k 6 n0; �½xi�dB ¼ ½xiþk�1�dB ^ �DðxiÞ ¼ Dðxiþk�1Þ;

D
xiþn0
f ; on0 � n0 þ 1 6 i 6 n� n0; �½xi�dB ¼ ½xiþk�1�dB ^ �DðxiÞ ¼ Dðxiþk�1Þ;

j�½xi �dB\�DðxiÞj
j�½xi �dB j

; otherwise:

8>>><
>>>:

ð19Þ

Here, ½x�dB denotes the d-similarity class of x and DðxÞ denotes the decision class of x in original IvFDIS. �½x�dB signifies the d-

similarity class of x and �DðxÞ signifies the decision class of x in new IvFDIS.
Proof. The updating about vector �VDf is divided into three parts. If neither the d-similarity class nor the decision class of
object has changed after the deletion, we are about to study two situations. The first is to transform the position of other
objects between two deleted objects whose subscripts are consecutive. Assume that the subscripts of any two deleted
objects with consecutive subscripts are ok�1 and ok; ok�1 indicates that there is k� 1 objects to be deleted in front of certain
object xi, namely the D

xi
f is supposed to move k� 1 positions forward. That means when ok�1 � kþ 1 < i < ok � kþ 1 and

1 6 k 6 n0; �Dxi
f ¼ D

xiþk�1
f in new IvFDIS. Secondly, the position of other objects at the back of last deleted object are converted.

If certain object xi is behind the object xon , it signifies that there are n0 objects in front of xi to be removed, indicating that xi
should be moved forward by n0 positions. That is when on0 � n0 þ 1 < i < n� n0; �Dxi

f ¼ D
xiþn0
f in new IvFDIS. If the d-similarity

class or the decision class of object has changed after the deletion, the fuzzy decision of object is supposed to recalculate by

formula (15). That is to say, �Dxi
f ¼ j�½xi �dB\�DðxiÞj

j�½xi �dB j
. h
Proposition 5. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS with n finite objects. For any B#C, the object set

�U ¼ fxo1 ; xo2 ; � � �; xong ð1 6 o1 < o2 < � � � < on0 6 nÞ is deleted from original IvFDIS, then U0 ¼ U � �U in the new IvFDIS. The

new k-fuzzy similarity matrix is formulated as �MSkB ¼ ½�mSkB
ij �ðn�n0 Þ�ðn�n0 Þ, and its updating mechanism is as follows:
�mSkB
ij ¼

mSkB
iþk�1;jþk�1; ok�1 � kþ 1 < i; j < ok � kþ 1forany1 6 k 6 n0;

mSkB
iþn0 ;jþn0 ; on0 � n0 þ 1 6 i; j 6 n� n0:

8<
: ð20Þ
Proof. According to the proof of Proposition 4, it is analogous to reach the conclusion of Proposition 5. h
Example 3. (Continued from Example 2) The object set �U ¼ fx4; x6g is removed from Table 1, then U0 ¼ fx1; x2; x3; x5; x7g in
new IvFDIS, which is exhibited in Table 3. Firstly, the new fuzzy decision vector �VDf is updated in accordance with Propo-

sition 4, which is computed that�VDf ¼ 1;0:5;1;0:5;0:333½ �T . Next, we may update the new k-fuzzy similarity matrix �MSkA

in accordance with Proposition 5:
�MSkA ¼

1 0:353 0:667 0:179 0:214
0:353 1 0:283 0:444 0:679
0:667 0:283 1 0:196 0:221
0:179 0:444 0:196 1 0:75
0:214 0:679 0:221 0:75 1

0
BBBBBB@

1
CCCCCCA

¼

1 0:353 0:667 0:179 0:214
0:353 1 0:283 0:444 0:679
0:667 0:283 1 0:196 0:221
0:179 0:444 0:196 1 0:75
0:214 0:679 0:221 0:75 1

0
BBBBBB@

1
CCCCCCA

5�5

:

Subsequently, an incremental feature selection algorithm in regard to deleting multiple objects is recommended on the
basis of Algorithm 1. The detailed designs are displayed in Algorithm 2. Step 2 deletes multiple objects from original IvFDIS.
Step 3 updates the original fuzzy decision vector and k-fuzzy similarity matrix by Proposition 4 and 5. Step 4 Calculates the
k-FSSi of original reduct in current IvFDIS. In steps 5–19, we distinguish whether the new k-FSSi derived from the original
IvFDIS after removing some objects.

a1 a2 a3 a4 D

½5:7;6:2� ½3:1;3:3� ½2:9;3:3� ½1:1;1:5� 1
½6:1;6:3� ½3;3:3� ½2:7;3:2� ½1:3;1:8� 2
½5:6;6:2� ½3:1;3:2� ½3;3:4� ½1:2;1:7� 1
½5:8;6:4� ½2:6;3:2� ½2:6;3:1� ½1:4;2� 2
½6;6:3� ½2:7;3:2� ½2:8;3:2� ½1:4;1:9� 3
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reduct is greater than the k-FSSi under all attributes in new IvFDIS. If so, it is indispensable to insert these remaining attri-
butes to the previous reduct. Thereinto, steps 6–10 establish a ascending sequence of k-FSSi aiming to remanent attributes.
Steps 11–18 add every attribute in the ascending sequence to the new reduct until the variation of k-FSSi is not apparent
anymore. In steps 20–24, these redundant attributes from the selected reduct are removed. In the end, a new reduct is
obtained. Table 3 shows the time complexity of major steps in Algorithm 2.

Algorithm2 An incremental algorithm for feature selection about deleting some objects (FSSi-FSD)

Example 4. (Continued fromExample 3) According to Algorithm2, after the updating of the fuzzy decision vector �VDf and k-

fuzzy similaritymatrix �MSkA are accomplished,we need to compare IkRed0 ð�VDf Þ and IkAð�VDf Þ in order to determinewhether to

go steps 5–19. By computation, it can be obtained that IkRed0 ð�VDf Þ ¼ 0:152 and IkAð�VDf Þ ¼ 0:184. Due to

IkRed0 ð�VDf Þ < IkAð�VDf Þ, we continue to conduct steps 20–24 so that redundant attributes are taken out from

Red0 ¼ fa1; a2; a4g. Since IkRed0�fa1gð�V
Df Þ ¼ 0:247; IkRed0�fa2gð�V

Df Þ ¼ 0:194 and IkRed0�fa4gð�V
Df Þ ¼ 0:125, we achieve that

IkRed0�fa4gð�V
Df Þ < IkRed0 ð�VDf Þ < IkRed0�fa2gð�V

Df Þ < IkRed0�fa1gð�V
Df Þ, and IkRed0�fa4gð�V

Df Þ < Ikfa2gð�VDf Þ ¼ 0:225 < Ikfa1gð�VDf Þ ¼
0:294. Consequently, the new reduct is fa1; a2g after deleting object set.
5.2. The incremental feature selection about adding some objects

In a similar way, an incremental mechanism when adding multiple objects to original IvFDIS will be investigated in fol-
lowing part. The object set composed of added objects is denoted by þU.
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Proposition 6. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS with n finite objects. For any B#C, the object set þU ¼ fxnþ1; xnþ2; � � �; xnþn0 g is

added to original IvFDIS, then U0 ¼ U þ þU in the new IvFDIS. The new fuzzy decision vector is formulated as þVDf ¼ ½þDxi
f �ðnþn0 Þ�1

,

and its updating mechanism is as follows:
þDxi
f ¼

D
xi
f ; 1 6 i 6 n; þ½xi�dB ¼ ½xi�dB ^ þDðxiÞ ¼ DðxiÞ;

jþ½xi �dB\þDðxiÞj
jþ½xi �dB j

; otherwise:

8<
: ð21Þ
Here, ½x�dB denotes the d-similarity class of x and DðxÞ denotes the decision class of x in original IvFDIS. þ½x�dB signifies the d-
similarity class of x and þDðxÞ signifies the decision class of x in new IvFDIS.
Proof. The updating about vector þDxi
f is divided into two parts. In the first place, if neither the d-similarity class nor the

decision class of object has changed after adding some objects, the addition of new objects has no influence on the fuzzy
decision Df in regard to these original n objects, hence they maintain previous Df unchanged. That is, for certain object
xi, if 1 6 i 6 n, then þDxi

f ¼ D
xi
f . Moreover, aimed at all new objects added to IvFDIS, their fuzzy decisions are expected to

be calculated in the light of Definition 15. Meanwhile, for any 1 6 i 6 n, if the d-similarity class or the decision class of xi
has changed after the addition, the fuzzy decision of xi should be recalculated equally. Namely for any xi, when

nþ 1 6 i 6 nþ n0 or þ½xi�dB – ½xi�dB _ þDðxiÞ– DðxiÞ; þDxi
f ¼ jþ½xi �dB\þDðxiÞj

jþ½xi �dB j
in new IvFDIS. h
Proposition 7. Let ðU;C [ D
�
;V ; f Þ be an IvFDIS with n finite objects. For any B#C, the object set þU ¼ fxnþ1; xnþ2; � � �; xnþn0 g is

added to original IvFDIS, then U0 ¼ U þ þU in the new IvFDIS. The new k-fuzzy similarity matrix is formulated as
þMSkB ¼ ½þmSkB

ij �ðnþn0 Þ�ðnþn0 Þ, and its updating mechanism is as follows:
þmSkB
ij ¼ mSkB

ij ; 1 6 i; j 6 n;

SkBðxi; xjÞ; ðnþ 1 6 i 6 nþ n0Þ _ ðnþ 1 6 j 6 nþ n0Þ:

8<
: ð22Þ
Proof. The updating about matrix þmSkB
ij is divided into two parts. At first, these previous n objects will not be affected by the

addition of new objects, thereby for any 1 6 i; j 6 n; þmSkB
ij is still identical, namely þmSkB

ij ¼ mSkB
ij . Furthermore, when

i 2 ½nþ 1;nþ n0� or j 2 ½nþ 1;nþ n0 �, the k-fuzzy similarity relation between xi and xj is required to figure out in accordance

with Definition 9. That means þmSkB
ij ¼ SkBðxi; xjÞ for any ðnþ 1 6 i 6 nþ n0Þ _ ðnþ 1 6 j 6 nþ n0Þ. h
Example 5. (Continued from Example 2) The object set þU ¼ fx8; x9g is inserted into Table 1, then
U0 ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g in new IvFDIS, which is displayed in Table 5. Firstly, in accordance with Proposition 6,

we update the new fuzzy decision vector þVDf as þVDf ¼ 1;0:25;1;0:6; 0:25;0:6;0:6;1;1½ �T . Next, in accordance with Propo-

sition 7, the new k-fuzzy similarity matrix þMSkA can be updated as follows:

Taking advantage of the updating of fuzzy decision vector and k-fuzzy similarity matrix, Algorithm 3 presents an incre-
mental feature selection approach in regard to adding multiple objects. In Algorithm 3, step 2 adds multiple objects to orig-
inal IvFDIS. The original fuzzy decision vector and k-fuzzy similarity matrix are updated by Proposition 4 and 5 in step 3.
Then, we calculate the k-FSSi of original reduct in current IvFDIS in step 4. Steps 5–19 distinguish whether the new k-FSSi
derived from the original reduct is greater than the k-FSSi under all attributes in new IvFDIS. If so, steps 6–10 will establish
a ascending sequence of k-FSSi about remanent attributes. In steps 11–18, we insert every attribute in the ascending
sequence into the previous reduct in turn. Once the variation of k-FSSi is not obvious anymore, the loop will be broken
out. In steps 20–24, these redundant attributes from the selected reduct are removed. Lastly, a new reduct is output. The
time complexity of major steps about Algorithm 3 is analyzed in Table 4.
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Table 4
The time complexity of Algorithm 2.

Steps Timecomplexity Steps Timecomplexity

3 OðjU0 jÞ 5� 19 OðjAr jjU0 j2Þ
4 OððjRed0 j þ jCjÞjU0 j2Þ 20� 24 OðjRed0 j2jU0 j2Þ

Table 5
A new IvFDIS after inserting some objects.

U a1 a2 a3 a4 D

x1 ½5:7;6:2� ½3:1;3:3� ½2:9;3:3� ½1:1;1:5� 1
x2 ½6:1;6:3� ½3;3:3� ½2:7;3:2� ½1:3;1:8� 2
x3 ½5:6;6:2� ½3:1;3:2� ½3;3:4� ½1:2;1:7� 1
x4 ½5:9;6:3� ½2:7;3:3� ½2:8;3:2� ½1:5;1:9� 3
x5 ½5:8;6:4� ½2:6;3:2� ½2:6;3:1� ½1:4;2� 2
x6 ½6:1;6:3� ½2:8;3:1� ½2:7;3:1� ½1:5;2:1� 3
x7 ½6;6:3� ½2:7;3:2� ½2:8;3:2� ½1:4;1:9� 3

x8 ½5:4;5:8� ½3:1;3:2� ½2:8;3� ½1:2;1:6� 1
x9 ½5:5;6:1� ½3;3:3� ½3:1;3:5� ½1:3;1:4� 2
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Algorithm3 An incremental algorithm for feature selection about adding some objects (FSSi-FSA)
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Example 6. (Continued from Example 5) According to Algorithm 3, after the updating of the fuzzy decision vector þVDf and

k-fuzzy similarity matrix þMSkA are accomplished, we need to compare IkRed0 ðþVDf Þ and IkAðþVDf Þ in order to determine

whether to go steps 5–19. By computation, it can be obtained that IkRed0 ðþVDf Þ ¼ 0:266 and IkAðþVDf Þ ¼ 0:272. Due to

IkRed0 ðþVDf Þ < IkAðþVDf Þ, we continue to conduct steps 20–24 so that redundant attributes are taken out from

Red0 ¼ fa1; a2; a4g. Since IkRed0�fa1gðþV
Df Þ ¼ 0:565; IkRed0�fa2gðþV

Df Þ ¼ 0:24 and IkRed0�fa4gðþV
Df Þ ¼ 0:289, we achieve that

IkRed0�fa2gðþV
Df Þ < IkRed0 ð�VDf Þ < IkRed0�fa4gðþV

Df Þ < IkRed0�fa1gðþV
Df Þ, and IkRed0�fa2gðþV

Df Þ < Ikfa1gðþVDf Þ ¼ 0:379 < Ikfa4gðþVDf Þ ¼
0:424. Consequently, the new reduct is fa1; a4g after adding object set.
6. Experimental analysis

In this section, a series of experiments are designed to verify the feasibility and effectiveness of our incremental algo-
rithms. Ten data sets are downloaded from UCI Machine Learning Repository and details are available in Table 7. All the
experimental programs are executed on a computer with an Intel Core i7-9750H at 2.60 GHz, 8 GB RAM and Windows
10 (64-bit). These algorithms are accomplished by Python using an environment of Anaconda Navigator. Before numerical
experiments are implemented, we proceed the data preprocessing. Subsequently, the proposed incremental algorithm is
compared with three current feature selection algorithms, namely accelerated algorithm by fuzzy rough set-based informa-
tion entropy (AFRI) [46], heuristic algorithm based on variable distance parameter (AVDP) [26], attribute reduction with
fuzzy rough self-information measures (FSI) [31]. The main evaluation indicators about different algorithms are four aspects,
including the robustness of evaluation function, the computation time of algorithm, the quantity of feature selection and the
classification accuracy. In order to minimize the experimental error, we will carry out the program ten times for each data set
to obtain the average value as the final result (Table 6).

6.1. Data preparation

For some non-numerical data in several data sets such as time data and textual data, they are processed with the way of
erasing time data and partial textual data that are difficult to be converted into numerical data, and converting other textual
data into numerical data.

What is noteworthy is that all data sets retrieved from UCI are single-valued, so it is of great essence to extend them for
obtaining interval values. Firstly, the min–max normalization is adopted to normalize the single-valued data, that is for any
xi 2 U and a 2 C,
Table 7
The det

No:

1
2
3
4
5
6
7
8
9
10
11
12
f ðxi; aÞ ¼ f ðxi; aÞ �minxi2Uff ðxi; aÞg
maxxi2Uff ðxi; aÞg �minxi2Uff ðxi; aÞg

: ð23Þ
Table 6
The time complexity of Algorithm 3.

Steps Timecomplexity Steps Timecomplexity

3 OðjþUjjUjÞ 5� 19 OðjAr jjU0 j2Þ
4 OððjRed0 j þ jCjÞjU0 j2Þ 20� 24 OðjRed0 j2jU0 j2Þ

ailed description of data sets.

Dataset Abbreviation Object Attribute Class

DARWIN DW 174 451 2
Wine W 178 14 3
Heart H 270 14 2
Foresttypemapping FTM 326 27 4
Turkishmusicemotion TME 400 50 4
Australiancreditapproval ACA 690 14 2
Parkinsonspeech PS 1040 28 2
MiceProteinExpression MPE 1080 82 8
Winequalityred WQR 1599 12 6
Winequalitywhite WQW 4898 12 7
Pageblocks PB 5473 11 2
DryBean DB 13611 17 7
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In addition, an interval value ½f ðxi; aÞL; f ðxi; aÞU � is generated from a single value f ðxi; aÞ by the following method:
f ðxi; aÞL ¼ ð1� 2rÞ � f ðxi; aÞ;
f ðxi; aÞU ¼ ð1þ 2rÞ � f ðxi; aÞ;

ð24Þ
where r represents the standard deviation of f ðxi; aÞ for any xi 2 U under attribute a. Particularly, if f ðxi; aÞU > 1, it can be
reassigned to 1. Finally, there are three parameters (d; k;l) in our experiments. By searching for appropriate parameters
on twelve data sets, we set d ¼ 0:5; k ¼ 0:1 and l ¼ 0:01 preliminarily.
6.2. The robustness of uncertainty metrics

In this subsection, the robustness of evaluation function is tested on the data set No.1 to No.6. Three uncertainty metrics
are k-conditional entropy in algorithm AFRI, relative decision self-information in algorithm FSI and k-fuzzy similarity self-
information in the proposed algorithm FSSi-FS. After adding random noise to IvFDIS, different evaluation functions are com-
puted on the basis of the same attributes. For any xi 2 U and a 2 C, the random noise is added as follows:
½f ðxi; aÞL; f ðxi; aÞU � ¼ ½f ðxi; aÞL þ r; f ðxi; aÞU þ r�; 0 6 r 6 1;

½f ðxi; aÞL; f ðxi; aÞU �; otherwise;

(
ð25Þ
It should be noted that 0 6 f ðxi; aÞL þ r 
 1 and 0 6 f ðxi; aÞU þ r 
 1.
For each data set, a certain percentage of random noise will be added to it each time, starting at 10% and ending at 50% of

all objects, increasing by 10% at a time up to five additions. Fig. 4 and Fig. 5 display the final experimental results, among
which Fig. 4 reflects the variation trend of three evaluation functions in different data sets and Fig. 5 reflects the standard
deviation of three evaluation functions after five additions about each data set. The experimental results of Fig. 4 and
Fig. 5 are presented in Table 8, from which we can achieve that the proposed k-FSSi outperforms other evaluation functions
on five data sets when different proportions of noise are added to original data set. In Fig. 4, it can be found that as the added
noise continues to increase, the evaluation function of algorithm FSI fluctuates greatly, especially in the data sets H and TME.
Moreover, the fluctuation of evaluation function about the algorithm ARFI is obvious on the data set H. For data set PS, the
evaluation function of ARFI algorithm is slightly more stable than that of FSSi-FS algorithm, because of the instability caused
by adding ten percent noise to k-FSSi. Even though the standard deviation of k-FSSi is not the smallest on data set PS, its
fluctuation is unconspicuous. Thereby, it is deduced that k-FSSi is robust comparable to the uncertainty metrics of algorithm
ARFI and FSI.
Fig. 4. The variation of evaluation function when adding a certain ratio of noise in IvFDIS.
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Fig. 5. The standard deviation of evaluation function about six data sets.

Table 8
The comparison of three evaluation functions on six data sets.

Data set Algorithm 10% 20% 30% 40% 50% Standard deviation

ARFI 0.476 0.515 0.523 0.533 0.555 0.026
W FSI 0.513 0.481 0.451 0.412 0.400 0.042

FSSi-FS 0.278 0.260 0.256 0.235 0.229 0.018

ARFI 0.282 0.245 0.285 0.219 0.312 0.024
H FSI 0.180 0.190 0.252 0.277 0.197 0.038

FSSi-FS 0.235 0.219 0.204 0.181 0.169 0.024

ARFI 0.525 0.528 0.537 0.518 0.531 0.006
FTM FSI 0.225 0.209 0.208 0.204 0.212 0.007

FSSi-FS 0.611 0.620 0.613 0.606 0.616 0.005

ARFI 0.650 0.641 0.635 0.628 0.621 0.010
TME FSI 0.072 0.151 0.075 0.154 0.061 0.041

FSSi-FS 0.223 0.214 0.222 0.214 0.220 0.004

ARFI 0.687 0.659 0.638 0.629 0.617 0.025
ACA FSI 0.328 0.178 0.164 0.152 0.156 0.067

FSSi-FS 0.270 0.269 0.263 0.258 0.246 0.009

ARFI 0.333 0.337 0.341 0.348 0.344 0.005
PS FSI 0.066 0.032 0.028 0.027 0.026 0.015

FSSi-FS 0.179 0.151 0.152 0.150 0.153 0.011
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6.3. The computation time

This subsection implements these experiments of feature selection in regard to deleting multiple objects and adding mul-
tiple objects in IvFDIS on twelve data sets. Taking the computation time of feature selection as the main evaluation indicator,
three feature selection algorithms (ARFI, AVPD, FSI) based on fuzzy rough set are contrasted with two proposed incremental
algorithms (FSSi-FSD, FSSi-FSA). Because algorithms ARFI, AVPD and FSI play a part in single-valued data, we should make
some changes and replace single-valued data in aforementioned algorithms with interval-valued data during our
experiments.
6.3.1. The experiment with the deletion of some objects
In twelve data sets, a certain percentage of objects will be deleted randomly each time, starting at 10% and ending at 50%

of original objects, increasing by 10% at a time up to five deletions. If the magnitude of deleted objects is not an integer, the
floor function will be employed, namely for any percentage a; j�Uj ¼ a� jUjb c.

Taking the computation time of feature selection as an evaluation indicator, FSSi-FSD is compared with ARFI, AVPD and
FSI on twelve data sets. The final experimental results are presented in Table 9, where the unit of computation time is sec-
onds. To make these results of deleting objects among four algorithms more intuitive, some associative pictures are plotted
in Fig. 6, where the x-coordinate represents the quantity ratio of deleted objects from original objects and the y-coordinate
represents the computation time of four algorithms. As observed with the experimental results, it is fairly obvious that the
computation time of feature selection for all algorithms decreases gradually when the ratio of deleted objects increases.
Besides, in the process of deleting objects, FSSi-FSD is more efficient than other algorithms.
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6.3.2. The experiment with the addition of some objects
For twelve data sets, each data set is randomly divided into two parts, among which 50% of data set is regarded as the

original data set and the remaining 50% of data set is regarded as the test data set. In our experiment, a certain percentage
of objects originated from test data set will be added randomly each time, starting at 10% and ending at 50%, increasing by
10% at a time up to five additions. Equally, the floor function will be adopted when the magnitude of added objects is not an
integer.

The comparison of computation time about these four algorithms is demonstrated in Table 10, and some relevant pictures
are plotted as shown in Fig. 7. For each subgraph in Fig. 7, the x-coordinate stands for the quantity ratio of added objects from
test data set and the y-coordinate stands for the computation time of four algorithms. It comes easy to discover that the com-
puting time of all algorithms shows an upward trend when the ratio of added objects increases. In addition, the computation
speed of FSSi-FSA on eleven data sets is faster than that of other three algorithms.
Table 9
The comparison of four algorithms on twelve data sets when deleting objects.

Data set Algorithm 10% 20% 30% 40% 50%

FSSi-FSD 61.446 35.915 31.581 33.103 19.233
DW FSI 162.737 126.250 89.924 73.358 70.316

ARFI 591.934 560.729 348.490 234.738 123.349
AVPD 301.071 237.468 178.270 122.725 89.234

FSSi-FSD 2.270 1.673 1.440 0.956 1.001
W FSI 8.308 6.716 4.974 3.356 2.205

ARFI 14.873 12.131 9.039 6.567 4.584
AVPD 4.374 3.223 2.543 1.864 1.335

FSSi-FSD 0.470 0.845 0.605 0.750 0.556
H FSI 2.689 7.308 4.974 4.195 2.930

ARFI 7.042 19.365 14.505 10.679 6.827
AVPD 3.427 8.943 7.194 4.977 3.341

FSSi-FSD 5.509 4.393 3.545 2.522 1.721
FTM FSI 32.307 23.891 21.304 17.721 11.934

ARFI 120.006 92.141 74.569 52.200 33.740
AVPD 46.700 38.737 28.451 21.090 14.518

FSSi-FSD 10.438 8.062 6.241 5.627 3.312
TME FSI 515.576 394.719 313.574 213.109 134.244

ARFI 501.585 393.582 301.464 251.745 133.923
AVPD 233.183 187.309 136.877 124.901 66.133

FSSi-FSD 10.578 8.444 6.719 4.938 3.477
ACA FSI 55.687 43.952 31.320 24.240 17.551

ARFI 168.666 123.558 97.422 71.229 47.840
AVPD 74.479 69.026 52.641 37.477 26.425

FSSi-FSD 12.925 9.842 7.828 6.327 4.226
PS FSI 129.254 104.136 78.338 60.330 43.026

ARFI 167.627 130.029 96.374 70.077 52.606
AVPD 80.399 61.805 46.869 35.813 25.001

FSSi-FSD 14.355 11.977 9.982 6.953 4.873
MPE FSI 1230.231 915.415 723.305 600.119 358.556

ARFI 5155.241 3320.064 2563.852 1864.281 1391.248
AVPD 3272.916 2826.840 2320.269 1673.366 949.972

FSSi-FSD 140.430 110.869 86.588 61.409 42.059
WQR FSI 402.573 320.060 263.516 183.963 127.473

ARFI 931.764 746.340 581.392 407.854 288.260
AVPD 537.456 417.325 316.118 230.939 157.475

FSSi-FSD 1078.309 768.531 655.683 447.410 365.226
WQW FSI 2895.362 2389.150 1771.659 1366.639 972.849

ARFI 8140.049 6776.826 5299.761 3632.221 2783.827
AVPD 4944.336 3822.464 3210.661 2400.260 1559.032

FSSi-FSD 1233.352 940.883 724.119 549.476 357.780
PB FSI 4433.770 2762.386 2230.156 1751.021 1178.211

ARFI 8412.603 6539.061 5274.567 3854.957 2652.457
AVPD 3144.329 2609.903 1934.152 1573.839 950.309

FSSi-FSD 4680.265 2841.157 2097.611 1474.534 947.924
DB FSI 76023.554 63325.158 55215.124 46516.472 28517.052

ARFI 93214.659 72255.548 61120.756 47832.565 35559.488
AVPD 51128.284 42638.127 35562.188 26517.356 18221.878
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Fig. 6. The computation time among four algorithms with a certain ratio of deleting objects.
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6.4. The accuracy of classification and the quantity of reduct

Dai et al. [47,48] have improved the existing classifiers and developed two classifiers capable of processing interval-
valued data, that are Probabilistic Neural Network (PNN) and K-Nearest Neighbor (KNN). In both classifiers, the distance
function between objects is modified. For any xi; xj 2 U, attribute set A ¼ fa1; a2; � � �; amg, the distance between xi and xj is
defined:
dðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

½Pðf ðxi; akÞ P f ðxj; akÞÞ � Pðf ðxj; akÞ P f ðxi; akÞÞ�2
vuut ; ð26Þ
where Pðf ðxi; akÞ P f ðxj; akÞ ¼ minf1;maxf vU�wL

ðvU�vLÞþðwU�wLÞ ;0gg; f ðxi; akÞ ¼ ½vL;vU � and f ðxj; akÞ ¼ ½wL;wU �. In following experi-

ment, PNN and KNN are utilized to make an assessment on the classification accuracy in the process of removing and insert-
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Table 10
The comparison of four algorithms on twelve data sets when adding objects.

Data set Algorithm 10% 20% 30% 40% 50%

FSSi-FSA 41.492 55.734 66.361 90.902 110.491
DW FSI 112.688 135.778 131.637 163.460 174.399

ARFI 264.103 327.195 457.926 530.232 593.028
AVPD 140.140 183.661 249.921 343.670 428.648

FSSi-FSA 1.378 2.122 3.045 3.631 4.207
W FSI 3.077 5.151 6.797 8.715 9.712

ARFI 6.220 8.750 12.108 15.003 18.865
AVPD 1.811 2.207 3.504 4.175 5.830

FSSi-FSA 0.470 0.606 0.841 1.086 1.327
H FSI 3.759 6.494 8.013 9.481 11.322

ARFI 12.079 15.269 18.652 26.890 32.079
AVPD 5.413 7.105 8.936 10.405 15.586

FSSi-FSA 2.717 3.704 4.638 6.103 7.341
FTM FSI 20.110 21.536 26.165 33.574 38.603

ARFI 54.399 70.335 83.611 118.867 155.351
AVPD 24.470 30.960, 34.793 51.757 66.376

FSSi-FSA 4.415 5.915 8.457 10.398 12.669
TME FSI 224.642 307.602 383.015 463.282 767.953

ARFI 218.735 266.196 367.434 450.015 616.948
AVPD 104.230 146.538 178.382 218.344 290.034

FSSi-FSA 5.516 7.464 10.078 12.925 16.868
ACA FSI 27.360 35.492 44.798 53.163 66.410

ARFI 73.866 107.919 129.863 157.943 209.751
AVPD 38.828 52.719 70.162 66.120 117.027

FSSi-FSA 78.754 121.285 146.266 201.358 245.338
PS FSI 63.244 87.844 110.859 145.351 172.484

ARFI 80.964 106.813 135.440 169.217 207.454
AVPD 41.681 55.835 66.078 86.489 107.126

FSSi-FSA 46.837 60.974 78.779 87.835 96.798
MPE FSI 551.233 681.214 927.726 1192.377 1404.187

ARFI 2091.413 2518.831 3855.042 5035.437 6297.512
AVPD 1304.419 2021.576 2703.860 3618.754 4506.839

FSSi-FSA 66.623 94.705 121.874 143.571 180.578
WQR FSI 183.734 252.831 307.231 384.442 501.421

ARFI 430.239 604.695 747.855 946.754 1178.817
AVPD 233.317 323.921 407.335 533.863 636.529

FSSi-FSA 507.722 697.324 957.847 1233.592 1468.430
WQW FSI 1403.569 1647.775 2357.470 2753.028 3319.448

ARFI 3885.340 5323.310 6477.873 8235.409 10204.255
AVPD 2235.339 3024.981 3917.523 3518.280 3845.474

FSSi-FSA 562.964 808.043 1070.237 1333.347 1619.066
PB FSI 1321.005 2040.307 2969.312 3136.246 5233.427

ARFI 3822.507 5228.343 6480.772 8241.516 10507.266
AVPD 1197.275 1895.925 2633.034 3194.675 3834.865

FSSi-FSA 8774.259 12548.215 16673.235 22548.322 30857.286
DB FSI 41283.284 53628.515 65836.476 76873.826 91216.532

ARFI 50247.658 66831.143 78526.852 98658.212 112786.455
AVPD 26841.362 32588.665 42326.871 52366.121 78653.225
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ing multiple objects. At the same time, 10-fold cross-validation is adopted on twelve data sets. The classification accuracy of
twelve data sets and the quantity of reduct when deleting objects are shown in Tables 11 and 13. Simultaneously, The clas-
sification accuracy of twelve data sets and the quantity of reduct when adding objects are shown in Tables 12 and 13. Par-
ticularly, ‘‘Original” represents these results under all the attributes.

From Table 11, we come to the conclusion for deleting objects that FSSi-FSD reaches the highest average accuracy in ten
data sets when PNN classifier is used, while it reaches the highest average accuracy on eleven data sets when KNN classifier
is used. From Table 12, it is not hard to see that the average accuracy of FSSi-FSA reaches the maximum eleven times when
adding objects in the PNN classifier. Meanwhile, when adding objects in the KNN classifier, the average accuracy of FSSi-FSA
reaches the maximum ten times. To sum up, the proposed algorithms have decent classification accuracy in different clas-
sifiers. Table 13 demonstrates the quantity of reduct when objects are deleted and added in different proportions, from
which it can be found that the proposed algorithms exceed the performance of algorithms ARFI and AVPD in most occasions,
and outperform algorithm FSI in six data sets.
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Fig. 7. The computation time among four algorithms with a certain ratio of adding objects.
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6.5. The combination with the deep learning

Recently, classification problems centered on deep learning have been widely prevalent. In this field, convolutional neural
network (CNN) [49,50] is utilized to cope with classification prediction about various types of images, while one-dimensional
convolutional neural network (1D-CNN) is exploited to dispose of data similar to digital signals. Therefore, we attempt to
adopt the proposed incremental feature selection algorithm, associated with one-dimensional convolutional neural network
to predict the class of samples. Firstly, for an interval-valued information system whose objects are constantly changing, the
incremental feature selection algorithm on the basis of fuzzy self-information is used to select these significant features in a
data set, so as to effectively decrease the dimension of features and enhance the computational efficiency. Then, by estab-
lishing a neural network with three one-dimensional convolutional layers whose number of filters are 16, 32 and 64, these
selected features are input to the neural network to classify the samples. A series of experiments, compared the classification
accuracy of convolutional neural network before and after feature selection, are conducted on six data sets in Table 7. More
details can be seen in Table 14. According to Table 14, it indicates that by feature selection based on fuzzy self-information,
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Table 11
The classification accuracy of four algorithms on twelve data sets when deleting objects.

Data Algorithm 10% 20% 30% 40% 50% Average

PNN KNN PNN KNN PNN KNN PNN KNN PNN KNN PNN KNN

FSSi-FSD 0.667 0.697 0.680 0.702 0.683 0.703 0.662 0.714 0.681 0.663 0.675 0.696
FSI 0.554 0.631 0.566 0.690 0.587 0.697 0.643 0.667 0.605 0.620 0.591 0.661

DW ARFI 0.547 0.652 0.557 0.691 0.562 0.695 0.570 0.696 0.596 0.642 0.566 0.675
AVPD 0.656 0.679 0.662 0.698 0.679 0.693 0.674 0.701 0.656 0.654 0.665 0.685
Original 0.526 0.602 0.482 0.624 0.503 0.635 0.546 0.627 0.529 0.606 0.619 0.517

FSSi-FSD 0.945 0.944 0.935 0.941 0.941 0.941 0.943 0.936 0.935 0.914 0.940 0.935
FSI 0.938 0.938 0.923 0.924 0.937 0.942 0.939 0.942 0.919 0.927 0.931 0.935

W ARFI 0.935 0.930 0.928 0.925 0.943 0.928 0.928 0.922 0.921 0.912 0.931 0.923
AVPD 0.939 0.937 0.922 0.929 0.932 0.930 0.938 0.931 0.924 0.924 0.931 0.930
Original 0.926 0.925 0.919 0.926 0.926 0.915 0.915 0.912 0.912 0.893 0.920 0.914

FSSi-FSD 0.533 0.548 0.529 0.519 0.549 0.528 0.515 0.522 0.549 0.559 0.535 0.535
FSI 0.533 0.481 0.531 0.468 0.548 0.471 0.515 0.477 0.569 0.478 0.539 0.475

H ARFI 0.497 0.521 0.499 0.475 0.511 0.484 0.484 0.483 0.528 0.490 0.504 0.491
AVPD 0.525 0.479 0.529 0.483 0.519 0.490 0.510 0.482 0.524 0.474 0.521 0.482
Original 0.491 0.506 0.495 0.485 0.501 0.504 0.489 0.477 0.494 0.508 0.494 0.496

FSSi-FSD 0.769 0.822 0.778 0.805 0.780 0.813 0.777 0.807 0.767 0.808 0.774 0.811
FSI 0.675 0.694 0.675 0.687 0.691 0.714 0.680 0.701 0.682 0.714 0.681 0.702

FTM ARFI 0.750 0.804 0.764 0.798 0.788 0.791 0.754 0.782 0.738 0.775 0.759 0.790
AVPD 0.783 0.795 0.765 0.808 0.762 0.800 0.777 0.780 0.759 0.775 0.769 0.792
Original 0.753 0.790 0.744 0.792 0.745 0.783 0.737 0.778 0.735 0.763 0.743 0.781

FSSi-FSD 0.494 0.515 0.500 0.510 0.502 0.505 0.510 0.512 0.505 0.495 0.502 0.507
FSI 0.477 0.444 0.440 0.412 0.466 0.433 0.439 0.429 0.452 0.449 0.455 0.433

TME ARFI 0.485 0.502 0.482 0.509 0.480 0.497 0.465 0.479 0.472 0.474 0.477 0.492
AVPD 0.497 0.505 0.468 0.509 0.475 0.515 0.482 0.521 0.481 0.501 0.481 0.510
Original 0.487 0.601 0.488 0.585 0.492 0.585 0.487 0.567 0.483 0.526 0.487 0.573

FSSi-FSD 0.703 0.608 0.701 0.580 0.707 0.601 0.692 0.607 0.681 0.579 0.697 0.595
FSI 0.774 0.444 0.775 0.437 0.754 0.440 0.715 0.444 0.650 0.469 0.734 0.447

ACA ARFI 0.604 0.531 0.626 0.556 0.600 0.541 0.626 0.514 0.599 0.529 0.611 0.534
AVPD 0.619 0.502 0.623 0.429 0.624 0.435 0.598 0.449 0.595 0.471 0.612 0.457
Original 0.566 0.453 0.568 0.458 0.571 0.448 0.558 0.449 0.563 0.451 0.565 0.452

FSSi-FSD 0.537 0.504 0.515 0.540 0.545 0.536 0.537 0.503 0.540 0.507 0.535 0.518
FSI 0.537 0.504 0.515 0.540 0.545 0.536 0.537 0.503 0.540 0.507 0.535 0.518

PS ARFI 0.537 0.504 0.515 0.540 0.545 0.536 0.537 0.503 0.540 0.507 0.535 0.518
AVPD 0.537 0.504 0.515 0.540 0.545 0.536 0.537 0.503 0.540 0.507 0.535 0.518
Original 0.453 0.379 0.439 0.351 0.448 0.364 0.429 0.356 0.431 0.335 0.440 0.357

FSSi-FSD 0.876 0.836 0.871 0.843 0.871 0.851 0.876 0.843 0.870 0.841 0.873 0.843
FSI 0.771 0.738 0.767 0.731 0.745 0.728 0.741 0.716 0.767 0.730 0.758 0.729

MPE ARFI 0.807 0.797 0.819 0.832 0.811 0.820 0.819 0.820 0.826 0.814 0.816 0.817
AVPD 0.842 0.815 0.859 0.828 0.840 0.817 0.843 0.817 0.844 0.820 0.846 0.819
Original 0.773 0.725 0.750 0.736 0.755 0.735 0.746 0.735 0.753 0.720 0.755 0.730

FSSi-FSD 0.612 0.567 0.601 0.573 0.591 0.560 0.573 0.570 0.565 0.550 0.588 0.564
FSI 0.557 0.528 0.537 0.521 0.541 0.537 0.523 0.518 0.515 0.500 0.535 0.521

WQR ARFI 0.586 0.552 0.579 0.554 0.572 0.564 0.548 0.537 0.533 0.521 0.564 0.546
AVPD 0.578 0.541 0.575 0.549 0.561 0.533 0.545 0.525 0.546 0.511 0.561 0.532
Original 0.593 0.555 0.584 0.561 0.569 0.556 0.554 0.537 0.534 0.523 0.567 0.546

FSSi-FSD 0.594 0.537 0.590 0.530 0.569 0.521 0.546 0.523 0.540 0.512 0.568 0.525
FSI 0.488 0.429 0.506 0.442 0.501 0.448 0.485 0.419 0.480 0.437 0.492 0.435

WQW ARFI 0.591 0.535 0.585 0.535 0.568 0.529 0.541 0.513 0.525 0.499 0.562 0.522
AVPD 0.594 0.526 0.567 0.531 0.547 0.505 0.538 0.501 0.530 0.498 0.555 0.512
Original 0.595 0.517 0.584 0.540 0.568 0.526 0.551 0.518 0.535 0.505 0.567 0.521

FSSi-FSD 0.926 0.931 0.922 0.926 0.921 0.926 0.921 0.926 0.924 0.926 0.923 0.927
FSI 0.932 0.936 0.903 0.910 0.898 0.907 0.904 0.910 0.889 0.902 0.905 0.913

PB ARFI 0.915 0.920 0.914 0.918 0.909 0.914 0.907 0.912 0.910 0.912 0.911 0.915
AVPD 0.920 0.924 0.917 0.922 0.913 0.921 0.919 0.925 0.920 0.920 0.918 0.922
Original 0.917 0.921 0.912 0.917 0.908 0.916 0.908 0.916 0.911 0.919 0.911 0.918

FSSi-FSD 0.901 0.904 0.902 0.902 0.901 0.903 0.898 0.903 0.903 0.901 0.901 0.903
FSI 0.898 0.901 0.902 0.903 0.904 0.900 0.897 0.901 0.901 0.902 0.900 0.901

DB ARFI 0.896 0.902 0.890 0.902 0.898 0.900 0.892 0.898 0.894 0.901 0.894 0.901
AVPD 0.870 0.873 0.868 0.876 0.873 0.877 0.871 0.878 0.874 0.878 0.871 0.877
Original 0.887 0.899 0.898 0.896 0.891 0.900 0.886 0.892 0.891 0.895 0.891 0.896
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Table 12
The classification accuracy of four algorithms on twelve data sets when adding objects.

Data set Algorithm 10% 20% 30% 40% 50% Average

PNN KNN PNN KNN PNN KNN PNN KNN PNN KNN PNN KNN

FSSi-FSA 0.672 0.702 0.671 0.697 0.686 0.701 0.671 0.707 0.673 0.705 0.675 0.702
FSI 0.579 0.663 0.573 0.677 0.586 0.690 0.652 0.670 0.638 0.669 0.606 0.674

DW ARFI 0.560 0.671 0.566 0.682 0.571 0.685 0.571 0.587 0.618 0.651 0.577 0.655
AVPD 0.663 0.683 0.665 0.688 0.685 0.689 0.670 0.695 0.663 0.690 0.669 0.689
Original 0.535 0.611 0.522 0.602 0.530 0.613 0.543 0.618 0.545 0.603 0.535 0.609

FSSi-FSA 0.957 0.960 0.956 0.955 0.959 0.949 0.950 0.948 0.952 0.941 0.955 0.951
FSI 0.942 0.927 0.931 0.916 0.947 0.934 0.953 0.922 0.946 0.946 0.944 0.929

W ARFI 0.953 0.944 0.944 0.913 0.941 0.924 0.947 0.927 0.946 0.934 0.946 0.928
AVPD 0.946 0.937 0.929 0.919 0.945 0.924 0.941 0.942 0.942 0.930 0.941 0.930
Original 0.948 0.923 0.925 0.917 0.932 0.925 0.934 0.923 0.934 0.925 0.935 0.923

FSSi-FSA 0.581 0.587 0.584 0.563 0.589 0.586 0.576 0.560 0.583 0.545 0.583 0.568
FSI 0.585 0.463 0.586 0.455 0.545 0.475 0.575 0.482 0.578 0.436 0.574 0.462

H ARFI 0.537 0.470 0.540 0.464 0.545 0.475 0.536 0.484 0.564 0.454 0.544 0.469
AVPD 0.564 0.440 0.560 0.454 0.536 0.470 0.550 0.486 0.557 0.436 0.553 0.457
Original 0.528 0.524 0.530 0.526 0.535 0.511 0.538 0.490 0.533 0.523 0.533 0.515

FSSi-FSA 0.808 0.846 0.797 0.802 0.779 0.810 0.763 0.819 0.776 0.820 0.785 0.819
FSI 0.677 0.741 0.611 0.656 0.633 0.679 0.694 0.732 0.638 0.674 0.651 0.696

FTM ARFI 0.785 0.817 0.760 0.746 0.723 0.746 0.740 0.789 0.734 0.770 0.748 0.774
AVPD 0.762 0.784 0.739 0.778 0.732 0.790 0.760 0.802 0.781 0.786 0.755 0.788
Original 0.744 0.778 0.731 0.764 0.747 0.775 0.718 0.779 0.754 0.769 0.739 0.773

FSSi-FSA 0.479 0.499 0.504 0.502 0.495 0.504 0.494 0.503 0.497 0.509 0.494 0.503
FSI 0.474 0.450 0.483 0.464 0.399 0.387 0.489 0.430 0.489 0.431 0.467 0.432

TME ARFI 0.476 0.478 0.477 0.467 0.466 0.504 0.415 0.419 0.419 0.425 0.451 0.459
AVPD 0.434 0.415 0.486 0.498 0.470 0.505 0.492 0.500 0.490 0.501 0.474 0.484
Original 0.499 0.554 0.499 0.549 0.488 0.581 0.490 0.592 0.493 0.594 0.494 0.574

FSSi-FSA 0.669 0.576 0.673 0.572 0.686 0.570 0.668 0.590 0.706 0.573 0.680 0.576
FSI 0.697 0.457 0.699 0.471 0.713 0.451 0.702 0.470 0.716 0.446 0.705 0.459

ACA ARFI 0.605 0.506 0.570 0.538 0.589 0.562 0.572 0.552 0.614 0.542 0.590 0.540
AVPD 0.587 0.448 0.592 0.472 0.609 0.471 0.570 0.458 0.599 0.441 0.591 0.458
Original 0.563 0.440 0.541 0.466 0.563 0.472 0.567 0.463 0.580 0.446 0.563 0.457

FSSi-FSA 0.525 0.505 0.506 0.482 0.516 0.495 0.504 0.491 0.514 0.497 0.513 0.494
FSI 0.502 0.498 0.500 0.463 0.506 0.472 0.497 0.475 0.506 0.479 0.502 0.477

PS ARFI 0.502 0.498 0.500 0.463 0.506 0.472 0.497 0.475 0.506 0.479 0.502 0.477
AVPD 0.502 0.498 0.500 0.463 0.506 0.472 0.497 0.475 0.506 0.479 0.502 0.477
Original 0.438 0.377 0.431 0.336 0.435 0.330 0.430 0.337 0.440 0.339 0.502 0.477

FSSi-FSA 0.884 0.859 0.870 0.842 0.883 0.857 0.878 0.849 0.876 0.858 0.878 0.853
FSI 0.766 0.731 0.766 0.732 0.757 0.737 0.749 0.717 0.768 0.721 0.761 0.728

MPE ARFI 0.808 0.829 0.817 0.826 0.814 0.821 0.816 0.818 0.814 0.815 0.814 0.822
AVPD 0.850 0.814 0.858 0.821 0.859 0.819 0.845 0.820 0.845 0.821 0.851 0.819
Original 0.787 0.724 0.772 0.734 0.767 0.730 0.753 0.715 0.761 0.711 0.768 0.723

FSSi-FSA 0.557 0.550 0.561 0.551 0.568 0.567 0.569 0.553 0.591 0.582 0.569 0.561
FSI 0.507 0.502 0.535 0.516 0.523 0.506 0.543 0.508 0.537 0.515 0.529 0.509

WQR ARFI 0.540 0.542 0.544 0.522 0.549 0.539 0.552 0.533 0.572 0.567 0.551 0.541
AVPD 0.531 0.526 0.546 0.523 0.558 0.537 0.552 0.532 0.561 0.553 0.550 0.534
Original 0.546 0.541 0.549 0.526 0.545 0.541 0.551 0.543 0.570 0.562 0.552 0.543

FSSi-FSA 0.557 0.520 0.556 0.513 0.556 0.519 0.566 0.543 0.574 0.546 0.562 0.528
FSI 0.490 0.452 0.493 0.422 0.494 0.434 0.474 0.440 0.485 0.453 0.487 0.440

WQW ARFI 0.550 0.516 0.551 0.521 0.551 0.518 0.565 0.534 0.555 0.548 0.554 0.527
AVPD 0.541 0.515 0.542 0.511 0.543 0.499 0.505 0.470 0.501 0.464 0.526 0.492
Original 0.556 0.519 0.553 0.526 0.553 0.532 0.572 0.524 0.561 0.551 0.559 0.530

FSSi-FSA 0.925 0.931 0.925 0.930 0.924 0.929 0.925 0.929 0.925 0.927 0.925 0.929
FSI 0.909 0.909 0.908 0.910 0.912 0.914 0.914 0.914 0.922 0.926 0.913 0.915

PB ARFI 0.911 0.921 0.914 0.920 0.915 0.923 0.919 0.921 0.914 0.920 0.915 0.921
AVPD 0.916 0.923 0.923 0.927 0.919 0.926 0.921 0.924 0.916 0.919 0.919 0.924
Original 0.915 0.919 0.915 0.919 0.914 0.918 0.914 0.918 0.917 0.921 0.915 0.919

FSSi-FSA 0.902 0.905 0.901 0.904 0.903 0.902 0.903 0.903 0.902 0.904 0.902 0.904
FSI 0.901 0.903 0.904 0.902 0.902 0.903 0.900 0.903 0.902 0.903 0.902 0.903

DB ARFI 0.891 0.902 0.889 0.903 0.893 0.898 0.895 0.901 0.897 0.900 0.893 0.901
AVPD 0.876 0.879 0.872 0.877 0.875 0.878 0.876 0.881 0.875 0.882 0.875 0.879
Original 0.891 0.898 0.894 0.900 0.893 0.897 0.892 0.899 0.897 0.898 0.893 0.898
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Table 13
The quantity of reduct about four algorithms on twelve data sets when deleting or adding objects.

Data set Algorithm 10% 20% 30% 40% 50% Average

Delete Add Delete Add Delete Add Delete Add Delete Add Delete Add

FSSi-FSD/A 3.2 4.2 3.5 3.9 3.5 4.3 3.2 4.9 3.4 4.6 3.4 4.4
FSI 3.5 4.2 3.6 4 3.5 4.6 3.5 4.4 3.6 5.2 3.5 4.5

DW ARFI 7 5.3 9 6 7.2 7.8 6.2 6.3 4.6 6.8 6.8 6.4
AVPD 8.9 9.3 9 9.7 8.8 9.5 8.6 9.1 8.6 9.1 8.8 9.3
Original 174 174 174 174 174 174 174 174 174 174 174 174

FSSi-FSD/A 4.7 3.5 4.6 3.1 4.6 4.8 4.3 4.9 4.9 5.4 4.6 4.3
FSI 7 5.7 7.1 6.2 6.8 7.2 6.5 7 5.7 6.8 6.6 6.6

W ARFI 12 11.7 12 12 12 12 11.9 12 11 12 11.8 11.9
AVPD 5.5 4.5 4.9 4.5 5 5.6 5 5.6 5.3 5.7 5.1 5.2
Original 13 13 13 13 13 13 13 13 13 13 13 13

FSSi-FSD/A 1.4 1 1.4 1 1.2 1 1.6 1 1.4 1 1.4 1
FSI 3.4 3 3.7 4.2 4.1 3.7 3.9 3.5 3.8 4.5 3.8 3.8

H ARFI 5.3 6.6 5.9 6 5.8 5.6 5.6 5.5 5 5.4 5.5 5.8
AVPD 8.6 8.7 9.3 8.8 9.6 9 9 8.8 8.4 9.5 9 9
Original 13 13 13 13 13 13 13 13 13 13 13 13

FSSi-FSD/A 7 7 7 7 7 7 7 7 7 7 7 7
FSI 2 2.9 2 2.5 2.6 2.9 2.9 2.6 2.8 2 2.5 2.6

FTM ARFI 8.5 8.3 8.5 7.8 9.3 8.3 8.1 8.8 7.7 9.4 8.4 8.5
AVPD 6.4 6.6 6.4 6.3 6.6 6.4 6.4 6.6 6.4 7 6.4 6.6
Original 26 26 26 26 26 26 26 26 26 26 26 26

FSSi-FSD/A 9 6.9 9 7.7 9 7.4 9 7.6 9 7.5 9 7.4
FSI 15.2 14.5 14.9 13.5 15.5 14.5 13.3 14 12.9 17 14.4 14.7

TME ARFI 13 10.9 13.3 10 13.1 12.6 13.1 13 10.8 12.1 12.7 11.7
AVPD 10 9.6 10 10 10.1 10 10.1 10.5 9.3 10 9.9 10
Original 49 49 49 49 49 49 49 49 49 49 49 49

FSSi-FSD/A 2 2 2 2 2 2 2 2 2 2 2 2
FSI 3 3 3 2.8 2.6 2.8 2.8 3 3 2.7 2.9 2.9

ACA ARFI 5.7 4.6 5 5.1 4.9 5 4.8 5 4.6 5 5 4.9
AVPD 8.2 8.6 9.4 8.3 9.1 9.2 8.5 9 8.6 10 8.8 9
Original 13 13 13 13 13 13 13 13 13 13 13 13

FSSi-FSD/A 1 2 1 2 1 2 1 2 1 2 1 2
FSI 1 1 1 1 1 1 1 1 1 1 1 1

PS ARFI 1 1 1 1 1 1 1 1 1 1 1 1
AVPD 1 1 1 1 1 1 1 1 1 1 1 1
Original 27 27 27 27 27 27 27 27 27 27 27 27

FSSi-FSD/A 6.6 7 6 6.5 6.4 5.5 5.9 6 5.8 6.8 6.1 6.4
FSI 1 1 1 1 1 1 1 1 1 1 1 1

MPE ARFI 10.5 10.3 8.3 10.5 6.7 10.4 8.6 8 6.6 9 8.1 9.6
AVPD 7.5 8 7.8 8 8 8 6.5 7.8 7.5 7.4 7.5 7.8
Original 82 82 82 82 82 82 82 82 82 82 82 82

FSSi-FSD/A 7 7.5 7 7.4 7 7.5 7 7.7 7 7.8 7 7.6
FSI 2 2 2 2 2.2 2 2 2 2 2 2 2

WQR ARFI 10 10 10 10 10 10 10 10 10 10 10 10
AVPD 6 6 6 6 5.9 6 6 5.7 6 6 6 5.9
Original 11 11 11 11 11 11 11 11 11 11 11 11

FSSi-FSD/A 5 5.5 5 5.5 5 5.6 5 5.6 5 5.5 5 5.5
FSI 1 1 1 1 1 1 1 1 1 1 1 1

WQW ARFI 10 10 10 10 10 10 10 10 10 10 10 10
AVPD 5 5 5 5 5 5 5 3 5 2.6 5 4.1
Original 11 11 11 11 11 11 11 11 11 11 11 11

FSSi-FSD/A 5 5 5 5 5 5 5 5 5 5 5 5
FSI 3 1.8 2 1.8 2 2 2 2 2 2.4 2.2 2

PB ARFI 9 9 9 9 9 9 9 9 9 9 9 9
AVPD 3 3 3 3 3 3 3 3 3 3 3 3
Original 10 10 10 10 10 10 10 10 10 10 10 10

FSSi-FSD/A 4.6 4.8 4.7 4.8 4.7 4.7 4.6 4.8 4.8 5 4.7 4.8
FSI 5 5 5 5 5 5 5 5 5 5 5 5

DB ARFI 7.7 8 7.8 8 8 8 8 8 8 8.2 7.9 8
AVPD 4.8 4.8 4.8 5 4.8 5 5 4.8 4.8 5.1 4.8 4.9
Original 17 17 17 17 17 17 17 17 17 17 17 17
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Table 14
The accuracy and quantity on six data sets when deleting or adding objects

Data set Method Delete Add Data set Method Delete Add

Acc Num Acc Num Acc Num Acc Num

FSSi-CNN 0.941 0.959 4 4.6 FSSi-CNN 0.870 0.898 7 7
W CNN 0.928 0.939 14 14 FTM CNN 0.852 0.864 27 27

FSSi-CNN 0.731 0.738 10 11.2 FSSi-CNN 0.812 0.818 3 3.4
TME CNN 0.722 0.734 50 50 ACA CNN 0.810 0.814 14 14

FSSi-CNN 0.981 0.984 6.8 7.2 FSSi-CNN 1.000 1.000 5 5.6
MPE CNN 0.961 0.972 82 82 PB CNN 0.960 0.968 11 11

X. Zhang and J. Li Information Sciences 625 (2023) 593–619
data sets almost remain the original information, which means that the combination of incremental feature selection and
one-dimensional convolutional network is effective. Other possibilities for both will be further explored in our future
research.

7. Conclusions

Feature selection is a potential method for dimension reduction in data mining, which screens out the pivotal attributes
that maintain the original information of data set. Making the best of previous knowledge, the incremental learning is pretty
appropriate for time-evolving information system. By virtue of developing incremental feature selection approach, it can not
only sort out significant attributes and filter redundant attributes, but also speed up the course of feature selection. In this
paper, we look back on the indispensable notions of fuzzy rough set, interval-valued fuzzy decision system and self-
information initially. Furthermore, the relative decision self-information is introduced into interval-valued fuzzy decision
information system, k-fuzzy similarity relation is constructed, and k-fuzzy similarity self-information based on above rela-
tion is investigated. Moreover, two important updating media, k-fuzzy similarity matrix and fuzzy decision vector, are
defined for static feature selection algorithm in IvFDIS. As a consequence, the updating principles of before-mentioned
matrix and vector are deeply explored, then two incremental algorithms in regard to the variation of object set are further
researched. Finally, we compare the performance of different algorithms on twelve data sets from UCI. The experimental
results reveal that apart from improving the computational efficiency, the proposed incremental algorithms update the
reduct promptly in IvFDIS.

Although the incremental technique is beneficial for dynamic IvFDIS, as technology makes momentous progress, the
forms of data become more diversified and the alterations are not limited to objects in information systems. Therefore, in
our future direction of work, we will be committed to developing the incremental feature selection in interval-valued hesi-
tant fuzzy information system. At the same time, in consideration of various elements that lead to a variation in the infor-
mation system, we will study the impact of other changes on information system. Additionally, we intend to carry dynamic
mechanics into multi-granulation spaces.
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