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a b s t r a c t

Concept-cognitive learning has been widely used in simulating the human brain to learn concepts.
However, the existing concept-cognitive learning models mainly focused on how to acquire knowledge
and its properties, but not how to solve the problems. The underlying skills for solving problems
are ignored in the cognitive learning process. Indeed, a concept-cognitive learning process is always
accompanied with problem solving and skill learning, and the skills are necessary for solving problems.
Knowledge space theory is an effective mathematical analysis approach for knowledge assessment.
Nevertheless, the existing learning paths for skill were evaluated by constructing the concept lattice,
which is a NP hard problem. To overcome these limitations and problems, a novel concept-cognitive
learning model from a perspective of competences is proposed. Firstly, knowledge and skills can be
represented by item sets and skill sets. And a good semantic explanation between knowledge and skills
is provided by a competence-based concept, which presents that one can acquire the most knowledge
with the least amount of skills. Secondly, a competence-based concept-cognitive learning model and
its properties are put forward to describe the concept-cognitive learning through skills. Moreover, by
analyzing the sufficient and necessary relationship between skills and knowledge, a competence-based
information granule structure is constructed. Finally, a transformation method of information granules
is proposed to convert a general information granule into sufficient and necessary competence-based
information granules (i.e., competence-based concepts). And the experimental results of UCI data sets
show that the competence-based concept-cognitive learning model is feasible and effective.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Concept Learning (CL) [1–6] is a branch of the artificial intel-
igence to simulate the human brain through a computer system.
y learning the concepts, one can gradually obtain the knowl-
dge and its properties. Concept-cognitive learning (CCL) always
tarts from some inaccurate, uncertain and partially real prob-
ems, and finally achieves varying degrees of cognitive learning
hrough the self-improving in the cognitive system. CCL has been
iscussed from granular computing (GrC) [7–9] to simplify the
roblems. By describing proper information granules and divid-
ng complex structures into simpler ones, granular computing
an simulate human thinking patterns, analyze and solve many
ractical problems [2–11]. By using basic information granules
s basic information processing units, GrC can effectively reduce

∗ Corresponding author.
E-mail addresses: littlecn@hqu.edu.cn (X. Xie), chxuwh@gmail.com

W. Xu), jinjinlimnu@126.com (J. Li).
ttps://doi.org/10.1016/j.knosys.2023.110382
950-7051/© 2023 Elsevier B.V. All rights reserved.
the computational complexity. Zadeh [7] firstly proposed and
discussed the fuzzy information granulation. Yao [8] discussed
integrative levels of granularity, granular computing on basic
issues and possible solution. Wu et al. [9] explored knowledge
reduction with granular computing. Recently, many investigators
study the concept-cognitive learning model (CCLM) from the view
of granular computing [2–5,10–14].

Concept-cognitive learning model is related to types of con-
cepts [4]. Various concepts, for instance, formal concept [15],
attribute-oriented concept [16], object-oriented concept [17], L-
fuzzy concept [18] and three-way concept [19], carry certain
meanings, and provide different semantic interpretation. Concept-
cognitive learning models (CCLMs) can satisfy different demands
by using different generation mechanisms of concepts. Zhang
et al. [2] studied a novel framework of concept cognitive model
with granule computing. Xu et al. [3] used information granules
to describe the sufficient and necessary relationship between
attributes and objects, and presented a transformation method
which converted an arbitrary information granule into sufficient
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Fig. 1. The development stage of CL and KST.
t

nd necessary information granules. And the approach of Ref. [3]
as extended to fuzzy formal context [5]. Yao [4] presented a
oncept learning model from cognitive informatics and granular
omputing. Qiu et al. [20] proposed a granular computing sys-
em model, which used concept granular iterative operator to
orm concepts. Li et al. [10,11] used cognitive granular concepts
i.e., object granular concepts and attribute granular concepts)
o calculate approximate cognitive concepts according to cues.
hao et al. [21] used the information similarity matching method
o obtain the optimal approximate cognitive concept under the
aximum matching principle. Xu [6], Shi [22] and Mi [14,23]
resented some CCLMs, which aimed at solving classification
asks and acquire the conceptual generalization capability. These
ifferent cognitive models have different cognitive mechanisms
uch as granular concept cognitive system [2–5,13,20], three-
ay concept-cognitive learning [12,24], approximate CCL [10,
1], conceptual clustering [6,14,22,23], incremental learning [25–
7] and dynamic concept learning [28,29]. These CCLMs mainly
ocused on how to acquire knowledge and its commonalities,
ut neglected how to solve the problems. In fact, rather than
cquiring knowledge, the skills learned for solving problems are
he key to the solution of the problems.

Knowledge space theory (KST) proposed by Doignon [30] is
n effective mathematical analysis approach for knowledge as-
essment and adaptive evaluation [31–38]. The extensions of KST
re competence-based knowledge space theory (Cb-KST) [31–35],
he polytomous generalization of knowledge space theory [39–
2] and fuzzy knowledge space theory [43,44]. The development
tage of the CL and KST is shown in Fig. 1.
Cb-KST has been used for skill evaluation [35,36] by computer

ystems, such as APeLS system [37] and the iClass system [38].
usch et al. [45] connected KST with FCA. Xu [46] and Spoto [47]
iscussed the skill reduction. Zhou [48] obtained the skill assess-
ent and the learning paths of skill from the attribute-oriented

ormal concept lattice in a skill context. Sun [43] and Zhou [44]
imed at constructing the fuzzy knowledge structures delineated
y fuzzy skill maps. Cb-KST was studied through a skill map or
kill multimap [32–35]. There are two special skill maps: conjunc-
ive and disjunctive model [32,35]. A disjunctive model of skill
ap allots a singleton skill to each item. For example, if one wants

o calculate the value of the item q1 : 16+16+16, one only needs
to master any one skill of the skill set {addition,multiplication}. A
conjunctive model of skill map assigns a nonempty subset of skills
to each item. For instance, one can correctly calculate the value
of the item q2 : 48

3 + 5, if one masters all skills of the skill set
addition, division}. A skill multimap may allot multiple solutions
o solve one item, and any method may have more than one skill.
2

Such as, one wants to calculate the value of the item q3 : 1+ 2+
· · ·+100, one only needs to master one solution (i.e., a skill set) of
{{addition}, {summation formula, multiplication, division}}. There-
fore, if one only learns the properties and rules of the arithmetic
operation, but not the calculation skills of {addition, subtraction,
multiplication, division}, one may fail to solve {q1, q2, q3}. Thus,
he skill learning is necessary for solving problems.

For the item q2 : 48
3 + 5, one needs to master the minimal

skill set {addition, division} for solving it. In additional, the skill set
{addition} is needed, but not enough for solving q2. Thus, the skill
addition is a sufficient skill for solving q2. The skill set {addition,
multiplication, division} is too much for solving q2, where the
skill multiplication is not needed. Then {addition,multiplication,
division} is a necessary skill set for solving q2. The skill subtraction
is not able to solve q2. Then the skill set {subtraction} is neither
sufficient nor necessary for solving q2. Therefore, there is a suf-
ficient and necessary relationship between skills and knowledge.
In general, one starts to learn and master simple skills to solve
simple problems. Then one gradually learns some complex skills
to deal with complex problems. That is, as skills are learned and
mastered, more knowledge will be obtained and more problems
will be solved.

The motivations of this article are described from the two
perspectives as follows.

(1) The existing CCLMs [3,5,10,12] mainly aimed at how to
learn the knowledge and its properties. However, they cannot
deal with how to solve the problems, and what skills are involved
to the solution of the problems. Therefore, it limits the expansion
and application of CCLM. Thus, we explore a novel CCLM from the
view of competences.

(2) As mentioned above, learning paths for skills [48] were
evaluated from the whole concept lattice. And the method of [48]
was extended to fuzzy knowledge space [44]. Therefore, the com-
putational complexity of [44,48] is expensive. In fact, it is a
NP hard problem. In addition, by using all granular concepts to
calculate cognitive concepts from each cue, the cognitive concept
learning via granular computing [10] has reduced the computa-
tional complexity. However, the running times are still a little
higher in big data. Thus, to reduce the computational complexity,
we attempt to construct an information granule structure from
the relationship between knowledge and skills.

Up to now, few studies discuss CCLM from the perspective
of competences. To overcome these limitations and problems, a
novel CCLM is investigated with skill learning in this article. The
main contributions of this paper are described as follow.

(1) Based on FCA, KST and GrC, a competence-based concept-
cognitive learning model (Cb-CCLM) is proposed to connect
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nowledge with skills, and its basic theories and properties are
iscussed.
(2) Specially, in a skill context, a competence-based concept

Cb-concept) can character a good semantic interpretation be-
ween knowledge and skills. If one acquires a Cb-concept, then
ne can obtain the most knowledge with the least amount of
kills. It conforms to the cognitive learning expectations from the
iew of economic costs in real life. In this case, the skills are called
ecessary and sufficient for the knowledge. Otherwise, the skills
ay be necessary, sufficient, or neither necessary nor sufficient

or the knowledge. To describe the necessary and sufficient re-
ationship between knowledge and skills, we propose a granule
escription which is an extension of [3], and explore the theories
nd properties of the information granule structure.
(3) Essentially, the concept-cognitive learning processes of the

b-CCLM are the changes between the item sets and the skill
ets. Then, without constructing the concept lattice or all granular
oncepts, we present a transformation method between infor-
ation granules. And we can construct sufficient and necessary
ompetence-based information granules (i.e., Cb-concepts) from a
eneral information granule. Moreover, the obtained Cb-concepts
an guide one to achieve the personalized learning.
(4) Algorithms of the transformation between information

ranules are presented in this paper. And the experimental results
how that Algorithm 1 in the Cb-CCLM is feasible and effective
ven in big data.
The rest of this paper will be organized as follows: A brief

verview of FCA and KST is described in Section 2. A Cb-CCLM
s explored and its basic properties are discussed in Section 3. In
ection 4, an information granule structure and its theories are
resented. A transformation between information granules and
lgorithms of the transformation are proposed. In Section 5, the
xperiments of Algorithm 1 are tested in some UCI data sets. The
onclusions are summarized in Section 6.

. FCA and KST: a brief overview

.1. Formal concept analysis theory

The basic concepts and conclusions of FCA [9,16] are intro-
uced as follows.

efinition 2.1 ([16]). A formal context is a triple (I, T , R), where
= {i1, i2, . . . , in} and T = {t1, t2, . . . , tm} are two nonempty

finite sets of objects and attributes, respectively. R is a binary
elation between I and T . When (p, s) ∈ R, the attribute s is
ossessed by the object p. When (p, s) /∈ R, the object p does
ot possess the attribute s. In fact, the formal context is usually
epresented by a table containing values 1 and 0, where 1 means
he row object possesses the column attribute, and 0 means the
ow object does not possess the column attribute.

efinition 2.2 ([16]). Let (I, T , R) be a formal context. For p ∈ I ,
∈ T , P ⊆ I , and S ⊆ T , we define the four operators as follows:
(1) p∗ = {s ∈ T | (p, s) ∈ R}.
(2) s∗ = {p ∈ I | (p, s) ∈ R}.
(3) P⋄ = {s ∈ T | s∗ ∩ P ̸= ∅}.
(4) S□

= {p ∈ I | p∗ ⊆ S}.
Where, p∗ is the set of attributes owned by the object p, s∗ is

the set of objects which possess the attribute s, P⋄ represents the
set of attributes possessed by the objects in P , and S□ represents
the set of objects whose attributes are all in S. In addition, for
any p ∈ I , {p}⋄ is denoted as p⋄ for short. Similarly, for any s ∈ T ,
denote s□ for convenience instead of {s}□.

The operators ‘‘⋄’’ and ‘‘□’’ have the fundamental properties.
3

Lemma 2.1 ([16]). Let (I, T , R) be a formal context. For P, P1, P2 ⊆ I
and S, S1, S2 ⊆ T :

(1) P1 ⊆ P2 ⇒ P⋄1 ⊆ P⋄2 , S1 ⊆ S2 ⇒ S□
1 ⊆ S□

2 .
(2) P ⊆ P⋄□, S□⋄

⊆ S.
(3) P⋄ = P⋄□⋄, S□

= S□⋄□.
(4) (P1 ∪ P2)⋄ = P⋄1 ∪ P⋄2 , (S1 ∩ S2)□ = S□

1 ∩ S□
2 .

Lemma 2.2 ([49]). Let (I, T , R) be a formal context. For P ⊆ I and
S ⊆ T , then P ⊆ S□ if and only if P⋄ ⊆ S.

Definition 2.3 ([16]). Let (I, T , R) be a formal context. For P ⊆ I ,
S ⊆ T , if P⋄ = S and S□

= P , then the pair (P, S) is an attribute-
oriented formal concept, where P is the extension and S is the
intension of (P, S).

The family of all attribute-oriented formal concepts is denoted
as LT (I, T , R) = {(P, S) | P⋄ = S, S□

= P}. For (P1, S1), (P2, S2) ∈
LT (I, T , R), ‘‘⩽’’ is ordered by (P1, S1) ⩽ (P2, S2) ⇔ P1 ⊆ P2
(S1 ⊆ S2), the operators ‘‘∨T ’’ and ‘‘∧T ’’ are defined by:

(P1, S1) ∧T (P2, S2) = (P1
⋂

P2, (S1
⋂

S2)□⋄),
(P1, S1) ∨T (P2, S2) = ((P1

⋃
P2)⋄□, S1

⋃
S2).

Then LT (I, T , R) is a complete lattice, which is an attribute-
oriented formal concept lattice. For P ⊆ I and S ⊆ T , (P⋄□, P⋄)
and (S□, S□⋄) are attribute-oriented formal concepts.

2.2. Knowledge space theory

In this paper, the power set of a nonempty finite set U is
denoted as 2U . Let I = {i1, i2, . . . , in} and T = {t1, t2, . . . , tm} be
two nonempty finite sets of items and skills, and the skills of T
are relevant to solve the items of I . The items and skills can be
connected by a skill map or skill multimap.

Definition 2.4 ([31]). A skill map is a triple (I, T , τ ), where I is a
nonempty set of items, T is a nonempty set of skills, and τ is a
mapping from I to 2T

\ {∅}. We sometimes refer to the function
τ as the skill map. For any p ∈ I , the subset τ (p) ⊆ T is the set of
skills assigned to p (by the skill map τ ).

Let (I, T , τ ) be a skill map and S ⊆ T , we denote that P(S) ⊆ I
is the knowledge state delineated by S via the conjunctive model
if P(S) = {p ∈ I | τ (p) ⊆ S}. The knowledge state P(S) ⊆ I
delineated by S via the disjunctive model is specified by P(S) =
{p ∈ I | τ (p)

⋂
S ̸= ∅}. Through all subsets S ⊆ T , the collection

of all knowledge states is P , and (I,P) is called a knowledge
structure induced by τ , where P includes ∅ and I . Usually P is
called a knowledge structure.

We consider an example with I = {1, 2, 3} and T = {s, t, u}.
Let τ : I → 2T

\ {∅} be defined by τ (1) = {s, t}, τ (2) =
{t}, τ (3) = {u}. Then, τ is a skill map. For S = {t}, then the
knowledge state delineated by S via the conjunctive model is {2}.
The knowledge structure delineated by the conjunctive model is
{∅, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}. For the other case, S = {t} can
delineate the knowledge state {1, 2} via the disjunctive model.
The knowledge structure delineated by the disjunctive model is
{∅, {1}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}.

Remark 2.1 ([35]). The knowledge structure delineated by the
conjunctive model of skill map is a simple closure space. And
the knowledge structures delineated via the disjunctive and the
conjunctive model by the same skill map are dual one to the
other. Thus, the knowledge structure delineated via the disjunc-
tive model of skill map is a knowledge space. In this paper, we
mainly discuss the conjunctive model of skill map.

Definition 2.5 ([33,35]). A skill multimap is a triple (I, T , υ),
where : υ : I → (22T \ {∅}) \ {∅}. For any p ∈ I , the mapping υ
satisfies:
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(1) υ(p) ̸= ∅,
(2) S ̸= ∅, for any S ∈ υ(p).
The S ∈ υ(p) is called a competency. Additionally, if the com-

etencies in each υ(p) are pairwise incomparable (with respect
o set inclusion), then (I, T , υ) is called a skill function [35]. That
s, if S1, S2 ∈ υ(p), then S1, S2 are incomparable with respect to
et inclusion of set.
A skill function may assign more than one competency to an

tem, and the assigned competencies should even be minimally
ufficient for solving the item. Minimality means that competen-
ies assigned to an item are pairwise incomparable, and it is a
roperty called incomparability condition. We usually use υ to
epresent the skill multimap or skill function.

We consider an example with I = {1, 2, 3} and T = {s, t, u}.
et the skill multimap υ and υ̃ be defined by

υ(1) = {{s, t}, {t, u}}, υ(2) = {{t}, {t, u}}, υ(3) = {{u}}.
υ̃(1) = {{s, t}, {t, u}}, υ̃(2) = {{t}}, υ̃(3) = {{u}}.
Note that the skill multimap υ does not satisfy the incompara-

ility condition as the two competencies in υ(2) are nested. The
kill multimap υ̃ is a skill function, and υ̃ is called a reduction of
[35]. We usually use the skill multimap with incomparability

ondition. The detailed description and background of KST can be
een in Refs. [31,33,35].
Therefore, for any p ∈ I, S ∈ υ(p) is a minimal subset of
to solve it. Then, one needs to master at least all the skills

f one competency S to solve p. For S ⊆ T , in ideal conditions
i.e., there are no careless errors or lucky guesses), we denote that
(S) = {p ∈ I | ∃C ∈ υ(p), C ⊆ S}, then P(S) is a knowledge state
nduced by S via υ . Through all subsets S ⊆ T , the collection of all
nowledge states is P , and (I,P) is called a knowledge structure
nduced by υ , where P includes ∅ and I . Usually P is called a
nowledge structure.
The skill subset S ⊆ T that one has mastered is defined as a

ompetence state. Let T be the collection of all competence states.
T , T ) is called as a competence structure, where T includes ∅ and
. In this paper, the power set 2T is considered as a competence
tructure. Then, S (S ⊆ T ) is a competence state. In Cb-KST,
nowledge and skills can be reflected by knowledge state and
ompetence state.

xample 2.1. Let (I1, T1, υ) be a skill multimap, where I1 =
1, 2, 3, 4}, T1 = {t, s, r, v}, υ(1) = {{s, r}, {r, v}}, υ(2) =
{t, s}, {t, r}}, υ(3) = {{r}}, υ(4) = {{t}}. Let S = {s, r} be a
ompetence state, and P(S) = {p ∈ I1 | ∃C ∈ υ(p), C ⊆ S}
e a knowledge state induced by S via υ . For {s, r} ∈ υ(1), and
s, r} ⊆ S, then 1 ∈ P(S). For {r} ∈ υ(3), and {r} ⊆ S, then
∈ P(S). Therefore, P(S) = {1, 3} is the knowledge state induced
y S. Through all subsets S ⊆ T1, the knowledge structure induced
y υ is P1 = {∅, {3}, {4}, {1, 3}, {2, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

.2.1. Knowledge structure induced by the conjunctive model of skill
ap
Let (I, T , τ ) be the conjunctive model of skill map. For p ∈

, ∅ ⊂ C ⊆ T , and τ (p) = C , then s ∈ C if and only if
p, s) ∈ R, the conjunctive model of skill map can be converted
o a formal context (I, T , R), which is named a skill context.
n a skill context (I, T , R), the attribute-oriented formal concept
attice formed by the operators ‘‘⋄’’ and ‘‘□’’ of Definition 2.2 is
T (I, T , R). The pair (P, S) ∈ LT (I, T , R) is called a competence-
ased concept (Cb-concept), which is combined by knowledge
tate P and competence state S. Knowledge state P is induced by
ompetence state S via τ . In a skill context (I, T , R), for any p ∈ I
nd τ (p) = C , there is p⋄ = C .

emma 2.3 ([48]). Let (I, T , τ ) be the conjunctive model of skill map,
nd (I, T , R) is a skill context corresponding with (I, T , τ ). For any
P, S) ∈ LT (I, T , R), P is the knowledge state induced by S via τ , then
= {P | (P, S) ∈ L (I, T , R)} is a simple closure space.
T

4

Table 1
The skill context (I2, T2, R).
I2\T2 t s r v w

1 0 1 1 1 1
2 0 1 1 0 0
3 1 0 0 0 1
4 0 1 0 0 0
5 1 1 0 0 1

Lemma 2.4 ([48]). Let (I, T , τ ) be the conjunctive model of skill map,
nd (I, T , R) is a skill context corresponding with (I, T , τ ). For any

(P, S) ∈ LT (I, T , R), S is the minimal competence state which can
nduce the knowledge state P.

roposition 2.1. Let (I, T , τ ) be the conjunctive model of skill map,
nd (I, T , R) is a skill context corresponding with (I, T , τ ). For any
P, S) ∈ LT (I, T , R), P is the maximal knowledge state induced by
he competence state S.

roof. Let P ⊂ P ′ ⊆ I , and P, P ′ are knowledge states induced by
. Then there is a p ∈ P ′ and p /∈ P , which makes C ⊆ S, where
⊂ τ (p) = C ⊆ T . Then p ∈ P(S) = {p ∈ I | τ (p) = C ⊆ S}, it

s a contradiction with p /∈ P . Thus, P is the maximal knowledge
tate induced by competence state S.

Therefore, Proposition 2.1 can be proven from the perspective
f the generation of knowledge states. By combining Lemma 2.4
nd Proposition 2.1, if one acquires a Cb-concept, then one can
olve the most items with the least amount of skills.

xample 2.2. Let (I2, T2, τ ) be the conjunctive model of skill map,
here I2 = {1, 2, 3, 4, 5}, T2 = {t, s, r, v, w}, τ (1) = {s, r, v, w},

τ (2) = {s, r}, τ (3) = {t, w}, τ (4) = {s}, τ (5) = {t, s, w}. The skill
context (I2, T2, R) corresponding with (I2, T2, τ ) is in Table 1.

Thus, the attribute-oriented formal concept lattice of the skill
context (I2, T2, R) is:

LT (I2, T2, R) = {(∅,∅), (4, s), (3, tw), (24, sr), (345, stw),
(124, srvw), (2345, strw), (12345, tsrvw)}. For a Cb-concept
(24, sr), 24 represents the knowledge state P = {2, 4}, sr means
that the competence state is S = {s, r}. The knowledge structure
induced by τ is P2 = {∅, {3}, {4}, {2, 4}, {3, 4, 5}, {1, 2, 4}, {2, 3,
4, 5}, {1, 2, 3, 4, 5}}.

2.2.2. Knowledge structure induced by a skill multimap
Let (I, T , υ) be a skill multimap, and r =

∏
p∈I |υ(p)|. When

r > 1, the skill multimap can be decomposed into r conjunc-
tive model of skill maps, i.e., the skill multimap (I, T , υ) can be
decomposed into r skill contexts.

Definition 2.6 ([48]). Let (I, T , υ) be a skill multimap, and r =∏
p∈I |υ(p)|. Then the skill multimap (I, T , υ) can be decomposed

into skill contexts (I, T , Rk) (k = 1, 2, . . . , r). Let
(D1) L(I, T , υ) =

⋃r
k=1 LT (I, T , Rk).

(D2) Lυ (I, T , υ) = {(
⋃m

k=1 Pi, S) | (Pi, Si) ∈ L(I, T , υ), S = S1 =
· · · = Sm, 1 ⩽ m ⩽ r}.

Lemma 2.5 ([48]). Let (I, T , υ) be a skill multimap. For any (P, S) ∈
Lυ (I, T , υ), the knowledge state P is induced by the competence state
S via υ , then P = {P | (P, S) ∈ Lυ (I, T , υ)} is a knowledge structure
induced by υ .

Example 2.3. In Example 2.1, for the skill multimap (I1, T1, υ),
and r =

∏
p∈I |υ(p)| = 4. Then the skill multimap (I1, T1, υ) can

be decomposed into 4 conjunctive model of skill maps, which are

listed as follows:
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(1) The skill map (I1, T1, τ1), where τ1(1) = {s, r}, τ1(2) =
t, s}, τ1(3) = {r}, τ1(4) = {t}.

(2) The skill map (I1, T1, τ2), where τ2(1) = {s, r}, τ2(2) =
t, r}, τ2(3) = {r}, τ2(4) = {t}.

(3) The skill map (I1, T1, τ3), where τ3(1) = {r, v}, τ3(2) =
t, s}, τ3(3) = {r}, τ3(4) = {t}.

(4) The skill map (I1, T1, τ4), where τ4(1) = {r, v}, τ4(2) =
t, r}, τ4(3) = {r}, τ4(4) = {t}.

Therefore, the skill multimap (I1, T1, υ) can be converted to
our skill contexts. Then by Definition 2.6 and Lemma 2.5 :
(I1, T1, υ) = {(∅,∅), (3, r), (4, t), (24, st), (13, sr), (13, rv), (34,
r), (234, tr), (234, str), (134, trv), (1234, str), (1234, trv), (1234,
srv)}.

Lυ (I1, T1, υ) = {(∅,∅), (3, r), (4, t), (24, st), (13, sr), (13, rv),
234, tr), (1234, str), (1234, trv), (1234, tsrv)}. and the knowle-
ge structure induced by (I1, T1, υ) is P3 = {∅, {3}, {4}, {1, 3},
2, 4}, {2, 3, 4}, {1, 2, 3, 4}}. And it is consistent with Example 2.1.

. A competence-based concept-cognitive learning model (Cb-
CLM)

One needs skills such as calculation, reasoning and imagina-
ion thinking, to solve some specific problems. Therefore, the
oncept-cognitive learning process is always companied with
kill learning. One can obtain the knowledge state based on
he responses to some items. Only when one learns and gets
he effective skills [50], the knowledge state will change. From
emma 2.4 and Proposition 2.1, when the skill set and the item
et form a Cb-concept in a skill context, one can acquire the most
tems with the least amount of skills. In this case, the skills are
ecessary and sufficient for the knowledge from the view of a
b-concept. Then, one masters certain skills or laws of things
i.e., Cb-concepts). When the skill set and the item set cannot
orm a Cb-concept, the skills may be too much, too little, or
nable to solve the items. Therefore, the skills may be necessary,
ufficient, or neither necessary nor sufficient for the knowledge.
s analyzed above, there is a sufficient and necessary relationship
etween skills and knowledge.
In general, the concept-cognitive learning process starts with

nknown knowledge or skills, or inconsistent information. One
ay learn and master some simple skills, and gradually improve

he skills. Consequently, one can obtain the sufficient or necessary
kills for the knowledge little by little, and finally master the
ufficient and necessary skills for solving the problems. As skills
re learned and mastered, more knowledge will be obtained and
ore problems will be solved. Intrinsically, a cognitive learning
rocess based on a skill context is the changes between the item
ets and the skill sets. In the other words, the concept-cognitive
earning process needs to consider the sufficient and necessary
elationship between the item sets and the skill sets, and use
he transformation between them to judge and solve problems.
herefore, two operators between knowledge and skills are pro-
osed to construct a new concept-cognitive learning model with
kills.
Let I and T be two nonempty finite sets of items and skills,

espectively. Denote L1 = 2I and L2 = 2T , respectively. For
1, p2 ∈ L1 and s1, s2 ∈ L2, we define ‘‘ ⩽ ’’, ‘‘∧’’ and ‘‘∨’’ as follows:
p1 ⩽ p2 (s1 ⩽ s2)⇔ p1 ⊆ p2 (s1 ⊆ s2),
p1 ∧ p2 (s1 ∧ s2)⇔ p1 ∩ p2 (s1 ∩ s2),
p1 ∨ p2 (s1 ∨ s2)⇔ p1 ∪ p2 (s1 ∪ s2).
It is easy to verify that (L1,⩽) and (L2,⩽) are complete lattices.

or convenience, denote L1 and L2 as two complete lattices of
tems and skills, respectively. Denote 0L and 1L as the bottom

lement and the top element of complete lattice L. p

5

efinition 3.1. Let L1 and L2 be two nonempty finite complete
attices of items and skills, respectively. For p1, p2 ∈ L1 and
s1, s2 ∈ L2, F : L1 → L2 and G : L2 → L1 are two dual
ompetence-based cognitive learning operators, if F and G satisfy:
(1) F (0L1 ) = 0L2 , F (1L1 ) = 1L2 .
(2) F (p1 ∨ p2) = F (p1) ∨ F (p2).
(3) G(0L2 ) = 0L1 ,G(1L2 ) = 1L1 .
(4) G(s1 ∧ s2) = G(s1) ∧ G(s2).

Definition 3.2. A quadruple (L1, L2, F ,G) is a competence-based
concept-cognitive learning model (Cb-CCLM), if F and G are two
dual competence-based cognitive learning operators, and satisfy:

(1) G ◦ F (p) ⩾ p,
(2) F ◦ G(s) ⩽ s, where G ◦ F (p) and F ◦ G(s) represent G(F (p))

nd F (G(s)), respectively.
The two operators F and G can characterize the changes be-

ween the knowledge and skills in the cognitive process of the
b-CCLM.

emark 3.1. (1) For p ∈ L1, then F (p) ∈ L2 represents the
inimal skill set related to solve the items of p. For s ∈ L2, then
(s) ∈ L1 contains the items which can be solved by s. (2) In fact,
L1 = ∅, 1L1 = I , 0L2 = ∅ and 1L2 = T . Obviously, if p = 0L1 ,
.e., p = ∅, then one does not master any skills of T , and F (p) = ∅.
hus, F (0L1 ) = 0L2 . If p = 1L1 , i.e., p = I , then one must master
ll skills of T , and F (p) = T . Thus, F (1L1 ) = 1L2 . On the other
and, if s = 0L2 , i.e., s = ∅, then one can not solve any items of
, and G(s) = ∅. Thus, G(0L2 ) = 0L1 . If s = 1L2 , i.e., s = T , then
ne can solve all items of I , and G(s) = I . Thus, G(1L2 ) = 1L1 . (3)
or any p1, p2 ∈ L1, then p1 ∨ p2 ∈ L1. The skills which solve the
tems of p1 ∨ p2 can solve the items of p1 or p2. Thus, F (p1 ∨ p2)
s in F (p1) or F (p2), then F (p1 ∨ p2) ⩽ F (p1) ∨ F (p2). On the other
and, the skills of F (p1) and F (p2) can solve the items of p1 and p2
espectively. Then, F (p1) and F (p2) can solve the items of p1 or p2,
.e., F (p1)∨ F (p2) ⩽ F (p1 ∨ p2). Thus, F (p1 ∨ p2) = F (p1)∨ F (p2). It
eans that the more items require more skills for solving them.
r when two individuals learn together, their skills will enhance.
or s1, s2 ∈ L2, then s1∧s2 ∈ L2. The items solved by skills of s1∧s2
re clearly in G(s1)∧G(s2). Moreover, the items solved by s1 and s2
re in G(s1)∧G(s2), and the skills of s1 ∧ s2 can solve the items of
(s1)∧G(s2). Then G(s1∧ s2) = G(s1)∧G(s2). Thus, the operators F
nd G of Cb-CCLM can reflect the relationship between knowledge
nd skills from the view of competences.
The two operators F and G have some important properties.

roposition 3.1. Let (L1, L2, F ,G) be a Cb-CCLM. For any p, p1, p2 ∈
1 and s, s1, s2 ∈ L2, the Cb-CCLM has the following properties:
(1) If p1 ⩽ p2, then F (p1) ⩽ F (p2).
(2) If s1 ⩽ s2, then G(s1) ⩽ G(s2).
(3) F (p1 ∧ p2) ⩽ F (p1) ∧ F (p2).
(4) G(s1 ∨ s2) ⩾ G(s1) ∨ G(s2).
(5) F ◦ G ◦ F (p) = F (p).
(6) G ◦ F ◦ G(s) = G(s).
(7) F (p) ⩽ s⇔ p ⩽ G(s).

roof. (1) For any p1, p2 ∈ L1, if p1 ⩽ p2, by Definition 3.1, then
(p2) = F (p1 ∨ p2) = F (p1) ∨ F (p2), Therefore, F (p1) ⩽ F (p2).
(2) It can be proven similarly to (1).
(3) For p1 ∧ p2 ⩽ p1 and p1 ∧ p2 ⩽ p2, by (1), then F (p1 ∧ p2) ⩽

(p1), and F (p1 ∧ p2) ⩽ F (p2). Thus, F (p1 ∧ p2) ⩽ F (p1) ∧ F (p2).
(4) It can be proven similarly to (3).
(5) For (L1, L2, F ,G) is a Cb-CCLM, by Definition 3.2, there is
◦ F (p) ⩾ p, then F ◦ G ◦ F (p) ⩾ F (p) by (1). For F ◦ G(s) ⩽ s, we

ake s = F (p), then F ◦ G ◦ F (p) ⩽ F (p). Thus, F ◦ G ◦ F (p) = F (p).
(6) We can proof it similarly to (5).
(7) If F (p) ⩽ s, then G ◦ F (p) ⩽ G(s) by (2). By Definition 3.2,

hen G ◦ F (p) ⩾ p. Therefore, p ⩽ G(s). In the similar manner, if

⩽ G(s), then F (p) ⩽ s. Thus, F (p) ⩽ s⇔ p ⩽ G(s).
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roposition 3.2. Let (I, T , R) be a skill context, where I = {i1, i2,
. . , in} and T = {t1, t2, . . . , tm}. If L1 = 2I and L2 = 2T , then the
perators ‘‘⋄’’ and ‘‘□’’ defined by Definition 2.2 are the two dual
ompetence-based cognitive learning operators of (I, T , R).

roof. For p1, p2 ∈ L1, and s1, s2 ∈ L2, we can obtain that the
perators ‘‘⋄’’ and ‘‘□’’ satisfy the properties:
(1) ∅⋄ = ∅, I⋄ = T , (2) (p1∪p2)⋄ = p⋄1 ∪p

⋄

2 , (3) ∅
□
= ∅, T□

= I ,
4) (s1 ∩ s2)□ = s□1 ∩ s□2 .

Then by Definition 3.1, the operators ‘‘⋄’’ and ‘‘□’’ are the two
ual competence-based cognitive learning operators of (I, T , R).

emark 3.2. From Proposition 3.2, ‘‘⋄’’ and ‘‘□’’ are the two
perators of Definition 3.1 in a skill context. With the results of
emma 2.4 and Proposition 2.1, if (P, S) is a Cb-concept, then P
s the maximal item set induced by the minimal skill set S. And
he skills of S are called necessary and sufficient for P from the
erspective of Cb-concepts.

xample 3.1. Let I = {i1, i2, i3, i4}, T = {r, t, v, s}, where i1 : 3+4,
2 : 3× 2− 5, i3 : 10

2 + 3, i4 : 1
10 +

2
5 , r :addition, t : subtraction,

: multiplication, and s : division. The conjunctive model of skill
ap (I, T , τ ) is to calculate the value of the items, where τ (i1) =

r}, τ (i2) = {t, v}, τ (i3) = {r, s}, τ (i4) = {r, v, s}. The competence-
ased cognitive learning operators F and G are taken as ‘‘⋄’’ and
‘□’’ in this Cb-CCLM. For {r, s}□ = {i1, i3} and {i1, i3}⋄ = {r, s},
hen (i1i3, rs) is a Cb-concept. Therefore, the skills r and s are
he least amount skills for solving the item set {i1, i3}, and {i1, i3}
as the maximal amount items solved by the skill set {r, s}. And
he skill set {r, s} is sufficient and necessary for solving {i1, i3}.
therwise, for the skill set {r} is needed, but not enough for
olving {i1, i3}. Then, {r} is a sufficient skill set for {i1, i3}. For the
kill set {r, t, s} is too much for solving {i1, i3}, where the skill
is not needed, then {r, t, s} is called as a necessary skill set of
i1, i3}. The skill set {v} can not solve {i1, i3}, then {v} is nether
ufficient nor necessary for solving {i1, i3}. Thus, if the item set P
nd the skill set S have not been a Cb-concept, then the skills
f S may be too much, too little, or unable to solve the item
et P . Thus, the skills of S are necessary, sufficient, or neither
ecessary nor sufficient for P . At this time, one does not complete
he cognitive learning. In conclusion, the operators ‘‘⋄’’ and ‘‘□’’
an reflect the relationship between knowledge and skills in a
kill context, and there is a necessary and sufficient relationship
etween knowledge and skills.

. Transformation between competence-based information
ranules in a Cb-CCLM

.1. Competence-based information granules of a Cb-CCLM

As analyzed above, there is a necessary and sufficient re-
ationship between knowledge and skills. If the skills are not
ecessary and sufficient for the problems, then one does not
btain the minimal skill set for the most knowledge. In the
oncept-cognitive learning processes, the knowledge and skills
ill change. In essence, the cognitive learning processes of Cb-
CLM can be reflected by the changes between the item sets
nd the skill sets. In this section, we will discuss the relation-
hip between knowledge and skills in the cognitive process with
ranular computing. Then, an information granule structure is
onstructed by the sufficient and necessary relationship between
kills and knowledge in the Cb-CCLM. To characterize the gran-
le description of the Cb-CCLM, a pair (p, s) is denoted as an
nformation granule, where p is an item set and s is a skill set.
6

efinition 4.1. Let (L1, L2, F ,G) be a Cb-CCLM. For any p ∈ L1 and
∈ L2, we denote two sets as follows:
N = {(p, s)|s ⩾ F (p), p ⩽ G(s)},
S = {(p, s)|s ⩽ F (p), p ⩾ G(s)}.
(1) If (p, s) ∈ N , then (p, s) is a necessary competence-based

nformation granule of this Cb-CCLM, s is a necessary skill set of
, and N is a necessary competence-based information granules
et of this Cb-CCLM.
(2) If (p, s) ∈ S , then (p, s) is a sufficient competence-based

nformation granule of this Cb-CCLM, s is a sufficient skill set of
, and S is a sufficient competence-based information granules
et of this Cb-CCLM.
(3) If (p, s) ∈ N ∩ S , i.e., (p, s) satisfies s = F (p) and p =

(s), then (p, s) is a sufficient and necessary competence-based
nformation granule of this Cb-CCLM, and s is a sufficient and
ecessary skill set of p. In this case, (p, s) is a competence-based
ognitive concept.
(4) If (p, s) ∈ N ∪ S , then (p, s) is a consistent information

ranule of this Cb-CCLM.
(5) If (p, s) /∈ N ∩ S , then (p, s) is an inconsistent information

granule of this Cb-CCLM.

Remark 4.1. (1) If an information granule (p, s) satisfies Propo-
sition 3.1 (7), then (p, s) ∈ N . If an information granule (p, s)
satisfies the inverse negative statement of Proposition 3.1 (7),
then (p, s) ∈ S. Therefore, only information granule sets N
and S are used to categorize the information granules. (2) If an
information granule (p, s) ∈ N , then p ⩽ G(s) and s ⩾ F (p).
Thus, the items solved by s will be more than the items of p,
and the more effective skills [50] will be required for solving
them. Only when one learns and masters the effective skills, the
item set will change. It means that s is a necessary skill set for
solving p. If an information granule (p, s) ∈ S , then s ⩽ F (p)
and p ⩾ G(s). Similarly, s is a sufficient skill set for solving p.
If an information granule (p, s) is a necessary competence-based
information granule or sufficient competence-based information
granule, then (p, s) is a consistent information granule. If an
information granule (p, s) /∈ N ∩ S , then the skill set s is neither
sufficient nor necessary for solving p, and (p, s) is an inconsistent
information granule.

Example 4.1. For the conjunctive model of skill map (I, T , τ )
of Example 3.1, the information granule (i1, rv) means that the
item set is {i1} and the skill set is {r, v}. In fact, if the skill
set is {r, v}, then one can only solve {i1}. But if the item set is
{i1}, the minimal skill set is {r}. Therefore, (i1, rv) is not a Cb-
concept. For {i1}⋄ = {r} ⊆ {r, v} and {r, v}□ = {i1} ⊆ {i1}.
hen, the information granule (i1, rv) is a necessary competence-
ased information granule, and {r, v} is a necessary skill set for
olving {i1}, where the skill v is not needed to solve {i1}. For the
nformation granule (i1i2, r), where {i1, i2}⋄ = {r, t, v} ⊇ {r} and
□
= {i1} ⊆ {i1, i2}, then (i1i2, r) is a sufficient competence-

ased information granule, and {r} is a sufficient skill set for
i1, i2}. Thus, (i1, rv) and (i1i2, r) are consistent competence-based
nformation granules. For the information granule (i3, rv), where
i3}⋄ = {r, s} ⊋ {r, v} and {i3}⋄ ⊊ {r, v}, then (i3, rv) is
either a sufficient competence-based information granule, nor
necessary competence-based information granule, and {r, v} is
either sufficient nor necessary for {i3}. Thus, (i3, rv) is an in-
onsistent competence-based information granule. In conclusion,
he information granules (i1, rv), (i1i2, r), (i3, rv) are not sufficient
nd necessary competence-based information granules, i.e., they
re not competence-based cognitive concepts.
In general, sufficient and necessary competence-based infor-

ation granules do not exist at the beginning of cognitive learn-
ng process. One may start from an unknown knowledge or skills,
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r an inconsistent information granule, then one can try to obtain
onsistent information granules, which may be necessary or suf-
icient competence-based information granules. Through further
ognitive learning with skills, one can acquire some sufficient and
ecessary competence-based information granules.
Through Proposition 3.2, a sufficient and necessary compet-

nce-based information granule of Cb-CCLM is actually a Cb-
oncept in a skill context.

roposition 4.1. Let (I, T , R) be a skill context, where I =
i1, i2, . . . , in} and T = {t1, t2, . . . , tm}. For any P ⊆ I and S ⊆ T ,
then

(1) If P⋄ ⊆ S and P ⊆ S□, then S is a necessary skill set of P.
(2) If P⋄ ⊇ S and P ⊇ S□, then S is a sufficient skill set of P.
(3) If P⋄ = S and P = S□, then S is a sufficient and necessary

skill set of P.

Proof. It is obtained by Definition 4.1 and Proposition 3.2.

Proposition 4.2. Let (I, T , R) be a skill context. For P ⊆ I and
S ⊆ T ,

(1) If P⋄ ⊆ S, P ⊆ S□, then (P
⋃

S□, (P
⋃

S□)⋄), ((S
⋂

P⋄)□,

S
⋂

P⋄) are Cb-Concepts.
(2) If P⋄ ⊇ S, P ⊇ S□, then (P

⋂
S□, (P

⋂
S□)⋄),

((S
⋃

P⋄)□, S
⋃

P⋄) are Cb-Concepts.

Proof. We can proof it through Definition 2.3.
For (p1, s1), (p2, s2) ∈ N

⋃
S , ‘‘⪯’’ is defined with (p1, s1) ⪯

(p2, s2) ⇔ p1 ⩽ p2 (s1 ⩽ s2). The operators ‘‘∧G ’’ and ‘‘∨G ’’ are
defined, and

(p1, s1) ∧G (p2, s2) = (p1 ∧ p2, F ◦ G(s1 ∧ s2)),
(p1, s1) ∨G (p2, s2) = (G ◦ F (p1 ∨ p2), s1 ∨ s2).

Proposition 4.3. Let (L1, L2, F ,G) be a Cb-CCLM, N , S be a neces-
sary and a sufficient competence-based information granules set of
this Cb-CCLM, respectively. Then,

(1) (N ,⪯) is closed under the operators ‘‘∨G ’’ and ‘‘∧G ’’.
(2) (S,⪯) is closed under the operators ‘‘∨G ’’ and ‘‘∧G ’’.

Proof. (1) Let (p1, s1), (p2, s2) ∈ N , then s1 ⩾ F (p1), p1 ⩽ G(s1),
s2 ⩾ F (p2) and p2 ⩽ G(s2). Then p1 ∧ p2 ⩽ G(s1) ∧ G(s2) =
G(s1 ∧ s2) = G ◦ F ◦ G(s1 ∧ s2). Moreover, using Definition 3.1 and
Proposition 3.1, there is F (G(s1 ∧ s2)) = F (G(s1) ∧ G(s2)) ⩾ F (p1 ∧
p2), Thus, (p1, s1) ∧G (p2, s2) ∈ N . Then, (p1, s1) ∨G (p2, s2) ∈ N
can be proven similarly.

(2) Let (p1, s1), (p2, s2) ∈ S , then s1 ⩽ F (p1), p1 ⩾ G(s1),
s2 ⩽ F (p2) and p2 ⩾ G(s2), then p1 ∧ p2 ⩾ G(s1) ∧ G(s2) =
G(s1 ∧ s2) = G ◦ F ◦ G(s1 ∧ s2). Moreover, using Definition 3.1 and
Proposition 3.1, then F (G(s1 ∧ s2)) = F (G(s1)∧G(s2)) ⩽ F (p1 ∧ p2).
Thus, (p1, s1) ∧G (p2, s2) ∈ S. Then, (p1, s1) ∨G (p2, s2) ∈ S can be
roven similarly.

According to Proposition 4.3, ‘‘⪯’’ is a quasi-order relationship
n (N ,⪯) and (S,⪯) with respect to the operators ‘‘∧G ’’ and
‘∨G ’’. Therefore, (N ,⪯) and (S,⪯) are ‘‘quasi lattices’’. In Exam-
le 2.2, part of necessary competence-based information granules
f N are shown in Fig. 2, part of sufficient competence-based
nformation granules of S are shown in Fig. 3.

.2. Transformation of information granules based on a conjunctive
odel of skill map

In the Cb-CCLM, one always begins to learn from unknown
nowledge or skills, or one does not have consistent information
ranules at the beginning of CCLM. In general, one can start
rom indirect relationship between the item sets and the skill
7

Fig. 2. Part of necessary competence-based information granules in N .

Fig. 3. Part of sufficient competence-based information granules in S.

ets, and try to acquire some necessary or sufficient competence-
ased information granules in the concept-cognitive learning pro-
ess, then finally obtain the sufficient and necessary competence-
ased information granules. Therefore, a transformation method
etween information granules is presented to convert a general
nformation granule into sufficiency and necessary competence-
ased information granules.

roposition 4.4. Let (L1, L2, F ,G) be a Cb-CCLM, and N be a nec-
ssary competence-based information granules set of this Cb-CCLM.
f p ∈ L1 and s ∈ L2, then

(N1) (p ∧ G(s), F (p) ∧ s) ∈ N .
(N2) (p ∨ G(s), F (p) ∨ s) ∈ N .
(N3) (p ∧ G(s), F (p)) ∈ N .
(N4) (G(s), F (p) ∨ s) ∈ N .
(N5) (G ◦ F (p), F (p) ∨ s) ∈ N .
(N6) (p ∧ G(s), F ◦ G(s)) ∈ N .

roof. (N1) Because (L1, L2, F ,G) is a Cb-CCLM, from Defini-
ions 3.1, 3.2, 4.1, and Proposition 3.1, there are: F (p ∧ G(s)) ⩽

(p)∧F (G(s)) ⩽ F (p)∧s, and G(F (p)∧s) = G(F (p))∧G(s) ⩾ p∧G(s).
hen (p ∧ G(s), F (p) ∧ s) ∈ N .
(N2) We can proof it similarly to (N1).
(N3) Because (L1, L2, F ,G) is a Cb-CCLM, from Definitions 3.1,

.2, 4.1, and Proposition 3.1, there are: F (p ∧ G(s)) ⩽ F (p) ∧
(G(s)) ⩽ F (p), and G(F (p)) ⩾ p ⩾ p∧ G(s). Then (p∧ G(s), F (p)) ∈
.
(N4) We can proof it similarly to (N3).
(N5) Because (L1, L2, F ,G) is a Cb-CCLM, from Definitions 3.1,

.2, 4.1, and Proposition 3.1, there are: F◦G◦F (p) = F (p) ⩽ F (p)∨s,
nd G(F (p)∨s) ⩾ G(F (p))∨G(s) ⩾ G◦F (p). Then (G◦F (p), F (p)∨s) ∈

N .
(N6) We can proof it similarly to (N5).
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roposition 4.5. Let (L1, L2, F ,G) be a Cb-CCLM, and S be a suffi-
cient competence-based information granules set of this Cb-CCLM. If
p ∈ L1 and s ∈ L2, then

(S1) (G ◦ F (p), F (p) ∧ s) ∈ S .
(S2) (p ∨ G(s), F ◦ G(s)) ∈ S .

Proof. (S1) Because (L1, L2, F ,G) is a Cb-CCLM, from Definitions 3.1
3.2 and 4.1, and Proposition 3.1, there are: F ◦ G ◦ F (p) = F (p) ⩾
F (p) ∧ s, and G(F (p) ∧ s) = G(F (p)) ∧ G(s) ⩽ G ◦ F (p). Then
(G ◦ F (p), F (p) ∧ s) ∈ S.

(S2) We can proof it similarly to (S1).

Proposition 4.6. Let (L1, L2, F ,G) be a Cb-CCLM, N , S be a neces-
sary and a sufficient competence-based information granules set of
this Cb-CCLM, respectively. If p ∈ L1, s ∈ L2 and (p, s) ∈ N , then

(NS1) (G(F (p) ∧ s), F (p) ∧ s) ∈ N ∩ S .
(NS2) (p ∨ G(s), F (p ∨ G(s))) ∈ N ∩ S .

Proof. (NS1) If (p, s) ∈ N , then F (p) ⩽ s and G(s) ⩾ p. Thus,
F (p) ∧ s = F (p), and G(F (p) ∧ s) = G ◦ F (p). Because (L1, L2, F ,G)
is a Cb-CCLM, from Definition 4.1 and Proposition 3.1, there is:
F (G(F (p) ∧ s)) = F ◦ G ◦ F (p) = F (p) = F (p) ∧ s. Thus,
(G(F (p) ∧ s), F (p) ∧ s) ∈ S. Then, (G(F (p) ∧ s), F (p) ∧ s) ∈ N ∩ S.

(NS2) We can proof it similarly to (NS1).

Proposition 4.7. Let (L1, L2, F ,G) be a Cb-CCLM, N , S be a neces-
sary and a sufficient competence-based information granules set of
this Cb-CCLM, respectively. If p ∈ L1, s ∈ L2 and (p, s) ∈ S , then

(SN1) (G(F (p) ∨ s), F (p) ∨ s) ∈ N ∩ S .
(SN2) (p ∧ G(s), F (p ∧ G(s))) ∈ N ∩ S .

Proof. (SN1) If (p, s) ∈ S , then F (p) ⩾ s and G(s) ⩽ p. Thus,
F (p) ∨ s = F (p) and G(F (p) ∨ s) = G(F (p)). Because (L1, L2, F ,G)
is a Cb-CCLM, from Definition 4.1 and Proposition 3.1, there is:
F (G(F (p) ∨ s)) = F ◦ G ◦ F (p) = F (p) = F (p) ∨ s. Thus,
(G(F (p) ∨ s), F (p) ∨ s) ∈ N . Then, (G(F (p) ∨ s), F (p) ∨ s) ∈ N ∩ S.

(SN2) We can proof it similarly to (SN1).

It is easy to find that there are two paths which can convert
an inconsistent information granule into sufficient and necessary
competence-based information granules. A path is called concept-
cognitive learning path 1 (CCLP-1), if necessary competence-
based information granules can be firstly gained from an
inconsistent competence-based information granule through six
approaches (N1)∼(N6), and they can be ultimately transformed
into sufficient and necessary competence-based information gran-
ules by two methods (NS1)∼(NS2). Concept-cognitive learning
path 2 (CCLP-2) is called that if an inconsistent information
granule can be converted into sufficient competence-based in-
formation granules by (S1)∼(S2), and they can be furthermore
converted into sufficient and necessary competence-based infor-
mation granules by (SN1)∼(SN2). The processes of CCLP-1 and
CCLP-2 are shown in Fig. 4 and 5, respectively.

In the CCLP-1, the number of sufficient and necessary
competence-based information granules generated from an in-
consistent granule is less than 12, while some of them are the
same. In the same way, it is easy to get that there are less than 4
Cb-concepts generated through CCLP-2. Thus, the total number of
sufficient and necessary competence-based information granules
is less than 16.

Remark 4.2. Essentially, the pair (F ,G) is (⋄,□) in a skill con-
text (I, T , R). Then, F and G are taken as ‘‘⋄’’ and ‘‘□’’ in the
following algorithms, respectively. In the skill context (I, T , R),
sufficient and necessary competence-based information granules
are Cb-concepts. Then, the concept-cognitive learning process of a
Cb-CCLM based on the conjunctive model of skill map is shown in
Algorithm 1. The flow diagram of Algorithm 1 is shown in Fig. 6.
8

Fig. 4. Transformation between information granules by CCLP-1.

Fig. 5. Transformation between information granules by CCLP-2.

Table 2
The skill mastery of knowledge state in (I2,P2).
P2\T2 t s r v w

∅ × × ×

{3} ✓ × ✓
{4} × ✓ × ×

{2, 4} × ✓ ✓ × ×

{3, 4, 5} ✓ ✓ × ✓
{1, 2, 4} × ✓ ✓ ✓ ✓
{2, 3, 4, 5} ✓ ✓ ✓ × ✓
{1, 2, 3, 4, 5} ✓ ✓ ✓ ✓ ✓

Remark 4.3. The time complexity of Algorithm 1 is analyzed
step by step. The numbers of items and skills are denoted by
|I| and |T |, respectively. Running step 3 takes O(max(|I||T | +
|I|, |I||T | + |T |)), running step 5 takes O(|I||T | + |I| + |T |), step 6
takes O(max(|I||T | + |I|, |I||T | + |T |)), so is that of steps 8–9, step
11 and step 13. Thus, the computational complexity of Algorithm
1 is O(|I||T | + |I| + |T |).

xample 4.2. Let p0 = {3}, s0 = {t, s} in Example 2.2. For
the information granule (3, ts), where {3}⋄ = {t, w} ⊋ {t, s},
{3}⋄ ⊊ {t, s}, {t, s}□ = {4} ⊋ {3} and {t, s}□ ⊊ {3}, then
(3, ts) is an inconsistent information granule. By CCLP-1, we
can transform (3, ts) into the necessary competence-based infor-
mation granules (∅, t), (∅, tw), (∅, s), (3, stw), (4, stw), (34, stw)
by (N1)∼(N6), then convert them into sufficient and necessary
competence-based information granules (∅,∅), (4, s), (3, tw),
(345, stw) by (NS1)∼(NS2). In the other way, by CCLP-2, (3, ts)
is transformed into the sufficient competence-based information
granules (3, t), (34, s) by (S1)∼(S2), and they can be further trans-
formed into sufficient and necessary competence-based infor-
mation granules (∅,∅), (4, s), (3, tw), (345, stw) by (SN1)∼(SN2).
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Algorithm 1 : Transformation of information granules in a Cb− CCLM based on the conjunctive model of skill map
Input : The conjunctive model of skill map (I, T , τ ) and a general information granule (p0, s0) in the Cb-CCLM.
Output : Sufficient and necessary competence-based information granules.

1 : (I, T , R)← (I, T , τ ).
2 : //Transform (p0, s0) into sufficient and necessary competence-based information granules.
3 : if (p0, s0) /∈ N ∪ S
4 : // Through CCLP-1
5 : (p0, s0)← (p11, s

1
1), . . . , (p

m
1 , sm1 ),m ⩽ 6 by (N1)∼(N6).

6 : (p11, s
1
1), . . . , (p

m
1 , sm1 )← (p12, s

1
2), . . . , (p

n
2, s

n
2), n ⩽ 12 by (NS1)∼(NS2).

7 : // Through CCLP-2
8 : (p0, s0)← (p13, s

1
3), . . . , (p

h
3, s

h
3), h ⩽ 2 by (S1)∼(S2).

9 : (p13, s
1
3), . . . , (p

h
3, s

h
3)← (p14, s

1
4), . . . , (p

t
4, s

t
4), t ⩽ 4 by (SN1) ∼(SN2).

10 : else if (p0, s0) ∈ N
11 : (p0, s0)← (p15, s

1
5), (p

2
5, s

2
5) by (NS1)∼(NS2).

12 : else
13 : (p0, s0)← (p16, s

1
6), (p

2
6, s

2
6) by (SN1)∼(SN2).

14 : end if
15 : end if
16 : // Return different sufficient and necessary competence-based information granules
17 : (p1, s1), . . . , (pl, sl)← (p12, s

1
2), . . . , (p

n
2, s

n
2), (p

1
4, s

1
4), . . . , (p

t
4, s

t
4),

18 : or (p15, s
1
5), (p

2
5, s

2
5), or (p

1
6, s

1
6), (p

2
6, s

2
6) .
Fig. 6. The flow diagram of Algorithm 1.
T
c

hus, through the two concept-cognitive learning paths, an incon-
istent information granule can be converted into necessary, suf-
icient, necessary and sufficient competence-based information
ranules (i.e., Cb-concepts).
From the skill context (I2, T2, R), we can obtain the mastery of

kills according to [48], which is shown in Table 2. In Table 2, ‘‘P
s’’ means that one with the knowledge state P has mastered the
kill s, and ‘‘P × s’’ means that one with the knowledge state P
oes not master the skill s, where P ∈ P2 and s ∈ T2.

Thus, if one owns the information granule (3, st), then one
oes not master the skill s. Otherwise, one can solve {s}□ = {4}.
urthermore, if one does not master the skill t and {3}⋄ = {t, w},
hen one can not solve {3}. Therefore, one with the information
ranule (3, st) has mastered the skill set {t}, but not the skill
et {s}. In the cognitive learning process, the existing skills can
e consolidated to make the basic foundation more solid, and
ew skills can be learned to solve new items. For the informa-
ion granule (3, st) can be transformed into four Cb-concepts
∅,∅), (4, s), (3, tw), (345, stw) in the concept-cognitive learning.
9

herefore, one can learn and master the skill s to get the Cb-
oncept (4, s). Or one can consolidate the skill t , learn and master
the skill w to get the Cb-concept (3, tw). Or one can consolidate
the skill t , learn and master the skills s, w to obtain the Cb-
concept (345, stw). In this case, one has three learning paths for
skill.

Similarly, another information granule (24, svw) can be trans-
formed into sufficient and necessary competence-based infor-
mation granules (∅,∅), (4, s), (24, sr), (124, srvw) by CCLP-1.
Through CCLP-2, (24, svw) can be transformed into sufficient and
necessary competence-based information granules (∅,∅), (4, s),
(24, sr). For the information granule (24, svw), and {2}⋄ ∩ {4}⋄ =
{s}, if one does not mastered the skill s, then one can not solve
{2} or {4}. Thus, one has master at least the skill s. However, for
{2, 4}⋄ = {s, r} and the skills v, w are not needed to solve {2, 4},
then we can not deduce whether one has learned and mastered
the skills v, w. Thus, one with the granule (24, svw) has mastered
the skill set {s} and solved {4}. And then, one can consolidate
the skill s, learn and master the skill r to obtain the Cb-concept
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Fig. 7. The skill learning paths diagram obtained from information granules.
Fig. 8. The flow diagram of Algorithm 2.
24, sr). Or one can consolidate the skill s, learn and master the
kills r, v, w to acquire the Cb-concept (124, srvw). Thus, one
ith the information granule (24, svw) has two learning paths

or skill. The skill learning paths of information granules (3, ts)
and (24, svw) are shown in Fig. 7, respectively.

According to Ausubel, concept learning is an advanced form
of meaningful learning, and it is to master the common key char-
acteristics of similar things essentially. Any meaningful learning
involves the transfer of the cognitive structure [51]. Through the
transformation between information granules of the Cb-CCLM,
one can obtain several sufficient and necessary competence-
based information granules (i.e., Cb-concepts) transformed from
a general information granule, and the obtained Cb-concepts can
guide one to learn further. In fact, (1) if the initial information
granule is a Cb-concept, then the number of Cb-concepts obtained
by Algorithm 1 is only one, which is the initial information
granule itself. At this time, one has obtained the sufficient and
necessary competence-based information granule, and one has
grasped the sufficient and necessary skills for the knowledge.
10
(2) If the initial information granule is a sufficient or necessary
competence-based information granule, then the number of the
obtained Cb-concepts is two. Therefore, one has two learning
schemes to learn further. (3) If the initial information granule
is an inconsistent information granule, then the number of the
obtained Cb-concepts is less than 16. Thus, one has more choices
for learning further. One can choose a desired learning path for
skill, and then one should learn, do some practices or tests with
the skills, and master them. In general, individuals with different
initial information granules will obtain different competence-
based cognitive concepts and learning paths for skill, such as the
two information granules (3, ts) and (24, svw). Thus, the obtained
Cb-concepts can guide one to realize personalized learning. If the
number of the obtained Cb-concepts is less, it is easier to choose
and obtain the learning paths for skill.

In conclusion, Algorithm 1 proposed in the paper can obtain
the cognitive concepts from the local subset of the concept lattice,
rather than the whole concept lattice or all granular concepts.
And we mainly focus on Algorithm 1 to obtain the Cb-concepts
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Algorithm 2 : Transformation of information granules in a Cb− CCLM based on a skill multimap
Input : A skill multimap (I, T , υ) and a general information granule (p0, s0) in the Cb-CCLM.
Output : Sufficient and necessary competence-based information granules.

1 : (I, T , Rk) (k = 1, 2, · · · , r)← (I, T , υ), where r =
∏

p∈I |υ(p)|.
2 : //Transform (p0, s0) into sufficient and necessary competence-based information granules in (I, T , Rk).
3 : for k = 1 : r
4 : if (p0, s0) /∈ Nk ∪ Sk
5 : // Through CCLP-1
6 : (p0, s0)← (p1k1, s

1
k1), . . . , (p

m
k1, s

m
k1),m ⩽ 6 by (N1)∼(N6).

7 : (p1k1, s
1
k1), . . . , (p

m
k1, s

m
k1)← (p1k2, s

1
k2), . . . , (p

n
k2, s

n
k2), n ⩽ 12 by (NS1)∼(NS2).

8 : // Through CCLP-2
9 : (p0, s0)← (p1k3, s

1
k3), . . . , (p

h
k3, s

h
k3), h ⩽ 2 by (S1)∼(S2).

10 : (p1k3, s
1
k3), . . . , (p

h
k3, s

h
k3)← (p1k4, s

1
k4), . . . , (p

t
k4, s

t
k4), t ⩽ 4 by (SN1) ∼(SN2).

11 : else if (p0, s0) ∈ Nk
12 : (p0, s0)← (p1k5, s

1
k5), (p

2
k5, s

2
k5) by (NS1)∼(NS2).

13 : else
14 : (p0, s0)← (p1k6, s

1
k6), (p

2
k6, s

2
k6) by (SN1)∼(SN2).

15 : end if
16 : end if
17 : end for
18 : Lυ (I, T , υ)← (p1k2, s

1
k2), . . . , (p

n
k2, s

n
k2), (p

1
k4, s

1
k4), . . . , (p

t
k4, s

t
k4),

19 : or (p1k5, s
1
k5), (p

2
k5, s

2
k5),or (p

1
k6, s

1
k6), (p

2
k6, s

2
k6), (k = 1, 2, · · · , r) through (D2).

20 : Return Lυ (I, T , υ)
i

Table 3
UCI data sets.
No Data sets |I| |T |

1 Zoo 101 17
2 Indian Liver Patient 583 9
3 Vowel-Context 990 14
4 Wdbc 569 30
5 Winequality-Red 1599 12
6 Winequality-White 4898 12
7 Waveform 5000 22
8 Sensor Readings 5456 24
9 Letter Recognition 20000 16
10 Sgemm Gpu 241600 17
11 Kdd Cup 494020 37
12 Fma 106574 518

and the learning paths for skill, rather than the choice of learning
paths for skill in this paper.

4.3. Transformation of information granules based on a skill mul-
timap

Let (I, T , υ) be a skill multimap, and r =
∏

p∈I |υ(p)|. Then
he skill multimap (I, T , υ) can be decomposed into r skill con-
exts (I, T , Rk) (k = 1, 2, . . . , r). The transformation between
nformation granules can be done in each skill context (I, T , Rk)
(k = 1, 2, . . . , r). Through CCLP-1 and CCLP-2, sufficient and nec-
essary competence-based information granules are formed from a
general information granule in each (I, T , Rk), then they are fused
according to Equation (D2) of Definition 2.6. Algorithm 2 is shown
as the concept cognitive learning process of the Cb-CCLM based
on a skill multimap. In Algorithm 2, let Nk and Sk be a necessary
and a sufficient competence-based information granules set in
the skill context (I, T , Rk) (k = 1, 2, . . . , r), respectively. The
flow diagram of Algorithm 2 is Fig. 8. By the computational
complexity analysis of Algorithm 1, the computational complexity
of Algorithm 2 is O(r(|I||T | + |I| + |T |)).

Example 4.3. Let p0 = {4}, s0 = {r} in Example 2.3. In the four
skill contexts, there are: 4⋄ ⊋ {r} and 4⋄ ⊊ {r}, thus (4, r) is an
11
Table 4
The skill contexts.
No Data sets |I| |T |

1 Zoo 101 17
2 Indian Liver Patient 583 9
3 Vowel-Context 990 14
4 Wdbc 569 30
5 Winequality-Red 1599 12
6 Winequality-White 4898 12
7 Waveform 5000 22
8 Sensor Readings 5456 24
9 Letter Recognition 20000 16
10 Sgemm Gpu 241600 17
11 Kdd Cup 494020 37
12 Fma 100000 1000

inconsistent information granule in the four skill contexts. By
CCLP-1, (4, r) is transformed into necessary competence-based
nformation granules (∅,∅), (∅, t), (∅, r), (34, tr), (3, tr), (4, tr),
which are transformed to sufficient and necessary competence-
based information granules (∅,∅), (4, t), (3, r), (34, tr), (234, tr).
Through Equation (D2) of Definition 2.6, the sufficient and nec-
essary information granules (∅,∅), (3, r), (4, t), (234, tr) are ob-
tained. Through CCLP-2, (4, r) is transformed to sufficient compet
ence-based information granules (4,∅), (34, r), which are con-
verted to sufficient and necessary competence-based information
granules (∅,∅), (4, t), (3, r), (34, tr), (234, tr). Finally, the suf-
ficient and necessary competence-based information granules
(∅,∅), (4, t), (3, r), (234, tr) are obtained by Equation (D2).

For another information granule (34, tv) in Example 2.3,
through CCLP-1, we can finally get the sufficient and necessary
competence-based information granules (4, t), (234, tr), (1234,
trv). By CCLP-2, the sufficient and necessary competence-based
information granules (4, t), (234, tr) can ultimately be obtained.
Thus, through CCLP-1 or CCLP-2, an inconsistent information
granule can be transformed into some sufficient and necessary
competence-based information granules (i.e., Cb-concepts). The
number of the Cb-concepts generated by CCLP-1 is not less than
that obtained by CCLP-2.
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Table 5
Number of the obtained Cb-concepts and running times of Algorithm 1.
No. Number of items CCLP-1 CCLP-2 Total number Running time(s) No. Number of items CCLP-1 CCLP-2 Total number Running time(s)

1

1− 20(20%) 4 4 4 0.00432

7

1− 1000(20%) 4 4 4 0.0272
1− 40(40%) 3 2 3 0.00428 1− 2000(40%) 4 4 4 0.0404
1− 60(60%) 5 4 5 0.00476 1− 3000(60%) 4 4 4 0.0506
1− 80(80%) 4 4 4 0.00497 1− 4000(80%) 4 4 4 0.0561
1− 101(100%) 6 4 6 0.00681 1− 5000(100%) 4 4 4 0.0615

2

1− 117(20%) 4 4 4 0.0083

8

1− 1091(20%) 4 4 4 0.0352
1− 234(40%) 4 4 4 0.0101 1− 2182(40%) 4 4 4 0.0537
1− 351(60%) 4 4 4 0.0121 1− 3273(60%) 4 4 4 0.0553
1− 468(80%) 5 4 5 0.0131 1− 4364(80%) 4 4 4 0.0610
1− 583(100%) 5 4 5 0.0144 1− 5456(100%) 4 4 4 0.1044

3

1− 198(20%) 3 2 3 0.0074

9

1− 4000(20%) 5 4 5 0.0592
1− 396(40%) 3 2 3 0.0098 1− 8000(40%) 5 4 5 0.1142
1− 594(60%) 3 2 3 0.0124 1− 12000(60%) 5 4 5 0.1647
1− 792(80%) 3 2 3 0.0140 1− 16000(80%) 5 4 5 0.2238
1− 990(100%) 3 2 3 0.0145 1− 20000(100%) 5 4 5 0.2400

4

1− 114(20%) 4 4 4 0.0148

10

1− 48320(20%) 4 4 4 15.3029
1− 228(40%) 5 4 5 0.0162 1− 96640(40%) 5 4 5 15.5732
1− 342(60%) 5 4 5 0.0180 1− 144960(60%) 5 4 5 15.9073
1− 456(80%) 5 4 5 0.0188 1− 193280(80%) 5 4 5 16.2036
1− 569(100%) 6 4 6 0.0208 1− 241600(100%) 4 4 4 16.6455

5

1− 320(20%) 5 4 5 0.0109

11

1− 98804(20%) 5 4 5 14.3099
1− 640(40%) 5 4 5 0.0133 1− 197608(40%) 6 4 6 15.4737
1− 960(60%) 4 4 4 0.0164 1− 296412(60%) 4 4 4 15.9403
1− 1280(80%) 4 4 4 0.0192 1− 395216(80%) 4 4 4 16.6587
1− 1599(100%) 5 4 5 0.0250 1− 494020(100%) 5 4 5 17.4045

6

1− 980(20%) 4 4 4 0.0163

12

1− 20000(20%) 5 4 5 8.6945
1− 1960(40%) 4 4 4 0.0287 1− 40000(40%) 5 4 5 11.3038
1− 2940(60%) 4 4 4 0.0346 1− 60000(60%) 4 4 4 11.2823
1− 3920(80%) 4 4 4 0.0384 1− 80000(80%) 5 4 5 13.8349
1− 4898(100%) 4 4 4 0.0487 1− 100000(100%) 4 4 4 16.4373
o
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5. Experiments of transformation between information gran-
ules in a Cb-CCLM

In this section, some experiments have been done to assess
he Cb-CCLM. The computer with a Window10 operating system
wns an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz processor,
4 GB RAM. To obtain the validity and feasibility of the Cb-CCLM,
he experiments are performed by using Matlab in some UCI data
ets, which are underlined in Table 3. To get the skill contexts,
ach data is dealt with the average value in its corresponding
olumn in each data sets. Then, through the data preprocessing,
hese data sets are converted into skill contexts shown in Ta-
le 4. Especially, Algorithm 1 plays a central role in this article.
hus, Algorithm 1 is tested in these data sets. To test the time
fficiency and the number of the obtained Cb-concepts (i.e., suf-
icient and necessary competence-based information granules),
0%, 40%, 60%, 80% and 100% items of these data sets are took as
he initial items. The number of Cb-concepts obtained by CCLP-1
r CCLP-2, the total number of the obtained Cb-concepts and the
unning time are shown in Table 5 and Figs. 9–11, respectively.
rom Table 5, Figs. 9 and 11, we can see that the Algorithm 1
roposed in this paper is effective and feasible.
From Table 5, we can find that: For any information granule in

ach data set, several sufficient and necessary competence-based
nformation granules (i.e., Cb-concepts) can be obtained through
CLP-1 or CCLP-2. And the number of Cb-concepts formed through
CLP-1 is not less than that obtained through CCLP-2. The p and
of the information granule (p, s) constructed through Proposi-
ion 4.5 (S1, S2), are related to the information granule generated
rom Proposition 4.4 (N1, N2, N5, N6) with the same initial
nformation granule. Thus, we can deduce that the number of
ufficient and necessary competence-based information granules
ormed through CCLP-1 (Propositions 4.4 and 4.6) is not less
han that obtained through CCLP-2 (Propositions 4.5 and 4.7).
herefore, the results of Table 5 are confirmed with Proposi-
ions 4.4–4.7. From Figs. 9–10, we can obtain that the number
12
f the obtained Cb-concepts will be affected with the initial
nformation granule and the initial items number of each data set.
ometimes, the same Cb-concepts may be occasionally generated
rom different information granule, it is due to the structure of
oncept lattice, redundant skills and items. From Table 5 and
igs. 9–11, it can be seen that the number of the Cb-concepts is
uch less than 16.
Fig. 11 shows that different data sets pay different running

ime to the number of initial items, skills and the obtained Cb-
oncepts. From Fig. 11, we can obtain that: (1) When the number
f initial items is fixed, the more Cb-concepts are generated,
he running time is a little larger. (2) When the number of Cb-
oncepts is given, the running time increases as the number of
nitial items increases.

To test the influence of the number of skills on the running
ime, we compare two groups of data sets, one group is Indian
iver Patient and Wdbc, the other group is Winequality-White,
aveform and Sensor Readings. The results are shown in Fig. 12.

rom Fig. 12, we can get that when the number of initial items
nd the obtained Cb-concepts are given, the running time in-
reases with the number of skills. In general, the knowledge
tructure with more skills is more complex.
Furthermore, to test the performance of the proposed algo-

ithm 1, we compare it with two classical models, including the
wo-ways cognitive learning model (TCLM) [3] and the cognitive
earning model via granular concepts (GCLM) [10]. The number
f the obtained concepts and the running times are shown in Ta-
le 6. From Table 6, we can see that the running times of Cb-CCLM
re better than GCLM especially in big data, and they have no
dvantages compared with the TCLM. But compared with TCLM
nd GCLM, the Cb-CCLM has the advantage of dealing with the
oncept-cognitive learning from the perspective of competences,
nd it is good at describing the relationship between knowledge
nd skills.
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Fig. 9. Number of the obtained Cb-concepts and running times.
Fig. 10. Number of the obtained Cb-concepts varies with initial information granule and initial items number.
6. Conclusions

The Cb-CCLM provides a newmethod for the concept-cognitive
learning through skills, and makes a useful extension of the
concept-cognitive learning. One needs to acquire not only knowl-
edge and its commonalities, but also the skills beyond to solve
13
different problems. The Cb-CCLM can actually study the trans-
formation relationship between skills and knowledge from the
perspective of competences. By utilizing the structure of in-
formation granules, and the transformation method between
information granules, one can learn and obtain several valuable
sufficient and necessary competence-based information granules
(i.e., Cb-concepts) from a general information granule though
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Fig. 11. Running time varies with the number of initial items and the obtained Cb-concepts.
Fig. 12. Running time varies with the number of skills.
Table 6
Number of the obtained concepts and running times of the comparative algorithms.
No Data sets |I| |T | Number of the obtained concepts Running times(s)

TCLM GCLM Cb-CCLM TCLM GCLM Cb-CCLM

1 Zoo 101 17 4 2 4 0.004035 0.006153 0.006048
2 Indian Liver Patient 583 9 3 1 3 0.006203 0.026241 0.020371
3 Vowel-Context 990 14 5 2 5 0.007631 0.076994 0.012492
4 Wdbc 569 30 4 2 4 0.012816 0.044867 0.022334
5 Winequality-Red 1599 12 5 2 5 0.012040 0.191601 0.021461
6 Winequality-White 4898 12 6 2 5 0.030312 1.730886 0.058767
7 Waveform 5000 22 5 2 5 0.049527 2.220761 0.063262
8 Sensor Readings 5456 24 4 2 4 0.058344 2.551559 0.076891
9 Letter Recognition 20000 16 5 2 4 0.188423 30.65526 0.231778
10 Sgemm Gpu 241600 17 5 2 5 15.369847 1795.461813 16.608517
11 Kdd Cup 494020 37 4 2 4 14.375400 7691.206231 17.354660
12 Fma 100000 1000 5 2 5 6.497687 8953.495554 16.583840
14
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CLP-1 or CCLP-2. The obtained Cb-concepts mean that one can
earn the least amount of skills for solving the most amount
f items. It fits the expectation of cognitive learning from the
erspective of economic cost. And the obtained Cb-concepts are
onducive for one to get the learning paths for skill and realize
he personalized learning. In additional, the experimental results
how that the transformation between information granules is
easible and effective even in big data. However, it is impossible
o determine which Cb-concept is the best one of the obtained
b-concepts in the Cb-CCLM. Thus, we will study to enhance
he result of concept-cognitive learning through educational and
earning rules. In additional, skill proficiency [43] will affect the
astery of knowledge, therefore, we will try to connect the
oncept-cognitive learning with skill proficiency.
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