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a b s t r a c t

Multisource information fusion is an important big data technology that plays a crucial role in the
fields of data mining and knowledge discovery. Multigranulation information fusion is an effective
technique for obtaining critical information from multisource data. However, obtaining meaningful
information from a dynamic multisource information system using a multigranulation fusion strategy
has rarely been researched. Therefore, this study explores a matrix-based dynamic updating strategy
for multigranulation fusion operators. First, a matrix-based method for computing multigranular fusion
operators is proposed. Second, the matrix-based dynamic updating mechanism of the multigranularity
fusion operator is discussed and constructed for four cases (deleting objects, adding objects, deleting
sources, and adding sources). Finally, four groups of dynamic algorithms and static methods are
compared to verify the effectiveness of the dynamic algorithm. The experimental findings show that
the matrix-dynamic updating multigranulation fusion operator approach is effective and efficient.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Big Data have led to the proliferation of complicated infor-
ation systems in the real world. Rough sets, established by
awlak [1], have been widely used in various fields such as
ata analysis, knowledge processing [2,3], and image processing.
ig Data can be used to rapidly identify and extract knowledge
rom various information systems. To address various problems,
esearchers have developed numerous expanded rough set mod-
ls at various levels, including variable-precision rough sets [4],
robabilistic rough sets [5,6], and composite rough sets [7,8].
y establishing an α-tolerance relationship, Leung et al. inves-
igated a rough set approach for rule induction [9]. Du et al.
chieved attribute reduction in information systems using
eature-based dominance relations in incompletely ordered
nformation systems [10]. Yang et al. created tolerance- and
inite-tolerance-based multigranulation rough sets to manage
ncomplete information systems [11]. Many mature rough-set
xpansion approaches have been demonstrated to solve most
ata processing tasks. However, various rough-set approaches do
ot perform well in handling multi-source data, such as web [12]
nd multi-view data [13].
Among the many methods for processing multi-source data,

he multigranulation decision theory is an effective method that
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can obtain useful data from multi-source data. Multigranular-
ity methods process multisource data employing the concept
of granulation to obtain important information. Using the con-
cept of granulation, scholars have conducted various studies, as
follows. Using multi-granulation decision theory, Qian et al. cre-
ated a rough-set model to evaluate multi-source categorization
data [14]. Xu et al. established a two-way learning approach
for fuzzy datasets using information granules [15]. Zhang et al.
proposed an adaptive multigranularity rough-set model that was
conducive to building a framework for granular computing (Gc)
information fusion [16]. Lin et al. developed an information fusion
approach for a multi-source information system with uncertainty
by integrating rough sets with evidence theory [17]. To inves-
tigate numerous fuzzy data sources, Lin et al. devised a fuzzy
multigranulation information fusion approach [18]. Xu et al. pro-
posed a fusion approach for converting multiple raw data from
different sources into triangular fuzzy particles [19]. Utilizing
conditional information entropy, Xu et al. developed a multi-
source information fusion method [20]. Although the aforemen-
tioned methods can well acquire information from multisource
data, these methods are insufficient in handling multisource data
that change over time, or in other aspects. Changes in multisource
data include changes in the object set, attribute set, feature value,
etc. As an example, new observatories and devices have been
introduced to gather new meteorological characteristic data to
increase weather forecasting capabilities. Because the dynamic
change in multisource data causes information granularity and a
change in the knowledge structure, an effective and reliable real-
time decision-making method must be established. Establishing
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Fig. 1. The variation of single structural in a multi-source data.
dynamic information acquisition method is conducive to ac-
uiring knowledge and making decisions in real time based on
ynamic data, and can reduce the time consumption incurred by
epeated calculations.

Designing real-time computing models and efficient fusion
lgorithms for multisource dynamic information systems (MDIS)
as gradually become a popular research topic. As an effective
ethod for maintaining information granularity in dynamic infor-
ation systems, incremental learning can combine original and
ew knowledge to obtain new information without recalculat-
ng the original information. A significant amount of research
as been conducted on this subject. For example, Hu et al. im-
lemented decision-making in dynamic situations by employing
he matrix approach on the dynamic approximation updates of
ultigranulation rough sets [21]. Li et al. introduced a discovery

echnique based on incremental knowledge to analyze massive
mounts of data with rich information using Gc and rough set
heory as its foundations [22,23]. In addition, Zhang et al. in-
roduced incremental information fusion methods for MDIS [24].
hese methods are significant for obtaining information from
ynamic data. In addition, from the Gc perspective, incremental
earning methods primarily focus on the following four aspects
see Fig. 1) when handling dynamic multisource data.

(1) Dynamic information fusion strategies in the context
f object variation. The dynamic data of the changes in the
bject set mainly include the addition or deletion of objects in
he data. With increases and decreases in the object set, the
nformation obtained from the data must be initially adjusted.
he following are some important studies on handling dynamic
ata on object changes. Hu et al. introduced a matrix-based
ncremental technique for updating knowledge when granular
tructures are added or deleted [25]. Baszczyski et al. created
n incremental method based on the Apriori algorithm to build
ffective decision rules and rule postprocessing technologies [26].
o update the approximation continually, Luo et al. devised two
lternative incremental approaches [27]. Li et al. developed a
echnique for dynamically updating approximations in ordered
nformation systems [28]. Li et al. demonstrated a technique for
ontinuously improving the approximation by investigating the
ominance relation inside the rough-set model [29]. For either
dding and deleting numerous objects, Shu et al. created two
election strategies [30]. To achieve attribute reduction during
ctive sample selection, Yang et al. proposed an incremental
ethod based on rough set theory [31]. To maintain three ar-
as in the multigranularity approximation space throughout the
ddition and removal of objects, Hu et al. created a dynamic
ramework based on a matrix [32].
2

(2) Dynamic information fusion strategies based on at-
tribute modification. Changes in the dynamic data of the
attribute set primarily include increases and decreases of the
attributes in the data. A change in the attribute set causes a
change in the data dimension and increases or decreases the
amount of useful information. Chen et al. conducted research on
updating the conceptual approximation while adding attributes
and objects [33]. Wang et al. presented a dimensionality incre-
ment approach for reducing attribute sets while adding attribute
sets [34]. Zhang et al. studied a method for dynamically up-
dating approximations when deleting or inserting attributes in
multigranularity interval hesitant fuzzy information systems [35].
Using a fuzzy rough-set model, Zeng et al. incrementally se-
lected features in hybrid information systems [36]. Hu et al.
suggested a technique for dynamically adjusting the three-way
region of every decision category in an approximate set of prob-
abilistic neighborhoods [37]. To avoid the reconstruction of the
induced matrix in compound-order decision-making systems,
Huang et al. demonstrated a dynamic technique based on matrix
update attribute approximation [38].

(3) Approaches to dynamic information fusion with vari-
able feature values. Dynamic data with changes in the fea-
ture values primarily cause the dynamic change in data through
changes in specific values. Research on this aspect is relatively
limited, primarily consisting of the following methods. Luo et al.
obtained two approximate incremental algorithms when adding
or deleting standard values [39]. Huang et al. proposed a matrix-
based incremental update mechanism to dynamically update the
approximate values of objects, attributes, and attribute values in
multisource hybrid systems [40]. Jing et al. designed a technique
for continuously updating the granularity of attribute reduction
knowledge as the data values change [41]. Wei et al. investigated
a reduction algorithm that incrementally obtains all reduction
attributes of dynamic data [42].

(4) Approaches to information fusion that are dynamic
based on the information source. Changes in the dynamic data
of the information source change are primarily caused by changes
in the information source. Researchers in this field have
primarily focused on the information sources increasing and
decreasing. Dubey et al. presented an intelligent wayfinding pre-
diction framework for intersections with variable route selection
under the influence of N directional information sources [43].
Huang et al. studied the incremental mechanism of the condi-
tional entropy method using the matrix method and considered
the dynamic update mechanism when deleting or adding data
sources in multisource data [44]. By considering the simultaneous
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b

e

D

hanges in attributes and information sources in a multisource
nterval value order information system, Xu et al. developed four
ynamic update mechanisms for different situations [45]. Zhang
t al. devised four dynamic multisource information fusion algo-
ithms for recognizing attribute changes and merging data from
ifferent sources in the context of incomplete interval-valued
atasets [46].
The series of dynamic models or algorithms proposed by

cholars for the aforementioned four dynamic cases can be
ummarized as follows. Concerning methods for obtaining or
pdating information from the dynamic data of the object or
ttribute set changes, existing methods primarily include incre-
ental learning and dynamic framework construction combined
ith a matrix. Studies on the changes of object sets primarily

ocuses on methods for dynamically updating the approximation
pace, decision rules, and attribute reduction. However, methods
or updating information from multidynamic multisource data
ith feature value or information source changes are relatively
ore diverse. These two types of situations primarily depend
n a need to build corresponding dynamic updating models and
lgorithms.
Although academics have published several strategies for pro-

essing dynamic data in different situations, few have explored
he dynamic update of multigranulation fusion operators in mul-
isource data. The fundamental goal of this study is to provide a
atrix-based method for dynamically updating multigranulation

usion operators despite massive numbers of changes, such as
he addition or removal of many objects or information sources.
his study primarily expands on the following aspects. (1) We
ntroduce the definitions of a decision vector, equivalence relation
atrix, decision support matrix, decision related matrix, and

ixed (possible) aggregation vector in terms of static multigran-
lation information fusion. (2) For adding or removing objects or
nformation sources from multisource data, we present a matrix-
ased fusion technique that dynamically updates fixed (possible)
ggregation operators. (3) The effectiveness of the proposed dy-
amic update multigranulation fusion operator algorithm was
erified experimentally.
The main contributions of this study on dynamically updating

ulti-granulation fusion operators are as follows: (1) A method
ased on a matrix that can compute multigranulation fusion oper-
tors in multi-source information systems is proposed. (2) To dy-
amically update multigranulation information fusion operators,
matrix-based technique is presented to address the addition and
emoval of multiple objects and information sources. (3) The ex-
erimental findings show that the proposed dynamic multigran-
lation information fusion technique is more computationally
fficient than the static approach.
The remainder of this paper is organized as follows. Section 2

ntroduces various notions of multisource decision information
ystems and multigranulation information fusion. In Section 3,
e discuss a static multi-granulation information fusion approach
ased on a matrix. Section 4 presents a matrix-based technique
or dynamically updating fixed and possible aggregation opera-
ors in a multisource decision information system when objects
re added or removed. In Section 5, we explore dynamic ap-
roaches for updating fixed and possible aggregation operators
n a multisource information system when sources are added or
eleted. In Section 6, we compare the performances of static and
ynamic information fusion techniques using a series of tests.
inally, Section 7 concludes the paper and presents directions for
uture work.

. Preliminaries

This section provides the basis for the remainder of the paper
y introducing various important concepts.
3

2.1. Fundamentals of the multigranulation rough-set model

Definition 2.1. Let an information system be denoted by S =

(U, AT , V , F ), where U = (x1, x2, . . . xn), AT = (a1, a2, . . . , an),
V =

⋃
a∈ATVa, and F = {f |U × AT → V }, where U is the set

of universe objects, AT the set of all attribute features in the
information system, V the range of attribute values, and F an
information function of the object and attribute sets [1].

Next, we introduce two important concepts for constructing
multigranulation rough sets: equivalence relations and support
characteristic functions. Simultaneously, two important multi-
granulation approximation operators are defined using these two
basic concepts.

Definition 2.2. Let S represent an information system. A binary
equivalence relation RA is expressed as in [1]:

RA =
{
(xi, xj)

⏐⏐f (xi, a) = f (xj, a)
}
(xi, xj ∈ U, ∀a ∈ A).

Definition 2.3. The support characteristic function is defined as
in [47]:

ϕAk (x) =

{
1, [x]Ak ⊆ X
0, otherwise (Ak ⊆ AT (k ∈

{
1, 2, . . . , 2|AT |

}
) , X ⊆ U),

(1)

where [x]Ak represents an equivalence class of object x under
quivalence relation RAk .

efinition 2.4 ([47]). ∀X ⊆ U , multigranulation approximation
operators MG∑s

i=k Ak
(X)β and MG∑s

i=k Ak
(X)β of X under relation∑s

i=k Ak are expressed as follows:

MG∑s
i=k Ak

(X)β =

{
x ∈ U

⏐⏐⏐∑s
k=1 ϕAk (x)

s ≥ β

}
,

MG∑s
i=k Ak

(X)β =

{
x ∈ U

⏐⏐⏐∑s
k=1 (1−ϕAk (x))

s > 1 − β,

} (2)

where β ∈ [0, 1], and X ⊆ U .

2.2. Multigranulation aggregation operator in multisource decision
information system

A multi-source information system indicates that the data
originates from numerous data sources. The following is a pri-
mary description of a multisource information system [48].

Definition 2.5. Amultisource decision information system (MDIS)
can be considered to comprise of multiple decision information
systems (DISs), similar to Si = (U, AT , Vi, Fi,G), where U is the set
of universe objects, AT = C ∪ D the set of all attribute features
(including condition attributes C and decision attributes D) in the
information system, Vi the range of condition attribute values
in information source i, and G the range of decision attribute
values. Fi is an information function between the object and
attribute sets, representing the equivalence relationship of the
conditional attribute set under information source i. The MDIS
is often expressed as follows [42]:

MDIS = {S1, S2, . . . , Sq}. (3)

Next, some basic concepts of multigranulation fusion methods
in terms of multisource data are introduced, including two char-
acteristic functions and two multigranulation fusion operators.
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efinition 2.6. Given an MDIS, two characteristic functions are
efined as follows [48]; the decision support and decision-related
haracteristic functions of x ∀Dj ∈ U/D are defined as follows:

SCSi
Dj
(x) =

{
1, [x]Si ⊆ Dj
0, otherwise (i ≤ q), (4)

RCSi
Dj
(x) =

{
1, [x]Si ∩ Dj ̸= ∅

0, otherwise (i ≤ q). (5)

Here, Si(i = 1, 2, . . . , q) denotes the ith decision information
system, [x]Si the equivalence class of object x under information
source i, and Dj the jth class in division U/D = {D1,D2, . . . ,Ds}.

The two characteristic functions express different aspects,
where SCSi

Dj
(x) indicates that object x will support decision class Dj

in information source Si, and RCSi
Dj
(x) indicates that object x may

support decision class Dj in information source Si.

Definition 2.7 ([48]). Given an MDIS, (α, β) is a pair of thresholds.
For any Dj ∈ U/D, the multi-granulation fusion operator of MDIS
is formulated as follows, respectively:

q∑
i=1

MS(Dj)α =

⎧⎨⎩x ∈ U

⏐⏐⏐⏐⏐⏐
∑q

i=1 SC
Si
Dj
(x)

q
≥ α

⎫⎬⎭ , (6)

q∑
i=1

MR(Dj)β =

⎧⎨⎩x ∈ U

⏐⏐⏐⏐⏐⏐
∑q

i=1 RC
Si
Dj
(x)

q
> β,

⎫⎬⎭ (7)

where α + β = 1 and 0 < α ≤ 1.

3. Matrix-based representation of multi-granulation fusion
operator

The multigranulation information fusion operator in the MDIS
is the focus of this section. We provide a matrix-based fusion
strategy. The matrix form of the two operators is provided, in
addition to several fundamental concepts of multigranulation
fusion approaches.

Definition 3.1. Let S be an integrated system. For any xi ∈ U(i =

1, 2, . . . , n), Dj ∈ U/D, and the decision vector G(Dj) =
[
gij

]
n×1 of

Dj is denoted as

gij =

{
1, if xi ∈ Dj;

0, otherwise . (8)

Definition 3.2. Given an MDIS = {Sk|Sk = (U, AT , Vk, Fk), k = 1,
2, . . . , q}, where AT = C ∪ D, for any c ∈ C , the equivalence
relation matrix MEk

=
[
mk

ij
]
n×n under information source Sk is

defined as follows:

mk
ij =

{
1, if f (xi, c) = f

(
xj, c

)
0, otherwise . (9)

In particular, the equivalence class [x]Si of object xi under
source Sk can be represented by the ith column or ith row of
equivalence relation matrix MEk, that is,

[
mk

i

]
n×1 or

[
mk

i

]
1×n.

Next, two multigranulation fusion operators are constructed in
terms of the multisource data through equivalence relation ma-
trix MEk and decision vector G(Dj). In the multigranulation fusion
approach, decision support matrix S

(
Dj

)
and decision-related

matrix R
(
Dj

)
are formed by two operators as follows.

Definition 3.3. Given an MDIS = {Sk|Sk = (U, AT , Vk, Fk), k = 1,
2, . . . , q}, for any Dj ∈ U/D, and decision vector G(Dj) of Dj is
denoted as G(D ) =

[
g

]
. The equivalence relation matrix MEk
j ij n×1

4

of Sk is denoted as MEk
=

[
mk

ij
]
n×n. The decision support vector

Sk
(
Dj

)
=

[
skij

]
n×1

and decision-related vector Rk
(
Dj

)
=

[
rkij

]
n×1

of
x for Dj are Formulated as follows, respectively:

skij =

{
1, if

[
mk

i

]
n×1 ∨ G

(
Dj

)
= G

(
Dj

)
0, otherwise

; (10)

rkij =

{
1, if

[
mk

i

]
n×1 ∧ G

(
Dj

)
̸= 0

0, otherwise
, (11)

where ‘‘∨ ’’ (or ‘‘ ∧ ’’) represents the maximum (minimum) value
of the corresponding position element in the two vectors.

Definition 3.4. Given an MDIS = {Sk|Sk = (U, AT , Vk, Fk), k = 1,
2, . . . , q}, for any Dj ∈ U/D, and Sk

(
Dj

)
and Rk

(
Dj

)
are the deci-

sion support and decision-related vectors of Sk, respectively. The
decision support and decision-related matrices under the multi-
source information system are defined as S

(
Dj

)
=

[
S1

(
Dj

)
, S2(

Dj
)
, . . . , Sq

(
Dj

)]
n×q and R

(
Dj

)
=

[
R1

(
Dj

)
, R2

(
Dj

)
, . . . , Rq(

Dj
)]

n×q, respectively.

Definition 3.5. Given an MDIS = {Sk|Sk = (U, AT , Vk, Fk), k = 1,
2, . . . , q}, (α, β) is a pair of thresholds. For any Dj ∈ U/D, the
definitions for fixed aggregation vector MS(Dj)α =

[
MS(Dj)iα

]
n×1

and possible aggregation vector MR(Dj)β =

[
MR(Dj)iβ

]
n×1

of Dj

are as follows:

MS(Dj)iα =

{
1, if |S(Dj)(xi)|

q ⩾ α

0, otherwise
; (12)

R(Dj)iβ =

{
1, if |R(Dj)(xi)|

q > β

0, otherwise
, (13)

here
⏐⏐S(Dj)(xi)

⏐⏐ =
∑q

k=1 s
k
ij,

⏐⏐R(Dj)(xi)
⏐⏐ =

∑q
k=1 r

k
ij , and α+β = 1

and 0 < α ≤ 1.

The fixed aggregation operator represents the information fed
back from most information sources, and xi supports decision
Dj in a fixed manner; the possible aggregation operator repre-
sents the information fed back from various information sources,
and xi may support decision Dj. To better illustrate the static
ultigranulation fusion strategy in the context of multi-source
ata, the following examples were constructed to supplement the
etailed calculation steps. In addition, Algorithm 1 presents the
orresponding static multigranulation fusion algorithm, which
escribes the steps of the multigranularity method used to obtain
nformation from multisource data.

xample 3.1. A one-way highway involves two observation areas
with multiple observation points), and the observation points are
btained by vehicle attributes (vehicle length, width, height, and
eight attributes) and vehicle types (large and small vehicles).
able 1 presents processed observation area data, which is a
ypical multisource information system, denoted by MDIS =

Si |Si = (U, AT , Vi, Fi), i = 1, 2, 3 }, where U = {xi|i ∈ (1, 2, . . . ,
10)}, AT = C ∪ D = {(c1, c2, c3, c4) ∪ d} (vehicle length, width,
height, weight, and type), and U/D = {D1,D2}.

Based on the previous definition, the acquisition of two multi-
granulation fusion operators from a multisource information sys-
tem can be divided into three steps. First, decision vector G(Dj)
and relation matrix MEk are calculated. Second, decision
support matrix S

(
Dj

)
and decision correlation matrix R

(
Dj

)
are

calculated. Finally, two multi-granulation fusion operators are
computed. Fig. 2 shows the detailed process of solving the multi-

granulation fusion operator in Example 3.1.
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Table 1
An MDIS in Example 3.1.
Object S1 S2 S3 d

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
x1 1 2 1 0 1 0 1 0 0 2 1 2 0
x2 0 2 1 2 2 1 0 1 1 2 0 1 0
x3 1 0 1 2 1 1 0 2 2 2 1 0 1
x4 1 2 1 0 1 0 1 0 0 2 1 2 0
x5 0 2 1 2 0 1 2 1 1 2 0 1 1
x6 1 0 1 2 1 1 0 2 1 1 2 1 1
x7 1 2 1 0 0 1 2 1 0 2 1 2 0
x8 0 2 1 2 2 1 0 1 1 2 0 1 1
x9 1 0 1 2 1 1 0 2 2 2 1 0 1
x10 1 2 1 0 1 0 1 0 1 1 2 1 0

Fig. 2. Multi-granulation fusion operator solution flow chart.

Algorithm 1 is a static algorithm based on matrices for multi-
ranulation information fusion. Now, we analyze the time com-
lexity of the main steps of the algorithm. According to Defini-
ion 3.1, the time complexity of calculating the Boolean vector
f decision class Dj in MDIS is O(|U | × s), particularly steps 1 to
. According to Definition 3.2, the time complexity of calculating
he equivalence relation matrix is O(|U |

2
× q), and the number

f steps is between 10 and 21. In step 23, the time complexity
f calculating the decision support matrix S

(
Dj

)
and decision

correlation matrix R
(
Dj

)
of each information source through MEk

is O(|U | × q × s), as defined by Definitions 3.3 and 3.4. The
time complexity of step 24 in computing the fixed aggregation
and possible aggregation vectors is O(|U |) according to Defini-
tion 3.5. Consequently, the total time complexity of Algorithm 1
is O(|U |

2
× q).

4. Matrix-based approach for dynamic information fusion in
an environment of changing objects

This section presents a matrix-based dynamic information

fusion technique that dynamically updates the fixed and possible

5

Algorithm 1: An algorithm for multi-granulation informa-
tion fusion that is based on matrices.

Input: MDIS =
{
S1, S2, · · · , Sq

}
, U/D = {D1,D2, · · · ,Ds}

and threshold (α, β).
Output: The fixed aggregation vector, the possible

aggregation vector, the decision support matrix,
the relation matrix, and the decision related
matrix.

1 for j = 1 : s do
2 for i = 1 : n do
3 if xi ∈ Dj then
4 gij = 1;
5 else
6 gij = 0;
7 end
8 end
9 end

10 for k = 1 : q do
11 for j = 1 : n do
12 for i = 1 : n do
13 if f (xi, c) = f (xj, c) then
14 mk

ij = 1;
15 else
16 mk

ij = 0;
17 end
18 end
19 end
20 MEk

=
[
mk

ij
]
n×n;

21 end
22 for eachj = 1 : s do
23 Compute the decision support matrix S

(
Dj

)
and

decision related matrix R
(
Dj

)
induced by MEk

// According to Definition 3.3 and 3.4
24 Compute the fixed aggregation vector MSα and the

possible aggregation vector MRβ . // According
to Definition 3.5

25 end
Output: MEk;S

(
Dj

)
; R

(
Dj

)
; MSα; MRβ .

aggregation operators in response to the addition or removal of
objects. To better illustrate dynamic changes for object changes,
this section supplements the description using examples. For ex-
ample, a one-way highway (with a bifurcated intersection) has an
observation area at both ends and has multiple observation points
in the observation area (the data collected by the corresponding
observation points in the two areas are identical). The vehicle
attributes (vehicle length, width, height, and weight) collected
from the observation points are used to determine the vehicle
type passing through a specific area.

4.1. Matrix-based approach for dynamically updating fixed and pos-
sible aggregation operators while adding objects

When numerous objects are added to the multisource data,
this subsection primarily focuses on the approach for dynamically
updating the fixed and possible aggregation operators based on
the matrix. Fig. 3 depicts a schematic of the addition of objects
to a multisource information system. For example, in considering
how to calculate the fixed and possible aggregation operators
only when a vehicle diversion occurs at the intersection in front
of a specific area without vehicle influx, we assume that no flow
or inflow junctions exist between the specific area and second
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Fig. 3. Schematic diagram of the addition of multi-source information system
bjects.

bservation area, and inflow junction exists only between the
irst observation area and specific area. Thus, the data collected
n the second observation area relative to the data collected in
he first observation area constitute a multisource information
ystem with additional objects.
For convenience, we first explain some of the terms used in

his definition. We assume that MDISt =
{
Stk|S

t
k = (U t , AT , V t

k ,

F t
k )

}
and let MDISt+1

=
{
St+1
k

⏐⏐St+1
k = (U t+1, AT , V t+1

k , F t+1
k )

}
be

two MDISs, where t and t + 1 represent the MDIS at time t
and t + 1, respectively. U t

= {xi |i ∈ (1, 2, . . . , n) }, and U t+1
=

{xi |i ∈ (1, 2, . . . , n, . . . , n + ∆n) } (U t+1
= U ∪ ∆U,U = U t ). Let

MStα =
[
MS(D1)tα,MS(D2)tα, . . . ,MS(Ds)tα

]
and MRt

β =
[
MR(D1)tβ ,

MR(D2)tβ , . . . ,MR(Ds)tβ
]
denote the fixed and possible aggrega-

tion operator matrices at time t , respectively. Let MSt+1
α =[

MS(D1)t+1
α ,MS(D2)t+1

α , . . . ,MS(Ds)t+1
α

]
andMRt+1

β =
[
MR(D1)t+1

β ,

MR(D2)t+1
β , . . . ,MR(Ds)t+1

β

]
denote the fixed and possible aggre-

gation operator matrices at time t + 1, respectively.
These terms support the meaning of the partial notation used

in the definition, and we now provide the equivalence relation
matrix in different states.

Definition 4.1. Let MDISt and MDISt+1 be two MDISs; the
equivalence relation matrix MEk,t

=
[
mk,t

ij
]
n×n, MEk,t+1

(U,∆U) =[
mk,t+1

ij,(U,∆U)

]
n×∆n

, MEk,t+1
(∆U,U) =

[
mk,t+1

ij,(∆U,U)

]
∆n×n

, and MEk,t+1
(∆U,∆U) =[

mk,t+1
ij,(∆U,∆U)

]
∆n×∆n

are defined as follows:

mk,t
ij =

{
1, iff (xi, c)t = f

(
xj, c

)t
0, otherwise

xi, xj ∈ U; (14)

mk,t+1
ij,(U,∆U) =

{
1, iff (xi, c)t+1

= f
(
xj, c

)t+1

0, otherwise
xi ∈ U, xj ∈ ∆U;

(15)

mk,t+1
ij,(∆U,U) =

{
1, iff (xi, c)t+1

= f
(
xj, c

)t+1

0, otherwise
xi ∈ ∆U, xj ∈ U;

(16)

mk,t+1
ij,(∆U,∆U) =

{
1, if (xi, c)t+1

= f
(
xj, c

)t+1

0, otherwise
xi ∈ ∆U, xj ∈ ∆U .

(17)

Definition 4.2. Let MDISt and MDISt+1 be two MDISs. For each
Dj ∈ U/D, decision vectors G(Dj)t =

[
gijt

]
n×1 and G(Dj)t+1

∆U =[
gijt+1

]
∆n×1 are denoted as follows:

gijt =

{
1, if xi ∈ Dj
0, otherwise xi ∈ U; gijt+1

=

{
1, if xi ∈ Dj
0, otherwise xi ∈ ∆U .

(18)

Proposition 4.1. Let MDISt and MDISt+1 be two MDISs. For each
D ∈ U/D, the following hold.
j

6

(1) Assuming that MEk,t is the equivalence relation matrix at
time t. MEk,t+1

(U,∆U), MEk,t+1
(∆U,U), MEk,t+1

(∆U,∆U), and MEk,t+1 are equivalence
relation matrices at time t + 1 Then,

MEk,t+1
=

[
MEk,t MEk,t+1

(U,∆U)

MEk,t+1
(∆U,U) MEk,t+1

(∆U,∆U)

]
, (19)

where equivalence relation matrix MEk,t+1 is a symmetric matrix,
and MEk,t+1

(∆U,U) = (MEk,t+1
(U,∆U))

T , ’T ’ is the transpose of the matrix.
(2) Assuming that G(Dj)t is the decision vector at time t, G(Dj)t+1

and G(Dj)t+1
∆U are decision vectors at time t + 1. Then,

G(Dj)t+1
=

[
G(Dj)t

G(Dj)t+1
∆U

.

]
(20)

Proof. (1) and (2) are easily proved using Definitions 3.1, 3.2, 4.1,
and 4.2.

Definition 4.1 provides the equivalence relation matrices be-
tween the original object, between the original and newly added
objects, and between the newly added object. Simultaneously,
Definition 4.2 and Proposition 4.1 clarify that, when calculating
the updated equivalence relation matrix, only the last two equiv-
alence relation matrices must be updated, and when updating the
decision vector, only the decision vector of the newly added ob-
ject must be updated. By updating the equivalence relation matrix
and decision vector, we can recalculate the decision support and
decision-related vectors.

Definition 4.3. Let MDISt and MDISt+1 be two MDISs. For any
Dj ∈ U/D, G(Dj)t and G(Dj)t+1 are the decision vectors of Dj,
respectively.MEk,t+1 is the equivalence relation matrix at time t+
1. Then decision support vector Sk,t+1(Dj) =

[
sk,t+1
ij

]
(n+∆n)×1

and

decision related vector Rk,t+1(Dj) =

[
rk,t+1
ij

]
(n+∆n)×1

are defined
as follows:

sk,t+1
ij =

{
1, if

[
mk,t+1

i

]
(n+∆n)×1

∨ Gt+1(Dj) = Gt+1(Dj)

0, otherwise
; (21)

rk,t+1
ij =

{
1, if

[
mk,t+1

i

]
(n+∆n)×1

∧ Gt+1(Dj) ̸= 0

0, otherwise
; (22)

where
[
mk,t+1

i

]
(n+∆n)×1

represents the ith column of MEk,t+1
ij ,

and 0 is the zero vector.

Definition 4.4. Let MDISt and MDISt+1 be two MDISs; 0 <
α ≤ 1, 0 ≤ β < 1 and α + β = 1. For any Dj ∈ U/D, the
fixed aggregation vector MSt+1(Dj)α =

[
MSt+1(Dj)iα

]
(n+∆n)×1 and

possible aggregation vector MRt+1(Dj)β =

[
MRt+1(Dj)iβ

]
(n+∆n)×1

of Dj are formulated as follows, respectively:

MSt+1(Dj)iα =

{
1, if

⏐⏐⏐S(Dj)(xi)t+1
⏐⏐⏐

q ⩾ α

0, otherwise
(i = 1, 2, . . . , (n + ∆n));

(23)

MRt+1(Dj)iβ =

{
1, if

⏐⏐⏐R(Dj)(xi)t+1
⏐⏐⏐

q > β,

0, otherwise
(i = 1, 2, . . . , (n + ∆n));

(24)

where
⏐⏐S(Dj)(xi)t+1

⏐⏐ =
∑q

k=1 s
k,t+1
ij , and

⏐⏐R(Dj)(xi)t+1
⏐⏐ =

∑q
k=1

rk,t+1
ij . In particular, α = 0(β = 1) implies an optimistic, fixed
(possible) aggregation operator; α = 1 (β = 0) indicates a
pessimistic, fixed (possible) aggregation operator.
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Table 2
The object added to the multi-source information system in Example 4.1.
Object S1 S2 S3 d

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
x11 1 2 1 0 1 0 1 0 1 1 2 1 0
x12 0 2 1 2 2 1 0 1 1 2 0 1 1
x13 1 2 1 0 1 0 1 0 0 2 1 2 0
x14 0 2 1 2 0 1 2 1 1 2 0 1 0
x15 1 0 1 2 1 1 0 2 1 1 2 1 1
x16 1 0 1 2 1 1 2 1 2 2 1 0 1

Fig. 4. Flowchart showing the calculation of the multi-granulation fusion
perator while adding objects (where α = 0.70 and β = 0.30).

The decision support and decision-related vectors in all infor-
ation sources are updated according to Definition 4.3, and the

wo multigranulation fusion operators are then updated accord-
ng to Definition 4.4. Example 4.1 presents the update process of
he two multigranulation fusion operators.

xample 4.1 (Continue Example 3.1). Based on Example 3.1, Ta-
le 2 presents new vehicle information observed from the sec-
nd observation area (with the addition of inflow intersections).
ables 1 and 2 constitute a new multisource information system.

The core of the method of dynamically updating multi-granular
usion operators after adding objects is the update of decision
ector G(Dj)t+1 and equivalence relation matrix MEk,t+1. Fig. 4
hows the detailed calculation process of Example 4.1.
Algorithm 2 is a matrix-based multigranulation information

usion algorithm that adds objects to a multisource information
ystem. The temporal complexity of calculating the Boolean vec-
or of decision class Dj when adding objects is O(|U + ∆U | × s),
articularly for steps 1 to 9. According to Definition 4.1, the
emporal complexity of computing the relationship matrix of the
ew object and that between the new and original objects is
(|U | × |∆U | × q), and the exact number of steps performed
s 10–31. According to Proposition 4.1, the temporal complexity
7

f calculating the relation matrix MEk,t+1 at time t + 1 is O(q),
and the actual number of steps performed is 32–34. According
to Definition 4.3, the time complexity for computing decision
support matrix S

(
Dj

t+1) and decision-related matrix R
(
Dj

t+1)
from the equivalent relationship matrix MEk,t+1 of each source
is O(|U |×q× s), and the steps are 36. According to Definition 4.4,
he temporal complexity of calculating the fixed and possible
ggregation vectors is O(|(U + ∆U)|×s), and the number of steps
s 37. Consequently, the total time complexity of Algorithm 2 is
(|U | × |∆U | × q).
When adding objects, the static algorithm must recalculate

he latest multisource information system; that is, the original
bject data and newly added objects are merged to calculate
n equivalent relation matrix. Based on, when a new object is
dded, the overall computational time complexity of Algorithm
is O(|U + ∆U |

2
× q). Thus, the time complexity of the dynamic

lgorithm is significantly lower than that of the static algorithm.

.2. Matrix-based approach for dynamically updating fixed and pos-
ible aggregation operators while deleting objects

This section primarily focuses on the dynamic updating pro-
ess of two multisource information fusion operators when ob-
ects are deleted from the multisource data. Fig. 5 presents a
iagram of the deletion of objects in the multisource data. Sim-
lar to Section 4.1, we assumed that no shunting or confluence
ntersections occur between the specific area and second obser-
ation area and only shunting intersections exist between the
irst observation area and specific area. Thus, the data collected
n the second observation area, relative to the data collected in
he first observation area, constitute a multisource information
ystem with a reduced number of objects.

efinition 4.5. We assume that MDISt =
{
Stk|S

t
k = (U t , AT , V t

k ,

F t
k ), k = 1, 2, . . . , q

}
and MDISt−1

=
{
St−1
k |St−1

k = (U t−1, AT ,

V t−1
k , F t−1

k ), k = 1, 2, . . . , q
}
represent the original MDIS and the

hat after deleting the object, respectively. MEk,t−1 and G(Dj)t−1

epresent the equivalence relation matrix and decision vector
fter deleting the object, respectively.

roposition 4.2. Let MDISt and MDISt−1 be two MDISs. For any
j ∈ U/D, the following hold.
(1) Assuming that MEk,t is the equivalence relation matrix at time

, MEk,t−1 is the equivalence relation matrix at time t−1; that is, the
relation matrix after deleting objects, and mk,t

i represents the relation
ector of the deleted object xi at time t. Then, we have

Ek,t
ij =

[
MEk,t−1

ij mk,t
i

mk,t
i 1

.

]
(25)

2) We assume that G(Dj)t and G(Dj)t−1 represent the original deci-
ion vector and that after deleting the object, respectively. xi repre-
ents the deleted object, and G(Dj)t and G(Dj)t−1 satisfy

(Dj)t =

⎧⎪⎪⎨⎪⎪⎩
[

G(Dj)t−1

0

]
n×1

, if xi /∈ D,[
G(Dj)t−1

1 .

]
n×1

, if xi ∈ Dj.

(26)

Evidently, Proposition 4.2 can be easily obtained from the
lementary transformation properties of the matrix and Defini-
ions 3.1 and 3.2.

According to Proposition 4.2, the equivalence relation matrix
fter deleting objects can easily be observed to be obtainable by
emoving the original equivalence relation matrix to reduce the
ow and column of the object, and the decision vector can be ob-
ained in the corresponding manner. Therefore, the equivalence
elation matrix and decision vector are updated.
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Algorithm 2: A matrix-based algorithm for multi-
granulation information fusion when adding
objects.

Input: MDIS =
{
S1, S2, · · · , Sq

}
, U/D = {D1,D2, · · · ,Ds} ,

the added objects, threshold (α, β) and relation
matrix MEk obtained by algorithm 1.

Output: The fixed aggregation vector, the possible
aggregation vector.

1 for j = 1 : s do
2 for i = 1 : n + ∆n do
3 if xi ∈ Dj then
4 gij = 1;
5 else
6 gij = 0;
7 end
8 end
9 end

10 for k = 1 : q do
11 for j = 1 : ∆n do
12 for i = 1 : ∆n do
13 if f (xi, c) = f (xj, c) then
14 mk

ij = 1;
15 else
16 mk

ij = 0;
17 end
18 end
19 end
20 MEk

ij,(∆U,∆U) =
[
mk

ij
]
∆n×∆n;

21 for j = 1 : n do
22 for i = 1 : ∆n do
23 if f (xi, c) = f (xj, c) then
24 mk

ij = 1;
25 else
26 mk

ij = 0;
27 end
28 end
29 end
30 MEk

ij,(U,∆U) =
[
mk

ij
]
n×∆n

31 end
32 for each k = 1 : q do
33 Compute relation matrix MEk,t+1 ;

// According to Definition 4.1 and
Proposition 4.1.

34 end
35 for each j = 1 : s do
36 Compute the decision support matrix S

(
Dj

)t+1 and

decision related matrix R
(
Dj

)t+1 induced by
MEk,t+1

ij // According to the definition 4.3
calculated decision support vector and
decision related vector, and according to
the definition 3.4 calculated decision
support matrix and decision related
matrix.

37 Compute the fixed aggregation vector MSt+1
α and the

possible aggregation vector MRβ
t+1. // According

to Definition 4.43.
38 end

Output: MEk,t+1; MSα
t+1; MRβ

t+1.
t

8

Fig. 5. Schematic diagram of deleting a multi-source information system object.

Definition 4.6. Let MDISt and MDISt−1 be two MDISs. G(Dj)t and
G(Dj)t−1 are the original decision vector and that after deleting
he object, respectively. MEk,t−1 denotes the equivalence relation
atrix after deleting objects. Decision support vector Sk,t−1(Dj) =

sk,t−1
ij

]
(n−∆n)×1

and decision-related vector

k,t−1(Dj) =

[
sk,t−1
ij

]
(n−∆n)×1

are denoted as follows, respectively:

sk,t−1
ij =

{
1, if

[
mk,t−1

i

]
(n−∆n)×1

∨ Gt−1(Dj) = Gt−1(Dj)

0, otherwise
; (27)

k,t−1
ij =

{
1, if

[
mk,t−1

i

]
(n−∆n)×1

∧ Gt−1(Dj) ̸= 0

0, otherwise
; (28)

here
[
mk,t−1

i

]
n×1

represents the ith column of MEk,t−1 after
eleting objects, that is, the equivalence class matrix of object xi
fter deleting objects.

efinition 4.7. Assume that MDISt and MDISt−1 are two MDISs,
< α ≤ 1, 0 ≤ β < 1 and α + β = 1. For any

j ∈ U/D, the fixed aggregation operator vector MSt−1(Dj)α =

MSt−1(Dj)iα
]
(n−∆n)×1 and possible aggregation operator vector

Rt−1(Dj)β =

[
MRt−1(Dj)iβ

]
(n−∆n)×1

of Dj are formulated as
ollows, respectively:

St−1(Dj)iα =

{
1, if

⏐⏐⏐S(Dj)(xi)t−1
⏐⏐⏐

q ⩾ α

0, otherwise
, (29)

MRt−1(Dj)iβ =

{
1, if

⏐⏐⏐R(Dj)(xi)t−1
⏐⏐⏐

q > β

0, otherwise
, (30)

where
⏐⏐S(Dj)(xi)t−1

⏐⏐ =
∑q

k=1 s
k,t−1
ij , and

⏐⏐R(Dj)(xi)t−1
⏐⏐ =

∑q
k=1

rk,t−1
ij .

Using the updated equivalence relation and Definition 4.6, we
obtain the decision support and correlation vectors after deleting
the object. By Definition 4.7, the two multigranulation fusion
operators are updated after an object is deleted. Example 4.2
presents the updating of two multigranulation fusion operators
after objects are deleted.

Example 4.2 (Continue to Example 3.1). Based on Example 3.1,
Table 3 presents the vehicle information observed from the sec-
ond observation area (with vehicles flowing out of the diversion
junction). In Table 3, the part crossed by the diagonal line is the
outflow vehicle at the diversion intersection.

The core of the method of dynamically updating the multi-
granulation fusion operator after deleting an object is to update
decision vector G(Dj)t−1 and equivalence relation matrix MEk,t−1.
ig. 6 shows the detailed calculation process for Example 4.2.
Algorithm 3 is a matrix-based multigranulation information

usion algorithm for deleting objects from a multisource informa-
ion system. The temporal complexity of calculating the Boolean
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Table 3
Objects deleted from MDIS.
Object S1 S2 S3 d

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
x1 1 2 1 0 1 0 1 0 0 2 1 2 0
x2 0 2 1 2 2 1 0 1 1 2 0 1 0
x3 ▷▷1 ▷0 ▷1 ▷2 ▷1 ▷1 ▷0 ▷2 ▷2 ▷2 ▷1 ▷0 ▷1
x4 ▷1 ▷2 ▷1 ▷0 ▷1 ▷0 ▷1 ▷0 ▷0 ▷2 ▷1 ▷2 ▷0
x5 0 2 1 2 0 1 2 1 1 2 0 1 1
x6 ▷1 ▷▷0 ▷1 ▷2 ▷1 ▷1 ▷▷0 ▷2 ▷1 ▷1 ▷2 ▷1 ▷1
x7 1 2 1 0 0 1 2 1 0 2 1 2 0
x8 ▷0 ▷2 ▷1 ▷2 ▷2 ▷1 ▷0 ▷1 ▷1 ▷2 ▷0 ▷1 ▷1
x9 1 0 1 2 1 1 0 2 2 2 1 0 1
x10 1 2 1 0 1 0 1 0 1 1 2 1 0

Fig. 6. Calculation flow chart of multi-granulation fusion operator when deleting
bjects (where α = 0.7 and β = 0.3).

ector of decision class Dj when deleting objects is O(|U + ∆U |×

), particularly from steps 1 to 9. According to Property 4.2,
he temporal complexity of calculating the relationship matrix
Ek,t−1 after deleting an object is O(q), and the actual number
f steps is 11. According to Definition 4.6, the time complexity
f calculating decision support matrix S

(
Dj

t−1) and decision-
aking matrix R

(
Dj

t−1) from the equivalent relationship matrix
Ek,t−1 of each information source is O(|(U − ∆U)| × q × s),
pecifically in 14 steps. According to Definition 4.7, the tempo-
al complexity of calculating the fixed and possible aggregation
ectors is O(|(U − ∆U)|× s), and the exact number of steps is 15.
he total time complexity of Algorithm 3 is O(|U − ∆U | × q× s).
When an object is deleted, the static algorithm must recal-

ulate the equivalence relation matrix of the multisource data.
fter objects are deleted, the object set of the multi-source data
ecomes U − ∆U . Evidently, based on Algorithm 1, the overall
omputational time is O(|U − ∆U |

2
× q). The time complexity

f the dynamic algorithm is significantly better than that of the
tatic algorithm.
 r

9

Algorithm 3: A matrix-based algorithm for multi-granul-
ation information fusion when deleting objects.

Input: MDIS =
{
S1, S2, · · · , Sq

}
, U/D = {D1,D2, · · · ,Ds} ,

the deleted objects, threshold (α, β) and relation
matrix MEk obtained by Algorithm 1.

Output: The fixed aggregation vector, the possible
aggregation vector.

1 for j = 1 : s do
2 for i = 1 : n − ∆n do
3 if xi ∈ Dj then
4 gij = 1;
5 else
6 gij = 0;
7 end
8 end
9 end

10 for each k = 1 : q do
11 Compute relation matrix MEk,t−1 after deleting

objects;
// According to Property 4.2

12 end
13 for eachj = 1 : s do
14 Compute the decision support matrix S

(
Dj

)t−1 and

decision related matrix R
(
Dj

)t−1 induced by
MEk,t−1. // According to the definition 4.6
calculated decision support vector and
decision related vector, and according to
the definition 3.4 calculated decision
support matrix and decision related
matrix.

15 Compute the fixed aggregation vector MSt−1
α and the

possible aggregation vector MRβ
t−1. // According

to Definition 4.7
16 end

Output: MEkt−1; MSα
t−1; MRβ

t−1.

5. Matrix-based dynamic information fusion algorithm with
varying information sources

In practical applications, the change in information sources is
primarily manifested in the increase and decrease of information
sources. An increase of information sources means that more
information is added to the same object, thereby introducing new
content and changes to the overall information of the object. A
reduction of information sources means that the information of
objects is reduced; that is, changes and differences are introduced
to the objects in the information sources. To adapt to changing
sources in practical applications, we demonstrate a method based
on matrix dynamic fixed and possible aggregation operators.
Fig. 7 depicts the information source changes in the multisource
information system that this study focused on.

Let MDIS = {Sk |DISk = (U, AT , V , F ), k = 1, 2, . . . , q } be a
multisource information system. MS

(
Dj

)
α

= [f1α, f2α, . . . , fnα]T

and MR
(
Dj

)
β

=
[
r1β , r2β , . . . , rnβ

]T are Boolean vectors of the
ixed and possible aggregation operators, and Sk(Dj) =

[
Sk1, Sk2,

. . . , Skn
]T and Rk(Dj) =

[
Rk

1, Rk
2, . . . , Rk

n] (k = 1, 2, . . . , q) are
he decision support and decision-related vectors of information
ource k. In addition, S(Dj) = [S1, S2, . . . , Sq] and R(Dj) =

[R1, R2, . . . , Rq]
T represent the decision support and decision-

making matrices of the multisource information system.
⏐⏐S(Dj)(xi)

⏐⏐

epresents the number of information sources that support xi, and
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Fig. 7. Diagrammatic representation of the change of information sources inside a MDIS.
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R(Dj)(xi)
⏐⏐ represents the number of information sources that may

upport xi, where
⏐⏐∗(Dj)(xi)

⏐⏐ represents the summation of the ith
row in the decision support (decision-making) matrix.

5.1. Matrix-based dynamic algorithm for updating fixed and possible
aggregation operators when adding information sources

In this subsection, we propose a matrix-based dynamic algo-
rithm for updating the fixed and possible aggregation operators
when adding information sources. Adding information sources
is always accompanied by an increase in the total information
source data, which constitutes a large amount of new useful
information. However, neither an increase in information sources
nor adding an information source changes the equivalence rela-
tion matrix, decision vector, decision support vector, or decision
relation vector of the original information sources. Therefore,
calculating only the equivalence relation matrix of the new infor-
mation source and the decision support and decision-related vec-
tors according to Definitions 3.2 and 3.3 is necessary. Then, two
multigranulation fusion operators are updated by the decision
support and decision-related

Proposition 5.1. After adding information sources
{
Sq+1, Sq+2, . . . ,

Sq+p
}
, MS

(
Dj

)
q+p

α
= [f1α, f2α, . . . , fnα]T , and MR

(
Dj

)
q+p

β
=[

r1β , r2β , . . . , rnβ
]T denotes the updated Boolean vector. Sm(Dj) =[

Sm1, Sm2, . . . , Smn]T (m = 1, 2, . . . , p) and Rm(Dj) =
[
Rm

1,

Rm
2, . . . , Rm

n]T are the decision support and decision-related vec-
ors of the added information source Sm. Snew(Dj) = [S1, S2, . . . , Sp]T ,
nd Rnew(Dj) = [R1, R2, . . . , Rp]

T denote the decision support and
ecision-making matrices of the added information sources.
(1) For each Dj ∈ U/D, the fixed aggregation operator of xi for Dj

provides the following results:

fi(Dj)α =

{
1, if |S(xi)|+|Snew(xi)|

q+p ≥ α

0, otherwise
. (31)

2) For each Dj ∈ U/D, the possible aggregation operator of xi for Dj
rovides the following results:

i(Dj)β =

{
1, if |R(xi)|+|Rnew(xi)|

q+p > β

0, otherwise
. (32)

Proof. (1) Assuming that the original decision support matrix
is S(Dj) = [S1, S2, . . . , Sq], and the decision support matrix
of the added information source is Snew(Dj) = [S1, S2, . . . , Sp],
e note the decision support matrix with the new information
ource is evidently Sfinal(Dj) = [S1, S2, . . . , Sq, Sq+1, Sq+2, . . . , Sq+p]

according to Definition 3.4. Similarly, assuming that the orig-
inal decision support matrix is S(Dj) = [S1, S2, . . . , Sq], and

the decision support matrix of the added information source

10
is Snew(Dj) = [S1, S2, . . . , Sp], we note that the decision sup-
port matrix with the new information source is Sfinal(Dj) =

[S1, S2, . . . , Sq, Sq+1, Sq+2, . . . , Sq+p] according to Definition 3.4.
Thus, based on Definition 3.5, we easily observe that

MSfinal(Dj)iα =

{
1, if |Sfinal(Dj)(xi)|

q+p ⩾ α

0, otherwise
.

Therefore, when MSfinal(Dj)iα = 1, |Sfinal(Dj)(xi)|
q+p ⩾ α. Because

q+p∑
k=1

Sk(Dj)(xi) =

q∑
k=1

Sk(Dj)(xi) +

p∑
k=1

Sk(Dj)(xi) =
⏐⏐S(Dj)(xi)

⏐⏐ +
⏐⏐Snew(Dj)(xi)

⏐⏐ ,
Sfinal(Dj)iα = fi(Dj)α . When MSfinal(Dj)iα = 0, MSfinal(Dj)iα =

i(Dj)α holds.
(2) Assuming that the original decision related matrix is

(Dj) = [R1, R2, . . . , Rq], and the decision related matrix of the
dded information source is Rnew(Dj) = [R1, R2, . . . , Rp], Defini-
ion 3.4 provides that the decision related matrix with the new
nformation source is Rfinal(Dj) = [R1, R2, . . . , Rq, Rq+1, Rq+2, . . . ,

q+p]. Thus, Definition 3.5 provides that

Rfinal(Dj)iβ =

{
1, if |Rfinal(Dj)(xi)|

q+p > β

0, otherwise
.

Therefore, when MRfinal(Dj)iβ = 1, |Rfinal(Dj)(xi)|
q+p > β . Because

q+p∑
k=1

Rk(Dj)(xi)

=

q∑
k=1

Rk(Dj)(xi) +

p∑
k=1

Rk(Dj)(xi) =
⏐⏐R(Dj)(xi)

⏐⏐ +
⏐⏐Rnew(Dj)(xi)

⏐⏐ ,
MRfinal(Dj)iβ = ri(Dj)β . When MRfinal(Dj)iβ = 0, MRfinal(Dj)iβ =

ri(Dj)β holds.

As shown in Property 5.1, the two multigranulation fusion
operators of the multisource information system after adding
the information source have a certain quantitative relationship
with the original multigranulation fusion operators and those
of the added information source. Therefore, we must only cal-
culate the corresponding decision support and decision-related
vectors by adding the new information source and combine those
the original multi-source information system to update the two
multigranulation fusion operators. Example 5.1 presents the cal-
culation process.

Example 5.1 (Continue to Example 3.1). Based on Example 3.1,
two observation points are added in the observation area to
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btain the information of passing vehicles caused by the analysis
equirements. Table 4 presents the data obtained from the added
bservation points.

The core of the method of dynamically updating multigranula-
ion fusion operators after adding information sources is to calcu-
ate two fusion operators using the decision support and decision-
elated matrices of the new information sources combined with
he original decision support and decision-related matrices. Fig. 8
llustrates the calculation process for adding information sources.
Algorithm 4: A matrix-based multi-granulation informa-
tion fusion algorithm when adding information sources

Input: (1)Original multi-source information system
MDIS =

{
S1, S2, · · · , Sq

}
, added information

systemMDIS =
{
S1, S2, · · · , Sp

}
,

U/D = {D1,D2, · · · ,Ds}(̇2) threshold (α, β), the
decision support matrix S

(
Dj

)
and decision related

matrix R
(
Dj

)
.

Output: The fixed aggregation vector, the possible
aggregation vector.

1 for j = 1 : s do
2 for i = 1 : n do
3 if xi ∈ Dj then
4 gij = 1;
5 else
6 gij = 0;
7 end
8 end
9 end

10 for k = 1 : p do
11 for j = 1 : n do
12 for i = 1 : n do
13 if f (xi, c) = f (xj, c) then
14 mk

ij = 1;
15 else
16 mk

ij = 0;
17 end
18 end
19 end
20 MEk

=
[
mk

ij
]
n×n;

21 end
22 for each j = 1 : s do
23 for k = 1 : p do
24 Compute the decision support matrix S

(
Dj

)
and

decision related matrix R
(
Dj

)
induced by MEk

;// According to Definition 3.3 and 3.4
25 end
26 Compute the fixed aggregation vector MSα and the

possible aggregation vector MRβ . // According
to Proposition 5.1

27 end
Output: MEk; MSα; MRβ .

Algorithm 4 is a multi-granulation information fusion algo-
ithm based on matrix calculations for adding information sources
o MDIS. The temporal complexity of computing the Boolean
vector of decision class Dj when adding information sources to
a multisource information system is O(|U | × s), particular for
steps 1–9. According to Definition 3.2, the temporal complexity
of constructing the equivalent relation matrix MMEk for each
additional information source is O(|U |

2
× p), and the number of

steps is between 10 and 21. According to Definitions 3.3 and 3.4,
the temporal complexity of calculating decision support matrix
S
(
D

)
and decision-related matrix R

(
D

)
for MEk the additional
j j

11
Table 4
New information source data in Example 5.1.
Object S4 S5

c1 c2 c3 c4 c1 c2 c3 c4
x1 1 2 1 0 1 0 1 0
x2 1 2 1 0 1 0 1 0
x3 1 0 1 2 1 1 2 1
x4 0 2 1 2 0 1 2 1
x5 0 2 1 2 2 1 0 1
x6 1 0 1 2 1 1 0 2
x7 1 1 2 1 0 2 1 2
x8 1 2 0 1 1 1 2 1
x9 2 2 1 0 2 1 0 1
x10 1 2 0 1 0 2 1 2

information sources is O(|U | × p × s), and the step count is 23–
25. Step 26 calculates the fixed and possible aggregation vectors
according to Proposition 5.1, and its time complexity is O(|U |×s).
Therefore, the total time complexity of Algorithm 4 is O(|U |

2
×p).

When adding an information source, the dynamic algorithm
must only calculate the decision support matrix and decision
correlation vector of the additional information source. However,
the static algorithm must recalculate the decision support matrix
and decision correlation vector of all information sources. Note
that the overall number of information sources of multisource
data becomes q+p, and the time complexity of its static algorithm
is O(|U |

2
×(q+p)). Evidently, for q+p > p, the time complexity of

the dynamic algorithm is lower than that of the static algorithm.

5.2. Matrix-based dynamic algorithm for updating fixed aggrega-
tion and possible aggregation operators when deleting information
sources

In a multi-source information system, updating the multigran-
ulation fusion operator in the original multi-source information
system is necessary because of the failure of some information
sources in some states. When the information source is deleted,
less information is available as the number of information sources
decreases. The original decision support and decision-related ma-
trices exhibit corresponding changes owing to the deletion of in-
formation sources. Therefore, the decision support and decision-
related vectors must be recalculated according to Definitions 3.2
and 3.3 to delete part of the information sources. To delete
sources from the multisource data, we developed methods to
dynamically update the two multigranulation fusion operators.

Proposition 5.2. After deleting the information sources {S1, S2, . . . ,
Sp

}
, MS

(
Dj

)
q−p

α
= [f1α, f2α, . . . , fnα]T , and MR

(
Dj

)
q−p

β
=

[
r1β ,

r2β , . . . , rnβ
]T denotes the updated Boolean vector. Sk(Dj) =

[
Sk1,

Sk2, . . . , Skn
]T

(k = 1, 2, . . . , q − p) and Rk(Dj) =
[
Rk

1, Rk
2, . . . ,

Rk
n]T (k = 1, 2, . . . , q−p) denote the decision support and decision-

related vectors, respectively. Sdeleting (Dj) = [S1, S2, . . . , Sp]T and
Rdeleting (Dj) = [R1, R2, . . . , Rp] denote the decision support and
decision-related matrices required to delete the information sources.⏐⏐Sdeleting (Dj)(xi)

⏐⏐ represents the number of information sources sup-
porting xi, and

⏐⏐Rdeleting (Dj)(xi)
⏐⏐ represents the number of informa-

tion sources that may support xi.
(1) For each Dj ∈ U/D, the fixed aggregation operator of xi for Dj

provides the following results:

fi(Dj)α =

{
1, if |S(xi)|−|Sdeleting (xi)|

q−p ≥ α
. (33)
0, otherwise
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Fig. 8. Calculation flow chart of multi-granulation fusion operator when adding information source (where α = 0.7 and β = 0.30).
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(2)For each Dj ∈ U/D(j = 1, 2, . . . , s), the possible aggregation
perator of xi for Dj provides the following results:

i(Dj)β =

{
1, if |R(xi)|−|Rdeleting (xi)|

q−p > β

0, otherwise
. (34)

Proof. (1) Assuming that the original support matrix is S(Dj) =

S1, S2, . . . , Sq], and the decision support matrix of the deleted
nformation source is Sdeleting (Dj) = [S1, S2, . . . , Sp], Definition 3.4
rovides that the decision support matrix with the new infor-
ation source is Sfinal(Dj) = [S1, S2, . . . , Sq−p]. Based on Defini-

ion 3.5,

Sfinal(Dj)iα =

{
1, if |Sfinal(Dj)(xi)|

q−p ⩾ α

0, otherwise
.

Therefore, when MSfinal(Dj)iα = 1, |Sfinal(Dj)(xi)|
q−p ⩾ α. Because

q−p∑
k=1

Sk(Dj)(xi) =

q∑
k=1

Sk(Dj)(xi) −

q∑
k=1

Sk(Dj)(xi) =⏐⏐S(Dj)(xi)
⏐⏐ −

⏐⏐Sdeleting (Dj)(xi)
⏐⏐ ,

MSfinal(Dj)iα = fi(Dj)α . When MSfinal(Dj)iα = 0, MSfinal(Dj)iα =

fi(Dj)α holds.
(2) Assuming that the original related decision is R(Dj) =

[R1, R2, . . . , Rq], and that of the deleted information source is
Rdeleting (Dj) = [R1, R2, . . . , Rp], Definition 3.4 provides that the de-
cision related matrix with the new information source is Rfinal(Dj)
= [R1, R2, . . . , Rq−p]. Then, based on Definition 3.5,

MRfinal(Dj)iβ =

{
1, if |Rfinal(Dj)(xi)|

q−p > β

0, otherwise
.

Therefore, when MRfinal(Dj)iβ = 1, |Rfinal(Dj)(xi)|
q−p > β . Because

q−p

k=1

Rk(Dj)(xi) =

q∑
k=1

Rk(Dj)(xi) −

p∑
k=1

Rk(Dj)(xi)

=
⏐⏐R(Dj)(xi)

⏐⏐ −
⏐⏐Rdeleting (Dj)(xi)

⏐⏐ ,
MRfinal(Dj)iβ = ri(Dj)β . When MRfinal(Dj)iβ = 0, MRfinal(Dj)iβ =

r (D )β holds.
i j w

12
As shown by Property 5.2, a certain quantitative relation-
ship exists between the two multigranulation fusion operators of
the multisource information system after the source is deleted
and the original multigranulation fusion operators. Therefore,
we must only delete the corresponding decision support and
decision-related vectors of the information source and use the
original decision support and decision-related matrices to update
the two multigranulation fusion operators. Example 5.2 describes
the calculation process.

Example 5.2 (Continue to Example 3.1). Based on Example 3.1,
owing to the equipment failure of one observation point in the
observation area, the previously calculated multigranularity fu-
sion operator must be recalculated. Information source S2 in
Table 1 was damaged by the equipment at the observation point.

The core of the method of dynamically updating multi-granu-
lation fusion operators after deleting information sources is to
calculate the decision support and correlation matrices of the
information sources deleted. Then, we use Property 5.2 to calcu-
late two multi-granulation fusion operators. Fig. 9 illustrates the
detailed calculation process for adding information sources.

Algorithm 5 is a multigranulation information fusion algo-
rithm based on matrix calculations for deleting information sour-
ces in MDIS. The temporal complexity of computing the Boolean
vector of decision class Dj in a multi-source information system
s O(|U | × s), and the particular steps are 1–9. According to
efinition 3.2, the temporal complexity of calculating the equiv-
lent relation matrix MEk for each deleted information source is
(|U |

2
× p), and the steps are 10–21. According to Definitions 3.3

nd 3.4, the temporal complexity of calculating decision support
atrix S

(
Dj

)
and decision-related matrix R

(
Dj

)
for each deleted

ource of information is O(|U | × p × s), and the steps are 23–
5. Step 26 calculates the fixed and possible aggregation vectors
ccording to Proposition 5.2, and its time complexity is O(|U |×s).
herefore, the total time complexity of Algorithm 5 is O(|U |

2
×p).

When deleting an information source, the dynamic algorithm
ust only calculate the decision support matrix and correlation
ector of the deleted information source. However, the static
lgorithm must calculate the decision support matrix and cor-
elation vector of the remaining information sources. The time
omplexity of the static algorithm is O(|U |

2
× q − p). Evidently,

hen p ≤
q , the time complexity of the dynamic algorithm is
2
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Fig. 9. Calculation flow chart of multi-granulation fusion operator when deleting information source (where α = 0.7 and β = 0.30).
Fig. 10. The construction process of multi-source information system.
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etter than that of the static algorithm; that is, when the number
f sources reduced is less than half of all sources, the computation
ime of the dynamic algorithm is better than that of the static
lgorithm.

. Experimental analysis

In the fourth and fifth sections of this paper, based on the
ulti-granulation information fusion method, we propose a
atrix-based dynamic multi-source information fusion method

or adding objects, deleting objects, adding information sources,
nd deleting information sources. This section presents the tests
onducted on the performance and viability of the matrix-based
ynamic information fusion algorithm. We used the following
omputer configuration environment for the experiments. The
PU consisted of an Intel(R)Core(TM)i5−8250UCPU@1.60GHz1.80
Hz with 4.0GB of RAM . The operating system was Windows×64.
ll relevant experiments were conducted using Python 3.5. Ten
pen datasets were used in the experiments to verify the com-
utational complexity and validity of the dynamic algorithms.
ll datasets were obtained from the machine learning library
CI (https://archive.ics.uci.edu/ml/index.php); Table 5 lists the
13
details of the datasets. Table 5 includes the name of the dataset,
sample size (i.e., the number of objects) in the dataset, number of
attributes in the dataset, and total number of categories of data
in the dataset (the data can be divided into several categories).

Obtaining a multi-source decision information system directly
from a machine learning database is not easy when conduct-
ing experiments. To solve this problem, Yang et al. constructed
multisource information system data by adding white and ran-
dom noise to the dataset [48]. The construction method is as
follows. First, generate k normally distributed random numbers
(n1, n2, . . . , nk) and k uniformly distributed random numbers
u1, u2, . . . , uk). Second, add random and white noise as follows:

i(x, a) =

{
s(x, a) + ni, if 0 ≤ |ni| ≤ 1
s(x, a), otherwise ; (35)

i(x, a) =

{
s(x, a) + ui, if 0 ≤ |ui| ≤ 1
s(x, a), otherwise , (36)

here s(x, a) represents the value in the original dataset and
i(x, a) the data after adding noise. In this study, we chose to add
andom noise to 40% of the original dataset, white noise to 20% of
he dataset, and retain the remaining 40% to build a multi-source

https://archive.ics.uci.edu/ml/index.php
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Algorithm 5: A matrix-based multi-granulation informa-
tion fusion algorithm when deleting information sources

Input: (1)Original multi-source information system
MDIS =

{
S1, S2, · · · , Sq

}
, deleted information

systemMDIS =
{
S1, S2, · · · , Sp

}
,

U/D = {D1,D2, · · · ,Ds};
(2) threshold (α, β), the decision support matrix S

(
Dj

)
and decision related matrix R

(
Dj

)
.

Output: The fixed aggregation vector, the possible
aggregation vector.

1 for j = 1 : s do
2 for i = 1 : n do
3 if xi ∈ Dj then
4 gij = 1;
5 else
6 gij = 0;
7 end
8 end
9 end

10 for k = 1 : p do
11 for j = 1 : n do
12 for i = 1 : n do
13 if f (xi, c) = f (xj, c) then
14 mk

ij = 1;
15 else
16 mk

ij = 0;
17 end
18 end
19 end
20 MEk

=
[
mk

ij
]
n×n;

21 end
22 for each j = 1 : s do
23 for k = 1 : p do
24 Compute the decision support matrix S

(
Dj

)
and

decision related matrix R
(
Dj

)
induced by MEk

;// According to Definition 3.3 and 3.4
25 end
26 Compute the fixed aggregation vector MSα and the

possible aggregation vector MRβ . // According
to Proposition 5.2

27 end
Output: MEk; MSα; MRβ .

information system. Fig. 10 presents the process of building the
multisource information system discussed in this section.

In this study, we constructed 10 sources for experiments on
dding and deleting objects and 20 sources for experiments on
dding and deleting sources. In addition, this study aimed to in-
estigate the dynamic multigranulation information fusion tech-
ique in the context of an equivalence relation. Therefore, to
atisfy the equivalence conditions, this study discretized the mul-
isource information system generated by the aforementioned
ethod. The discretization method primarily adopts an equal

requency discretization. If the object under attribute a is evenly
ivided into p parts X1(a), X1(a), . . . , Xp(a), U = X1(a) ∪ X1(a) ∪

· · ∪ Xp(a) and
|X1(a)|

|U |
=

|X2(a)|
|U |

= · · · =
|Xp(a)|

|U |
; the mathematical

xpression is as follows: Si(x, a) = p, ifx ∈ Xp(a). In addition, we
sed α = 0.7 and β = 0.3 in the experiment comparing the
ynamic and static algorithms.
In this section, we describe five groups of experiments con-

ucted for four dynamic situations. Fig. 11 and Tables 6C11
14
present the results. In Fig. 11 a−j, the x-axis indicates the propor-
tion of data changes in the multisource information system, the
y-axis indicates the manner in which the data changes (adding
objects, deleting objects, adding sources, and deleting sources)
and the corresponding static algorithms, and the z-axis indicates
the algorithm running time. In Figs. 11 k − t , the x-axis indicates
the data change ratio of the five experiments, and the y-axis
indicates the data change operation performed, which indicates
the speedup ratio of the dynamic and static algorithms in the
five experiments. The speedup ratio is expressed as Tstatic/Tdynamic ,
where Tstatic is the running time of the static algorithm, and
Tdynamic is the running time of the dynamic algorithm.

6.1. Matrix-based static and dynamic multigranulation fusion algo-
rithms comparison when the object changes

This section discusses the five groups of comparative exper-
iments conducted on adding and deleting objects. In the ex-
periment on object addition, we randomly divided the objects
in the 10 constructed information sources into two parts: the
original multisource information system and the objects added
to the multisource information system in different proportions
(accounting for 10%, 20%, 30%, 40%, and 50% of all dataset objects).
Simultaneously, the static algorithm followed the algorithm de-
scribed in Section 3 to calculate the multisource information
system formed by adding objects of different proportions. In the
object deletion experiment, we randomly deleted objects of dif-
ferent proportions from the constructed multisource information
system, and the objects deleted from each information source
were the same. The static algorithm of this experiment group
followed the algorithm described in Section 3 to calculate the
multisource information system after deleting an object. The fol-
lowing two sections present the results of the two experiment
groups.

(1) When adding objects, a comparison of the static and
dynamic algorithms. Fig. 11 and Table 6 present the results. As
shown in Figs. 11 a − j and Table 6, both the dynamic update
strategy and static algorithm require more time for the calcula-
tion as the number of new objects increases. The graph shows
that the dynamic method has a substantially shorter execution
time than the static method. In addition, as shown in Figs. 11
j − t , as the proportion of added objects gradually increases, the
overall speedup ratio of the algorithm exhibits a downward trend.
The speedup ratio for the entire method remains greater than
1; therefore, the matrix-based dynamic approach remains faster
than the static algorithm.

(2) When deleting objects, a comparison of static and dy-
namic algorithms. Fig. 11 shows the results as the percentage of
deleted objects increases. Figs. 11 a − j and Table 7 indicate that
the dynamic updating approach based on a matrix and the static
algorithm both run faster as the percentage of removed objects
increases. The dynamic methods update the fixed and possible
aggregation operators substantially quicker than the static algo-
rithms when the number of objects deleted from the original data
steadily increases. Figs. 11 j−t show that the speedup ratio of the
dynamic and static algorithms is greater than 1.

In addition, to clarify the benefits of the dynamic algorithm,
Table 8 provides the speedup ratio of the running times of the
static and dynamic algorithms for various ratios. As shown in Ta-
ble 8, the average ratio of the speedup between the dynamic and
static algorithms in the experiments with added objects ranges
from 1.93 to 5.52. Similarly, the average speedup ranges from 4.45
to 25.76 in the experiments with deleted objects. Therefore, we
can conclude from Fig. 11 and Table 5 that the computational
efficiency of the dynamic algorithm is superior to that of the
static approach, which is compatible with the theoretical analysis
presented in Section 4.
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Table 5
Detailed information of selected datasets.
No. Datasets Abbreviation Samples Attributes Decision classes

1 Yach Hydrodynamics YH 308 6 3
2 Concrete Concrete 1029 8 10
3 Airfoil Self Noise AF 1504 5 10
4 Winequality-Red Red 1599 11 6
5 Winequality-White White 4098 11 7
6 Abalone Abalone 4177 7 3
7 Wilt Wilt 4839 5 2
8 Combined Cycle Power Plant CP 9569 4 10
9 Crowdsourced Mapping CM 10845 28 6
10 Dry Bean DB 13611 16 7
Table 6
Running time of each group of experiments when adding objects.
Datasets 10% 20% 30% 40% 50%

Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Yach Hydrodynamics 2.17 0.59 2.44 1.22 2.78 1.58 3.16 2.16 3.55 2.72
Winequality-White 77.31 20.31 88.36 44.98 101.50 61.84 155.47 84.22 177.39 111.41
Winequality-Red 18.67 3.59 21.80 6.97 25.72 9.88 29.67 13.42 33.30 17.00
Wilt 64.67 14.72 80.72 27.78 91.25 41.91 162.58 53.64 206.28 86.81
Dry Bean 525.30 110.36 735.11 209.70 950.86 449.20 1164.83 629.58 1802.11 664.78
Crowdsourced Mapping 467.69 104.14 654.89 198.03 791.02 293.44 1113.59 420.52 1390.78 614.52
Concrete 7.78 2.34 8.97 4.30 10.14 6.13 11.64 8.34 13.27 10.63
Combined Cycle Power Plant 399.72 61.11 599.38 107.03 809.31 158.11 1172.27 234.59 1489.38 278.47
Airfoil Self Noise 11.23 3.50 13.47 6.64 16.45 9.44 18.56 13.45 21.14 16.55
Abalone 52.64 12.77 64.83 25.41 78.52 35.31 90.72 59.75 139.09 78.73
Table 7
Running time of each group of experiments when deleting objects.
Datasets 10% 20% 30% 40% 50%

Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Yach Hydrodynamics 2.56 0.08 2.31 0.08 2.03 0.08 1.72 0.08 1.44 0.08
Winequality-White 106.92 12.09 97.34 9.70 83.50 7.33 69.92 5.33 53.14 4.05
Winequality-Red 29.16 1.23 22.00 1.13 19.42 0.72 16.23 0.56 8.14 0.44
Wilt 86.08 4.28 81.73 3.72 64.59 2.75 55.89 2.16 42.92 1.58
Dry Bean 891.75 145.78 796.59 138.48 547.27 102.56 438.42 73.59 240.19 49.31
Crowdsourced Mapping 878.58 81.94 696.38 61.39 568.38 34.16 401.17 33.78 298.38 17.45
Concrete 9.41 0.73 8.61 0.61 7.17 0.48 6.09 0.34 4.94 0.23
Combined Cycle Power Plant 274.61 71.97 240.53 57.80 202.44 40.75 160.73 37.83 110.13 21.75
Airfoil Self Noise 18.20 2.50 16.86 1.88 13.44 1.44 11.22 1.03 8.95 0.72
Abalone 83.31 5.17 68.75 3.92 59.19 3.02 51.67 2.42 35.97 1.64
Table 8
Speedup ratio for static and dynamic algorithms when objects change.
Variation ratio Adding objects Deleting objects

10% 20% 30% 40% 50% Average 10% 20% 30% 40% 50% Average

Yach Hydrodynamics 3.66 2.00 1.76 1.46 1.30 2.04 32.80 29.60 26.00 22.00 18.40 25.76
Winequality-White 3.81 1.96 1.64 1.85 1.59 2.17 8.84 10.03 11.39 13.12 13.13 11.30
Winequality-Red 5.20 3.13 2.60 2.21 1.96 3.02 23.62 19.56 27.02 28.86 18.61 23.53
Wilt 4.39 2.91 2.18 3.03 2.38 2.98 20.11 21.98 23.49 25.92 27.20 23.74
Dry Bean 4.76 3.51 2.12 1.85 2.71 2.99 6.12 5.75 5.34 5.96 4.87 5.61
Crowdsourced Mapping 4.49 3.31 2.70 2.65 2.26 3.08 10.72 11.34 16.64 11.88 17.10 13.54
Concrete 3.32 2.09 1.66 1.40 1.25 1.94 12.81 14.13 14.81 17.73 21.07 16.11
Combined Cycle Power Plant 6.54 5.60 5.12 5.00 5.35 5.52 3.82 4.16 4.97 4.25 5.06 4.45
Airfoil Self Noise 3.21 2.03 1.74 1.38 1.28 1.93 7.28 8.99 9.35 10.88 12.46 9.79
Abalone 4.12 2.55 2.22 1.52 1.77 2.44 16.11 17.53 19.63 21.34 21.92 19.30
6.2. Matrix-based static and dynamic multigranulation fusion algo-
rithms comparison when the information source changes

This section discusses the five groups of comparative experi-
ents conducted on adding and deleting information sources. For

he information source addition experiment, we constructed 20
nformation sources, of which 10 sources constituted the original
ulti-source information system, and the other 10 sources were
dded to the multisource information system according to the
umber of information sources selected each time (the number
f information sources added was 2, 4, 6, 8, and 10). In addition,
he static algorithm followed the algorithm presented in Section 3
15
to calculate the multisource information system after adding
information sources, and its running time was compared with
that of the dynamic algorithm. In the information source deletion
experiment, we used the 20 information sources constructed as
the original multisource information system and deleted different
numbers of information sources (the numbers of deleted informa-
tion sources were 2, 4, 6, 8, and 10) each experiment. The static
algorithm followed that presented in Section 3 to calculate the
multi-source information system after deleting the information
source, and we compare its running time with that of the dynamic
algorithm. The following two sections present the results of the
two experiment groups.
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(1) Comparison of static and dynamic algorithms when
dding information sources. Figs. 11 a − j and Table 9 present
he results for the addition of information sources. As shown
n Figs. 11 a − j and Table 9, the runtime of the matrix-based
ynamic updating approach and static algorithm increased as
he number of information sources increased. The figure shows
hat the approach of updating the fixed aggregation operator
ith the dynamic matrix is substantially quicker than that of
he static method. Figs. 11 j − t demonstrate that after adding
nformation sources, the speedup ratio between the dynamic and
tatic approaches for each dataset is more than 1.
16
(2) Comparison of static and dynamic algorithms when
eleting information sources. Fig. 11 and Table 10 present the
esults of deleting an information source. According to Fig. 11
− j and Table 10, with the reduction of information sources,

he running time of the dynamic and static algorithms reduces
o a certain extent. However, the running time of the dynamic
lgorithm remains shorter than that of the static algorithm. In
ddition, as shown in Figs. 11 j − t , the speedup ratio for most

datasets is greater than 1. Although two datasets had a speedup
ratio below 1 when 50% of the information sources were deleted,
their speedup ratio remained near 1.
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Table 9
Running time of each group of experiments when adding information source.
Datasets 10% 20% 30% 40% 50%

Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Yach Hydrodynamics 3.28 0.53 3.86 1.09 4.34 1.70 4.86 2.17 5.55 2.80
Winequality-White 150.92 24.39 176.47 49.58 204.00 76.52 227.39 101.92 253.55 126.63
Winequality-Red 32.66 5.53 37.61 11.47 44.25 16.72 49.53 21.67 55.34 28.30
Wilt 110.20 17.94 131.70 37.52 151.42 56.44 190.75 73.48 208.16 103.33
Dry Bean 1282.17 204.84 1684.67 404.95 2312.66 603.86 3952.30 835.08 5822.11 1062.94
Crowdsourced Mapping 1352.73 236.45 1554.95 440.69 1789.88 655.38 1996.83 863.61 2223.03 1065.06
Concrete 15.80 2.61 18.53 5.30 21.30 7.83 23.92 10.47 26.31 12.95
Combined Cycle Power Plant 379.56 59.67 448.22 119.78 515.56 177.13 584.92 239.14 665.33 301.92
Airfoil Self Noise 24.31 4.22 28.23 8.05 32.20 12.02 36.06 16.20 40.27 20.00
Abalone 93.58 15.42 111.08 31.75 128.34 47.48 146.16 64.52 163.56 78.31
Table 10
Running time of each group of experiments when deleting information source.
Datasets 10% 20% 30% 40% 50%

Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Yach Hydrodynamics 4.94 0.56 4.50 1.09 4.09 1.80 3.36 2.23 2.73 2.73
Winequality-White 229.06 25.70 200.69 49.45 172.73 75.06 151.39 96.83 119.09 125.25
Winequality-Red 68.78 7.27 60.73 16.20 53.28 23.47 45.31 30.48 39.20 38.06
Wilt 169.95 19.30 152.67 36.19 128.38 55.31 109.42 71.73 92.42 92.36
Dry Bean 2501.34 211.55 2098.78 419.92 1863.48 610.78 1293.45 823.50 1062.30 1043.86
Crowdsourced Mapping 1874.89 215.42 1663.08 413.44 1455.00 602.97 1240.16 804.53 1012.72 1011.03
Concrete 19.20 2.11 17.30 4.19 14.98 6.34 12.75 8.48 10.59 10.80
Combined Cycle Power Plant 576.92 60.28 502.28 118.30 434.95 176.28 360.05 235.02 299.39 297.84
Airfoil Self Noise 29.27 3.19 25.94 6.56 23.20 9.75 19.52 13.52 16.34 16.17
Abalone 144.70 16.17 126.63 32.58 112.73 47.48 96.69 66.08 77.58 79.47
Table 11
Speedup ratio for static and dynamic algorithms when information source change.
Variation ratio Adding information source Deleting information source

10% 20% 30% 40% 50% Average 10% 20% 30% 40% 50% Average

Yach Hydrodynamics 6.18 3.53 2.55 2.24 1.98 3.30 8.78 4.11 2.28 1.50 1.00 3.53
Winequality-White 6.19 3.56 2.67 2.23 2.00 3.33 8.91 4.06 2.30 1.56 0.95 3.56
Winequality-Red 5.90 3.28 2.65 2.29 1.96 3.21 9.47 3.75 2.27 1.49 1.03 3.60
Wilt 6.14 3.51 2.68 2.60 2.01 3.39 8.81 4.22 2.32 1.53 1.00 3.57
Dry Bean 6.26 4.16 3.83 4.73 5.48 4.89 11.82 5.00 3.05 1.57 1.02 4.49
Crowdsourced Mapping 5.72 3.53 2.73 2.31 2.09 3.28 8.70 4.02 2.41 1.54 1.00 3.54
Concrete 6.05 3.50 2.72 2.29 2.03 3.32 9.10 4.13 2.36 1.50 0.98 3.62
Combined Cycle Power Plant 6.36 3.74 2.91 2.45 2.20 3.53 9.57 4.25 2.47 1.53 1.01 3.76
Airfoil Self Noise 5.76 3.51 2.68 2.23 2.01 3.24 9.18 3.95 2.38 1.44 1.01 3.59
Abalone 6.07 3.50 2.70 2.27 2.09 3.32 8.95 3.89 2.37 1.46 0.98 3.53
Table 6 compares the speedup ratios of the static and dynamic
ethods at various ratios, illustrating the advantages of the dy-
amic algorithm when the information source changes. As shown
n Table 11, the average speedups of the dynamic and static algo-
ithms vary from 3.21 to 4.89 when adding information sources
o the tests. Similarly, when information sources were deleted
rom the experiments, the average speedup varied from 3.53 to
.49%. Figs. 11 a−j and Table 11 imply that the dynamic approach

is more computationally efficient than the static method. This
finding is consistent with the theoretical analysis presented in
Section 5.

6.3. Comparison with other relevant dynamic algorithms

Our study focused on the dynamic updating of multigranula-
tion fusion operators in multisource information systems. How-
ever, existing dynamic and incremental algorithms have been
primarily used to solve the dynamic update problem in single-
source information systems. Hence, they cannot be directly
applied to update the multigranulation fusion operator in a multi-
source information system. Although no relevant dynamic
algorithm has been developed for updating the multigranula-
tion fusion operator values of objects or information sources
that change over time, some dynamic algorithms can realize
17
the dynamic update of single-source information systems. For a
single information system, Zhang et al. proposed a matrix-based
incremental algorithm to update the approximate value when
adding or deleting objects (COV) [49]. For multisource informa-
tion systems, Yang et al. proposed a method for directly obtaining
multigranulation fusion operators from multisource information
systems(CMGO) [48]. The combination of these two methods
(COV + CMGO) can dynamically compute the multigranulation
fusion operator when the objects of the multisource informa-
tion system change over time. For information source changes,
Zhang et al. investigated a dynamic algorithm that achieves the
dynamic fusion of multi-source information systems (CIF) [35].
This method, combined with the computing multigranulation
fusion operator approach, can update the multigranulation fusion
operators under the change of information sources (CMGO+CIF).
We compared these methods with the proposed algorithm on
four cases, and Figs. 12 and 13 show the results. The sector size of
A(∗) (∗ = 10%, 20%, 30%, 40%, 50%) in Figs. 12 and 13 represents
the running time of the proposed method when adding objects or
information sources, and the sector size of AC(∗) represents the
running time of the comparison algorithms. Sector size D(∗) rep-
resents the running time of the proposed method when deleting
objects or information sources, and sector size DC(∗) represents
the running time of the comparison algorithms. As shown in
Fig. 12, when objects are added or deleted, the proposed dynamic
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Fig. 12. Comparison of running time between the proposed dynamic algorithm and other relevant dynamic algorithms when objects are added or deleted.
lgorithm has a faster calculation time than the COV + CMGO
lgorithm. As shown in Fig. 13, when an information source is
dded or deleted, the calculation times of the proposed dynamic
lgorithm and of the algorithm CMGO+CIF increase with the
hange ratio observed in Figs. 13 (a)C(h) and (j).

.4. Statistical analysis

This study primarily focused on the matrix dynamic fusion
echanism of the multigranularity multisource information fu-
ion approach when an object or information source changes.
18
The speedup ratio is a useful indicator for comparing the ex-
ecution times of dynamic and static algorithms. To verify the
validity of the results, we conducted statistical tests and analyses
on the speedup ratio of the dynamic and static algorithms. We
conducted relevant statistical tests for adding or deleting objects
and information sources. The speedup is the ratio between the
running time of the dynamic and static algorithms. Therefore, we
aimed to test whether the running time of the dynamic algorithm
is better than that of the static algorithm, that is, to evaluate
whether the speedup ratio is significantly larger than 1. Table 12
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Fig. 13. Comparison of running time between the proposed dynamic algorithm and other relevant dynamic algorithms when information sources are added or
eleted.
resents the statistical test results for the four cases. In addition,
e provide boxplots of the speedup ratios for the four cases in
ig. 14.
The t-test, in addition to other statistical tests, was used to

onfirm that the average speedup was greater than 1. To more
ccurately demonstrate that the dynamic algorithm is superior to
he static approach, we conducted a t-test to determine whether
he speedup ratio was substantially greater than 2. As shown in
able 7, the p-values of the t-test were considerably less than 0.05
19
for all four cases, indicating that, with a 95% level of confidence,
the dynamic algorithm has a much faster running time than
the static algorithm. Concerning the boxplot, the horizontal axis
indicates the proportion of multisource data changes in each
experiment, and the vertical axis indicates the speedup ratio
between the dynamic and static algorithms in each experiment.
In addition, the four box plots represent four different experi-
ments, that is, four dynamic changes in the multi-source data. The
boxplot in Fig. 14 indicates that the general trend of the speedup



X.Y. Zhang, X.D. Huang and W.H. Xu Knowledge-Based Systems 262 (2023) 110257

r
t
d
a
S

7

m
t
a
e
a
w
f
(
g
i
b

s
i
o
t
a
a
i

C

o
D
o
a
a

Table 12
Speedup ratio for static and dynamic algorithms when information source change.

Adding objects Deleting objects Adding information source Deleting information source

T-value 4.29 12.00 6.99 3.85
P-value 8.30 × 10−5 3.37 × 10−16 6.78 × 10−9 3.37 × 10−4
Fig. 14. Boxplots of speedup ratios for four cases.
x-
atio decreases as the change ratio increases, but remains greater
han 1. Based on the statistical test results and boxplots, the
ynamic method evidently outperforms the static approach in
ll four cases, which is consistent with the analyses presented in
ections 4 and 5.

. Conclusion

This study investigated a strategy for dynamically updating
ultigranulation fusion operators. The primary contributions of

his research are as follows. (1) We provide a matrix-based
pproach for calculating multigranulation information fusion op-
rators. (2) For the four cases of adding objects, deleting objects,
dding information sources, and deleting information sources,
e constructed four dynamic algorithms to dynamically update

ixed and possible aggregation operators based on a matrix.
3) Our evaluations show that the dynamic matrix-based al-
orithm for updating fixed and possible aggregation operators
mproves the computational efficiency compared with static matri
ased algorithms.
However, this study examined only dynamic changes in a

ingle dimension of the multisource information system, thereby
gnoring multidimensional changes. Moreover, an approach based
n matrices has a relatively high spatial complexity. In the fu-
ure, we plan to continue investigating the information fusion
pproach for multisource information systems with variations in
ttributes, objects, and information sources. Moreover, we can
nvestigate dynamic algorithms with a lower space complexity.
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