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Active Antinoise Fuzzy Dominance Rough Feature
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Binbin Sang , Weihua Xu , Hongmei Chen , Member, IEEE, and Tianrui Li , Senior Member, IEEE

Abstract—Feature selection methods with antinoise perfor-
mance are effective dimensionality reduction methods for classi-
fication tasks with noise. However, there are few studies on robust
feature selection methods for monotonic classification tasks. The
fuzzy dominance rough set (FDRS) model is a nontrivial knowledge
acquisition tool, which is widely used in feature selection of mono-
tonic classification tasks. Nonetheless, this model has been proved
in practice to be generally poorly fault-tolerance, and only one
noisy sample can cause huge interference in acquiring knowledge.
In view of these two issues, this article first designs an adaptive
K-nearest neighbors strategy to calculate the density of samples.
The noisy samples are identified according to their densities, and
then an active antinoise FDRS model is proposed. Then, in the
active antinoise fuzzy dominance rough approximation space, the
class-separability is evaluated by the approximation operators of
the proposed model, and the feature-redundancy is evaluated by
the fuzzy ranking conditional mutual information. On this basis,
a feature evaluation index is designed comprehensively consider-
ing class-separability and feature-redundancy. Finally, a feature
selection algorithm is designed to select the feature subset with the
highest classification performance. The experimental results show
that the proposed algorithm has better robustness and classification
performance.

Index Terms—Active antinoise, adaptive K-nearest neighbors
(AKNN), feature selection, fuzzy dominance rough sets (FDRSs),
ordered decision systems (ODSs).

I. INTRODUCTION

MONOTONIC classification task (MCT) is a common
classification problem, which has two characteristics:

one is that the class labels are discrete and ordered, and the
other is that there is a monotonic dependency between fea-
tures and decisions [1], [2]. For example, a credit evaluation
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agency will determine an individual’s credit rating based on
criteria (features) such as an individual’s income, educational
experience, and asset status, and so on. In practical applications,
the MCT widely exists, such as medical diagnosis [3], financial
risk prediction [4], enterprise rating [5], and so on. In rough set
theory [6], the MCT can be represented by a data table, called
an ordered decision system (ODS).

Fuzzy rough set (FRS) theory forms a mathematical model
that can simulate human reasoning by integrating two comple-
mentary uncertainty reasoning ways: rough approximation and
fuzzy granulation [7]. This theory has become a very popular
knowledge acquisition tool in data mining, which has been
successfully applied in outlier detection [8], [9], attribute reduc-
tion [10], [11], [12], classification [13], [14], clustering [15],
and cognitive networks [16], [17], etc. However, after inves-
tigation, it is found that the FRS model is very sensitive to
noise [18]. In the real world, the collected data is usually polluted
by noise, which makes the fuzzy rough set model unable to
exert its advantages in dealing with uncertainty problems [19].
Hence, the robustness of this theory has become a research
hotspot in data mining. Over the past decade, a series of robust
fuzzy rough set models have been proposed, such as variable
precision (θ, σ)−fuzzy rough sets [20], data-distribution-aware
fuzzy rough sets [13], different classes’ ratio fuzzy rough
sets [21], relative distance-based fuzzy rough sets [14], fuzzy
rough sets with representative samples [22], probability granular
distance-based fuzzy rough sets [23], and so on. Moreover,
Alcantud et al. [24] revealed a close connection between N -soft
sets and rough structures of various types, then proposed an
N -soft set approach to rough set. The research on robust fuzzy
rough sets has achieved remarkable achievements, they only
consider the fuzzy equivalence relation or fuzzy similarity rela-
tion between samples in nominal classification tasks. However,
the above works ignore the preference relation between samples
and the monotonously ordered relation between features and
decisions in monotonic classification tasks. Obviously, these
robust models are not suitable for knowledge acquisition of the
ODS. Therefore, developing a robust FRS model for ODS is one
of the research goals of this article.

The dominance-based rough set approach (DRSA) [25] pro-
vides a theoretical framework for uncertainty analysis and
knowledge acquisition in the ODS. Subsequently, some ex-
tended models of DRSA were successively proposed, includ-
ing stochastic dominance-based rough sets model [26], vari-
able consistency dominance-based rough sets approach (VC-
DRSA) [27], rough sets model based on multigranulation fuzzy
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preference relation [28], dominance-based soft rough sets [29],
dominance-based rough sets of multiscale intuitionistic fuzzy
decision tables [30], soft dominance based rough sets [31], and
composite dominance-based rough sets [32], etc. In order to
more accurately describe the uncertainty from fuzzy and numeri-
cal ODS, Hu et al. [33] proposed a fuzzy preference-based rough
set model, also known as the fuzzy dominance rough set (FDRS)
model. This model inherits the advantages of FRS model and is
an important knowledge acquisition model for ordinal classifica-
tion. On the basis of FDRS model, the dominance-based rough
fuzzy sets [34], fuzzy dominance neighborhood rough sets [35],
and quantitative dominance neighborhood rough sets [36] are
successively proposed. Although scholars have expanded some
new models based on the FDRS model according to different
requirements, its robustness has not been improved. In partic-
ular, mislabeled samples can greatly mislead the approximate
computation results of the FDRS model [37], ultimately leading
to wrong decision-making information for users. Therefore, in
order to improve the defects of FDRS model in dealing ODS
with noisy samples, it is necessary to explore a robust FDRS
model in this article.

Feature selection (also known as attribute reduction) is one
of the important applications of the FRS theory, which aims
to mine useful and important features from high-dimensional
and redundant data for subsequent learning tasks [38], [39],
[40]. Feature selection methods for the ODS have also received
much attention. Hu et al. [33] proposed a forward greedy fea-
ture selection method using FDRS-based dependency function
as evaluation metric. Based on the classical feature selection
algorithms ReliefF and Simba, Hu et al. [41] developed two
feature selection algorithms O-ReliefF and O-Simba suitable for
the ODS. Further, Hu et al. [1] proposed minimum-redundancy
and maximum-relevance feature selection algorithm based on
rank mutual information. Pan et al. [42] constructed a feature
selection algorithm that maximizes the monotonic dependency
function. Qian et al. [43] designed a fusing monotonic decision
trees method based on maximal probability and developed a
feature selection method with rank-preservation. Du and Hu [44]
presented a feature selection method based on evidence theory
for the ODS. Recently, Luo et al. [45] introduced a new fuzzy
rank discrimination measure to characterize the uncertainty of
monotonic classification, and designed a corresponding feature
selection algorithm. However, the above feature selection meth-
ods for the ODS ignore three key factors that help to improve
classification performance, which are the robustness of the eval-
uation metrics, the separability of classes, and the redundancy of
features. This article will comprehensively consider these three
factors to construct a new feature selection method for the ODS.
In what follows, the importance of these three key factors for
feature selection are analyzed, respectively.

Undoubtedly, an evaluation metric with good robustness is
necessary for feature selection algorithms, which can accurately
identify useful features for classification in noisy environments.
Hu et al. [46] proposed a robust attribute reduction method based
on soft FRSs. Zhu et al. [47] constructed a robust unsuper-
vised spectral feature selection method by preserving local and
global structures. Based on earth movers distance, Qu et al. [48]

introduced a robust attribute reduction method using a strategy
that minimizes the inconsistency between the discernibility of
the reduct and the entire original attribute set. In practical appli-
cations, Dong et al. [49] proposed a key energy-consumption
feature selection of thermal power systems based on robust
attribute reduction with rough sets. It follows that robustness
is very important for feature selection algorithms. However,
the above robust feature selection algorithms do not care about
ordinal classification, so they cannot effectively complete the
feature selection tasks for ordered data. Thus, in this article,
feature selection algorithms for ordinal classification should
consider improving their robustness.

From the perspective of classification, the separability of
classes in a certain feature subset space is a key indicator
for evaluating the importance of this feature subset to clas-
sification. For multidimensional time series data in medicine,
Fang et al. [50] developed an improved feature selection method
that integrates the Kozachenko-Leonenko information entropy
estimation method and the feature selection method based on
class-separability (CS). Zhou et al. [51] designed an online
feature selection considering separability between classes for
high-dimensional class-imbalanced data. Chen et al. [52] pro-
posed a spectral feature selection approach using kernel fuzzy
rough approximation to describe the separability of classes.
Hu et al. [12] proposed a robust attribute reduction method
considering separability in fuzzy decision systems. Obviously,
the separability of classes is closely related to the distribution of
samples. Naturally, the effect of noisy samples on CS is also
great. However, these feature selection methods considering
CS do not design the metrics of CS from the perspective of
antinoise performance. Consequently, it is necessary to design
a robust metric to characterize the CS for ordinal classifica-
tion. On the other hand, the redundancy between features is
one of the important factors considered in feature selection
algorithms [53], [54], [55], [56], which describes the repeated
classification information provided by features [1]. Therefore,
the feature selection method proposed for the ODS in this
article not only considers the CS but also needs to explore the
redundancy between features.

In view of the above analysis and investigation, this article
develops a robust feature selection method considering CS and
feature-redundancy for ordinal classification. The main contri-
butions of this article can be summarized as follows.

1) An adaptive K-nearest neighbors (AKNN) strategy is
proposed to calculate the density of samples. The noisy
samples are identified according to their densities, and then
a robust fuzzy dominance rough set model with active anti-
noise performance is proposed (i.e., AAnFDRS model).

2) The CS is evaluated by the approximation operators of the
AAnFDRS model, and the feature-redundancy is evalu-
ated by the fuzzy ranking conditional mutual information
(FRCMI). On this basis, a feature evaluation index that
comprehensively considers CS and feature-redundancy is
constructed to evaluate the importance of features.

3) A novel feature selection algorithm (i.e., AAnFSCF) is
designed to select the feature subset with the highest classi-
fication performance, and its time complexity is analyzed.
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4) The classification performance, robustness, statistical
tests, and parameter sensitivity analysis of the proposed
algorithm are tested in the experiments and the results
show that our algorithm has not only has better classifica-
tion performance but also good robustness.

The rest of this article is organized as follows. Section
II briefly reviews the basic concepts of ODS and FDRS.
In Section III, an active antinoise FDRS using AKNN is pro-
posed. Section IV proposes the feature evaluation index, and
designs the feature selection algorithm. The experimental re-
sults and analysis are shown in Section V. Finally, Section VI
concludes the article.

II. PRELIMINARIES

This section introduces some related knowledge about
ODS [57], [58] and FDRS [33].

A. Ordered Decision Systems (ODSs)

An ODS is a four-tuple S� = 〈U,C ∪D,V 〉, where U =
{xi}ni=1 is a nonempty finite set of samples, C = {ck}mk=1 is a
nonempty finite set of conditional attributes, D is a nominal
decision attribute, and V is the value domain of the entire
information system. The V is composed of two parts, one is
the value domain

⋃m
k=1 Vck (Vck = {v(xi, ck)|∀xi ∈ U}) under

the condition attribute set C, and the other is the value domain
VD = {dt}Tt=1 under the decision attribute D.

In addition, the division of U under D is denoted as
U/D = {Clt}Tt=1, where Clt = {xi ∈ U |v(xi, D) = dt, t ∈
{1, 2, . . . , T}} is the decision class. Assuming that the decision
values obey the preference order relationship, i.e., d1 < · · · <
dt < · · · < dT , then the preference order relationship between
decision classes as Cl1 ≺ · · · ≺ Clt ≺ · · · ≺ ClT . In FDRS,
the upward union Cl�t =

⋃
Clt′(t ≤ t′) and downward union

Cl�t =
⋃
Clt′(t ≥ t′), where t, t′ ∈ {1, 2, . . . , T} are the two

target sets to be approximated. In this article, we only consider
the approximation operators for the upward union of the deci-
sion classes, because the the approximation operators for the
downward union of the decision classes can also be similarly
explored.

B. Fuzzy Dominance Rough Sets (FDRSs)

In an ODS, the fuzzy dominance relation between xi and xj

under ck is calculated by

R≺
ck
(xi, xj) = 1/ (1 + exp (−k(v(xj , ck)− v(xi, ck)))) (1)

where k is a positive integer.
For any feature subset P ⊆ C, R≺

P (xi, xj) =
min
ck∈P

R≺
ck
(xi, xj) indicates the extent to which xj is better

than xi under P , and it can be abbreviated as R≺P
(i,j). The

knowledge granules about xi induced by R≺
P can be divided

into fuzzy dominating set and fuzzy dominated set, which are
denoted as follows:

R+
P (xi) =

(
R≺P

(i,1), R
≺P
(i,2), . . . , R

≺P
(i,n)

)
, (2)

R−
P (xi) =

(
R≺P

(1,i), R
≺P
(2,i), . . . , R

≺P
(n,i)

)
. (3)

Definition 1: For anyP ⊆ C and t ∈ {1, 2, . . . , T}, the fuzzy
lower and upper approximations of theCl�t underP are defined,
respectively, as follows:

R≺
P (Cl�t )(xi) = inf

xj∈U
max

(
1−R+

P (xi)(xj), Cl�t (xj)
)
, (4)

R≺
P (Cl�t )(xi) = sup

xj∈U
min

(
R−

P (xi)(xj), Cl�t (xj)
)
. (5)

In [33], it was stipulated that R≺
P (Cl�1 )(xi) = 1 and

R≺
P (Cl�1 )(xi) = 1. Moreover, (4) and (5) are simplified, respec-

tively, as follows:

R≺
P (Cl�t )(xi) = inf

xj /∈Cl�t

(
1−R+

P (xi)(xj)
)
, (6)

R≺
P (Cl�t )(xi) = sup

xj∈Cl�t

(
R−

P (xi)(xj)
)
. (7)

From (6) and (7), it can be clearly observed that ∀xi ∈ U ,
the membership of xi to fuzzy set R≺

P (Cl�t ) is determined by

the best sample that does not belong to class Cl�t , and the
membership of xi to fuzzy set R≺

P (Cl�t ) is determined by the
worst sample that belongs to class Cl�t . Through the above
analysis, we find that the approximation operators based on
FDRS model are not robust to noise samples with wrong labels.
The fundamental reason is that the degree to which a sample
belongs to the approximation sets in Definition 1 depends on the
best and worst samples in the sample set. This sensitive statistical
rules have no fault-tolerant performance, and the calculation of
approximation by this way directly lead to the instability of the
approximation results to noise interference. This defect makes
FDRS-based approximation operators very susceptible to noise
samples with wrong labels in practical applications. Therefore,
it is necessary to improve the robustness of the FDRS model.

III. ACTIVE ANTINOISE FDRSS USING AKNN

This section proposes an active antinoise fuzzy dominance
rough set (AAnFDRS) model for ODS. This model uses an
AKNN strategy to calculate the density of samples, and achieves
the purpose of active antinoise by filtering out samples with low
density. The relevant definitions are introduced as follows.

A. Density Calculation Method Using AKNN Strategy

In classification tasks, the density of samples is a key indicator
for judging whether a sample is an abnormal sample (or called an
outlier). The samples with higher density values are usually more
likely to be correctly classified, and vice versa. In this subsection,
we design aK-nearest neighbors strategy to calculate the density
of samples. The traditional K-nearest neighbors strategy con-
tains two key parameters, which are the number of nearest neigh-
bors samples (K) and the distance (radius, r) between them.
These two parameters are generally set subjectively, and they
do not have good adaptability and generalization. Therefore,
we actively learn these two parameters by considering the data
distribution, and design the AKNN strategy to make it have better
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Fig. 1. Distribution of the ODS in no-noise and noisy environments. (a) The
ODS without noise samples. (b) The ODS with two mislabeled samples.

adaptability and generalization. First, the adaptive parameters r
and K are defined as follows.

Definition 2: For any P ⊆ C, the adaptive parameters rCl�t
P

of the upward union Cl�t under P is defined as follows:

r
Cl�t
P =

1

|Cl�t |2
|Cl�t |∑
i=1

|Cl�t |∑
j=1

Δ
Cl�t
P (xi, xj) (8)

where xi, xj ∈ Cl�t , the Δ
Cl�t
P (xi, xj) represents the distance

between xi and xj under P , which is calculated using the
Euclidean distance.

Then, the parameter KCl�t
P is learned based on the adaptive

parameter rCl�t
P , which is defined as follows.

Definition 3: For any P ⊆ C, the adaptive parameters KCl�t
P

of the upward union Cl�t under P is defined as follows:

K
Cl�t
P =

1

|Cl�t |
|Cl�t |∑
i=1

N
Cl�t
P

(
xi, r

Cl�t
P

)
(9)

where xi ∈ Cl�t , the N
Cl�t
P (xi, r

Cl�t
P ) represents the number of

samples in the neighborhood of xi with radius rCl�t
P .

Finally, the density of each sample in Cl�t is calculated based

on the learned parameters rCl�t
P and K

Cl�t
P , which is defined as

follows.
Definition 4: For any P ⊆ C, the density of xi ∈ Cl�t under

P is defined as follows:

ρ
Cl�t
P (xi) =

N
Cl�t
P (xi, r

Cl�t
P )

K
Cl�t
P

(10)

where xi ∈ Cl�t , the N
Cl�t
P (xi, r

Cl�t
P ) represents the number of

samples in the neighborhood of xi with radius rCl�t
P .

Example 1: Fig. 1 shows the feature space distribution of
an ODS in no-noise [as shown in Fig. 1(a)] and noise [as
shown in Fig. 1(b), where x1 and x18 are two noise samples]
environments, where pentagrams, circles, and squares stand
for samples coming from classes 1, 2, and 3, respectively. In
the ODS, U = {xi}18i=1, C = {c1, c2, c2}, Cl�1 = U , Cl�2 =
{x7, x8, . . . , x18}, and Cl�3 = {x13, x12, . . . , x18}.

In Fig. 1(a), according to Definitions 2–4, the densities of x1

and x18 are calculated as ρ
(Cl�2 )

c

C (x1) = 0.67 and ρ
Cl�2
C (x18) =

0.88, respectively. In Fig. 1(b), the x1 is misclassified into

Cl�2 and x18 is misclassified into (Cl�2 )
c, and their densities

are calculated as ρ
Cl�2
C (x1) = 0.14 and ρ

(Cl�2 )
c

C (x18) = 0.23,
respectively. The above results show that the densities of the
samples are greatly reduced due to the samples being mislabeled.
At the same time, it also shows that the density calculation
method proposed in this article can effectively identify abnormal
samples.

B. Approximations in AAnFDRS Model

When constructing approximation operators with antinoise
performance, the focus is on designing approximate calculation
rules that can filter noise samples. This rule is used to filter
out the noise samples existing in the classes boundary, and
then screens out the appropriate correct samples (i.e., the best
samples outside the classes and the worst samples inside the
classes) to calculate the approximations. However, a very key
issue is how to control the number of ignored samples in the
process of filtering samples. If there are few samples filtered
out, there may still be noisy samples in the classes boundary.
Conversely, if the samples are filtered out excessively, it may
cause overfitting noise. Therefore, how to find the critical value
of filtering out the number of samples in the process of designing
approximate calculation rules is the key to solving this issue. To
address this issue, we design density critical (DC) values for the
lower and upper approximations, respectively, which are defined
as follows.

Definition 5: For lower approximation, ∀P ⊆ C, xi ∈ Cl�t ,
the DC value of samples outside the upward unionCl�t is defined
as follows:

ρ(Cl�t )
c

DC
(xi)= inf

xj∈(Cl�t )c
max

{
1−ρ

(Cl�t )
c

P (xj)R
+
P (xi)(xj),

ρ
(Cl�t )

c

P (xj)
}
. (11)

Definition 6: For upper approximation, ∀P ⊆ C, xi ∈ Cl�t ,
the DC value of samples inside the upward union Cl�t is defined
as follows:

ρCl�t
DC

(xi) = inf
xj∈Cl�t

max
{
1− ρ

Cl�t
P (xj)R

−
P (xi)(xj),

ρ
Cl�t
P (xj)}. (12)

Then, the definitions of approximations in AAnFDRS are
introduced as follows.

Definition 7: For any P ⊆ C, the fuzzy lower approximation
of the upward union Cl�t under P is defined as follows:

R≺
P (Cl�t )(xi) = inf

xj∈Lo
{1−R+

P (xi)(xj)}, (13)

where Lo = {xj |ρ(Cl�t )
c

P (xj) ≥ ρ(Cl�t )
c

DC
(xi), xj ∈ (Cl�t )

c}.

Definition 8: For any P ⊆ C, the fuzzy upper approximation
of the upward union Cl�t under P is defined as follows:

R≺
P (Cl�t )(xi) = sup

xj∈Up
{R−

P (xi)(xj)} (14)

where Up = {xj |ρCl�t
P (xj) ≥ ρCl�t

DC
(xi), xj ∈ Cl�t }.
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Fig. 2. Approximate calculation rules of FDRS and AAnFDRS in no-noise
environment. (a) FDRS. (b) AAnFDRS.

Fig. 3. Approximate calculation rules of FDRS and AAnFDRS in noise
environment. (a) FDRS. (b) AAnFDRS.

Furthermore, we specify that R≺
P (Cl�1 )(xi) = 1 and

R≺
P (Cl�1 )(xi) = 1.

C. Example Explanation

This section demonstrates the antinoise mechanism of the ap-
proximation operators in the AAnFDRS model with an example.

Example 2: Continuing from Example 1. Fig. 2 shows the
approximate calculation rules of FDRS and AAnFDRS in the
no-noise environment, respectively.

It can be seen from Fig. 2(a) that the degree to which
x11 belongs to the lower approximation and the upper ap-
proximation of Cl�2 is determined by the best sample x5

outside Cl�2 and the worst sample x9 inside Cl�2 , respec-
tively. Their calculation results as R≺

C(Cl�2 )(x11) = 0.94 and

R≺
C(Cl�2 )(x11) = 0.79, where k = 10 in (1). Fig. 2(b) also

presents the same approximate calculation rule. Their calcu-
lation results as R≺

C(Cl�2 )(x11) = 0.94 and R≺
C(Cl�2 )(x11) =

0.79. The above results show that the approximate calculation
results of the FDRS model and the AAnFDRS model are consis-
tent in the no-noise environment. Through the above analysis,
it can be found that the proposed AAnFDRS model inherits
the calculation calculation rules of the FDRS model, and its
approximate calculation rules are reasonable.

Fig. 3 shows the approximate calculation rules of FDRS and
AAnFDRS in the noise environment, respectively.

From Fig. 3(a), we can find that the degree to which x11

belongs to the lower approximation and the upper approximation
of Cl�2 is determined by the noise samples x18 and x1, respec-
tively. Their calculation results as R≺

C(Cl�2 )(x11) = 0.12 and

R≺
C(Cl�2 )(x11) = 0.99. However, in Fig. 3(b), the approximate

calculation rules for x11 avoid the influence of the noise samples
x1 and x18. Their calculation results as R≺

C(Cl�2 )(x11) = 0.94

and R≺
C(Cl�2 )(x11) = 0.79. Based on the above calculation

results, it is not difficult to find that the approximate calculation
results based on FDRS model in noisy and no-noise environ-
ments are very different. Especially the calculation results in the
noisy environment are obviously inconsistent with our intuitive
reasoning. Because of x11 ∈ Cl�2 , intuitively R≺

C(Cl�2 )(x11)
should get higher values, but the rules for calculating approxi-
mations according to the FDRS model cause it to get a very small
value. However, the approximate calculation results based on the
AAnFDRS model are reasonable and consistent with our intu-
ition reasoning, which are consistent with the calculation results
in the no-noise environment. In Fig. 3(b), according to Defini-
tions 5 and 6, the DC values are calculated as ρ(Cl�2 )

c

DC
(x11) =

0.80 and ρCl�2
DC

(x11) = 0.86, respectively. The densities of these

two noise samples are ρ
(Cl�2 )

c

C (x18) = 0.23 and ρ
Cl�2
C (x1) =

0.14. Because ofρ
(Cl�2 )

c

C (x18) < ρ(Cl�2 )
c

DC
(x11) andρ

Cl�2
C (x1) <

ρCl�2
DC

(x11), the noise samples x1 and x18 are ignored when
computing the lower and upper approximations, respectively.
After screening, samples x5 and x9 are respectively used as the
most appropriate samples to calculate the approximations. This
result shows that the AAnFDRS-based approximate calculation
rules can effectively filter out the noise samples, and then se-
lect the appropriate samples to obtain the correct approximate
calculation values.

Through the above analysis, it can be concluded that the
AAnFDRS model has good robustness. Based on the distribution
of the data, this model actively filters out noise samples by cal-
culating the density of the samples, and selects proper samples
from the process to effectively calculate the approximations,
thereby achieving the purpose of antinoise.

IV. AANFDRS-BASED FEATURE SELECTION APPROACH

EXPLORING CS AND FEATURE-REDUNDANCY FOR ODS

This section proposes an AAnFDRS-based feature selection
approach for ODS, which comprehensively explores CS and
feature-redundancy.

A. Problem Statement

The separability of classes is characterized by the degree of
between-class dispersion (BCD) and the degree of intraclass
aggregation (ICA). The degree of BCD is usually measured by
the distance between different classes, and the degree of ICA is
usually measured by the distance between samples within the
same class. As we all know, in classification tasks, the larger
the between-class distance, the better; the smaller the intraclass
distance, the better.

The between-class distance refers to the distance between the
center point h of the selected class and the sample closest to the
h point from different classes; the intraclass distance refers to
the distance between the h point and the sample that is farthest
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Fig. 4. Degrees of between-class dispersion and intraclass aggregation for
ODS in noisy environments. (a) The degrees of between-class dispersion based
on FDRS and AAnFDRS, whereh is the center point ofCl�2 andx18 is the noise
sample. (b) The degree of intraclass aggregation based on FDRS and AAnFDRS,
where h is the center point of Cl�2 and x1 is the noise sample.

from the h point in the same class. For ordinal classification
tasks, the between-class distance refers to the distance between
the center point h of the selected class and the best sample from
the different class; the intraclass distance refers to the distance
between the h point and the worst sample in same class. This
rule of searching for the best sample in different classes and the
worst sample in same classes is very similar to the approximate
calculation rules based on FDRS model. Therefore, for an ODS,
it is reasonable to use the FDRS-based lower approximation and
upper approximation to characterize the degree of BCD and the
degree of ICA, respectively. However, as mentioned in Section
II-B, this search strategy of statistical minima and maxima is
sensitive and not robust to noisy samples. Next, this defect is
revealed through Fig. 4.

From Fig. 4, we find that the BCD degree of class Cl�2 is
determined by the noise sample x18 in the fuzzy dominance
rough approximation space, i.e., R≺

C(Cl�2 ) describes the disper-

sion degree of Cl�2 [as shown in Fig. 4(a)]; the ICA degree is
determined by the noise sample x1, i.e., R≺

C(Cl�2 ) describes the
aggregation degree of Cl�2 [as shown in Fig. 4(b)]. Obviously,
this measure strategy is disturbed by noise samples in the fuzzy
dominance rough approximation space, resulting in the output
of erroneous discriminative information. Therefore, an antinoise
search rule is needed to avoid the influence of noise samples in
the process of calculating the BCD degree and ICA degree.

As mentioned in Section III, the proposed approximate cal-
culation rules based on AAnFDRS model have the function of
actively filtering out noisy samples and searching for the correct
out-of-class best samples and the in-class worst samples. By
using the approximate operators of the AAnFDRS model to
describe the BCD degree and ICA degree, the interference of
noise samples can be avoided, and the correct discrimination
information can be output. As shown in Fig. 4, based on AAnF-
DRS model, the BCD degree of the class Cl�2 is determined by
the sample x5, i.e., R≺

C(Cl�2 ) describes the dispersion degree

of Cl�2 [as shown in Fig. 4(a)]; the ICA degree is determined
by the sample x9, i.e., R≺

C(Cl�2 ) describes the aggregation
degree of Cl�2 [as shown in Fig. 4(b)]. Clearly, this measure
strategy is consistent with our intuitive reasoning. Therefore, it
is reasonable to measure the BCD degree and the ICA degree
based on the proposed AAnFDRS model.

B. Class-Separability

This subsection defines the BCD degree, ICA degree, and the
CS based on the AAnFDRS model.

Definition 9: For anyP ⊆ C and t ∈ {2, 3, . . . , T}, the BCD
degree of Cl�t under P is defined as follows:

BCDP (Cl�t ) =

∑|Cl�t |
i=1 R≺

P (Cl�t )(xi)

|Cl�t |
. (15)

Definition 10: For anyP ⊆ C and t ∈ {2, 3, . . . , T}, the ICA
degree of Cl�t under P is defined as follows:

ICAP (Cl�t ) =
∑|Cl�t |

i=1 R≺
P (Cl�t )(xi)

|Cl�t |
. (16)

Since it is difficult to find the center points of the classes in the
ODS, we use the average approximation results from all samples
in the classes to characterize the BCD and ICA in Definitions 9
and 10, respectively. For an ODS, the larger the BCD, the better;
the smaller the ICA, the better. The CS of single and global in
the ODS are defined, respectively, as follows.

Definition 11: For any P ⊆ C and t ∈ {2, 3, . . . , T}, the CS
of Cl�t under P is defined as follows:

CSP (Cl�t ) =
BCDP (Cl�t )
ICAP (Cl�t )

. (17)

For an ODS, the larger the CS, the better.
Definition 12: For any P ⊆ C and t ∈ {2, 3, . . . , T}, the

global class-separability (GCS) under P is defined as follows:

GCSP (D) =

∑T
t=2 CSP (Cl�t )

T − 1
. (18)

For an ODS, the larger the GCS, the better.
Definition 13: For any P ⊆ C and ck ∈ C − P , the GCS-

based feature significance of ck to P is defined as follows:

SIG(ck, P,D) = GCSP∪{ck}(D)− GCSP (D). (19)

The largerSIG(ck, P,D) is, the more important ck is for ordinal
classification.

C. Feature-Redundancy

In this section, FRCMI is defined to measure the redundancy
between features in the ODS.

Definition 14 ([1]): For any P ⊆ C ∪D, the fuzzy ranking
entropy (FRE) of P is defined as follows:

RE≺(P ) = − 1

|U |
n∑

i=1

log2
|R+

P (xi)|
|U | (20)

which reflects the information amount of the feature subset P
in the ODS.

Definition 15 ([1]): For any P,Q ⊆ C ∪D, the fuzzy rank-
ing mutual information of P and Q is defined as follows:

RMI≺(P ;Q) = − 1

|U |
n∑

i=1

log2
|R+

P (xi)| · |R+
Q(xi)|

|U | · |R+
P∪Q(xi)|

(21)
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which reflects the amount of overlapping information provided
by feature subsets P and Q in the ODS.

Definition 16: For any P,Q ∈ C, when Q is known, then the
FRCMI of the P and D is defined as follows:

RCMI≺(P ;D|Q)=− 1

|U |
n∑

i=1

log2
|R+

P∪Q(xi)| · |R+
Q∪D(xi)|

|R+
P∪Q∪D(xi)| · |R+

Q(xi)|
(22)

which is used to measure the amount of information provided
by the P for ordinal classification when Q is known.

Let P (P ⊆ C) denotes the selected feature subset and ck
(ck ∈ C − P ) denotes the current candidate feature.

Definition 17: The redundancy between the P and ck with
respect to D is defined as follows:

RED≺(P, ck;D) = RMI≺(ck;D)−RCMI≺(ck;D|P )
(23)

which reflects the amount of overlapping ordinal classification
information provided by the selected feature set P and current
candidate feature ck for decision D. That is, when P is known,
ck provides redundant information for ordinal classification. Ac-
cording to Definition 15, theRMI≺(ck;D) denotes the amount
of information provided by the current candidate feature ck for
decision D. According to Definition 16, the RCMI≺(ck;D|P )
denotes the amount of information provided by the current
candidate feature ck for decision D under the selected feature
subset P . Obviously, under the selected feature subset P , the
amount of redundant information provided by the ck for D can
be calculated by RMI≺(ck;D)−RCMI≺(ck;D|P ). There-
fore, it is reasonable to calculate the redundant information of a
current candidate feature by Definition 17. This redundancy is
a negative factor for feature evaluation.

D. Feature Evaluation Index and Feature Selection Algorithm

In this section, a feature evaluation index is proposed, which
comprehensively considers CS and feature-redundancy based on
the AAnFDRS model. Then, the corresponding feature selection
algorithm is constructed.

Definition 18: The feature evaluation index is defined as
follows:

J (ck) = SIG(ck, P,D)− β · RED≺(P, ck;D) (24)

where the parameter β is used to adjust the redundancy between
features.

Next, an example is used to illustrate Definition 18.
Example 3: Continuing from Example 2.
The feature evaluation index is calculated in the noisy envi-

ronment, and its data distribution is shown in Fig. 3. Assuming c3
as the selected feature, then calculate the evaluation index values
J (c1) andJ (c2), where β is set to 0.9. According to Definitions
9–13, the significance of features c1 and c2 is calculated as
follows:

SIG(c1, c3, D) = 1.33,SIG(c2, c3, D) = 1.23.

According to Definitions 15–17, the redundancy of features c1
and c2 is calculated as follows:

RCMI≺(c1;D|c3) = 0.37,RCMI≺(c2;D|c3) = 0.39.

According to Definition 18, the evaluation index values of c1
and c2 is calculated as J (c1) = 0.99 and J (c2) = 0.87.

Subsequently, an AAnFDRS-based feature selection algo-
rithm considering class-separability and feature-redundancy
(AAnFSCF) is given in Algorithm 1, and the feature selection
strategy is described as shown in Fig. 5.

The time complexity of this algorithm is analyzed as follows.
Steps 2–19 are to calculate the GCS between each feature
and decision, where Steps 3–18 are to calculate the CS be-
tween each feature and single class and its time complexity is
O(|U |2 + 2

∑T
t=2 |Cl�t |). The time complexity of Steps 2–19

is O(|C|(|U |2 + 2
∑T

t=2 |Cl�t |)). Steps 20–22 are to select the
feature with the best GCS and add it to the P , then delete it
from C. Steps 25–35 are to continuously select the feature with
the best feature evaluation index and add it to the P until an
feature sequence is obtained. Concretely, Steps 26–30 calculate
the GCS-based feature significance and redundancy between
each candidate features and selected feature subset, its time
complexity is O((|C| − 1)(|U |2 + 2

∑T
t=2 |Cl�t |)). The time

complexity of Steps 25–35 is O(|C|2(|U |2 + 2
∑T

t=2 |Cl�t |)).
Steps 36–38 are to use a specified classifier to cross-validate the
classification accuracy of each sequential feature subsets, it is
calculated at most |C| − 1 times. Step 39–40 are to select the
feature subset sequencePopt with highest classification accuracy
and output the feature subset. In summary, the time complexity
of this algorithm is O(|C|2|U |2).

V. EXPERIMENTS AND ANALYSIS

In this section, the robustness and classification performance
of the algorithm AAnFSCF are evaluated by a series of experi-
ments, respectively.

A. Experimental Data Preprocessing

Table I shows that 12 datasets from UCI are used for exper-
iments. These datasets are preprocessed in two steps. The first
step is to normalize the values under the conditional attribute
set in each original dataset to the interval [0, 1] via the min–max
normalization method. The second step is to monotonize each
dataset after normalization, and the specific operations are as
follows. First, calculate the average value of samples under the
conditional attributes. Then, samples with a larger average value
are assigned a larger class label, and samples with a smaller
average value are assigned a smaller class label. Considering that
the number of class labels is far from the number of samples, in
the process of assigning class labels based on the average value,
we adopted a method of assigning values in batches according
to the number of class labels.
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Fig. 5. Framework of AAnFSCF algorithm.

B. Classification Performance Evaluations of Algorithm
AAnFSCF

The classification performance of the proposed algorithm
AAnFSCF are evaluated by comparing with the existing feature
selection methods applicable for the ODS.

1) Comparison Algorithms: The proposed algorithms are
compared with seven feature selection (also known as attribute
reduction) algorithms, including algorithms DRSQR, HARCC,
AR-FDRS, AR-VCDRSA, mRMR-RMI, O-ReliefF, and
O-Simba. Algorithm DRSQR is a DRSA-based QuickReduct
method [58]. Algorithm HARCC is a heuristic attribute reduc-
tion method based on DRSA model [58]. Algorithm AR-FDRS
is an attribute reduction method of forward greedy search based
on FDRS model [33]. Algorithm AR-VCDRSA is an attribute
reduction method of forward greedy search based on VCDRSA
model [59]. In this experiment, for the algorithm AR-VCDRSA,
we select the optimal feature subset of the consistency level l in
the range of [0.6, 0.9] with step size 0.1. Algorithm mRMR-
RMI is an attribute reduction method with mRMR strategy
using RMI as an uncertainty measure [1]. Algorithms O-Simba
and O-ReliefF are extended by the classic algorithms Reli-
efF and Simba, respectively, for feature selection of ordered
data [41]. The algorithms DRSQR, HARCC, AR-FDRS, and
AR-VCDRSA each output an feature subset. The algorithms
mRMR-RMI, O-ReliefF, and O-Simba each output an feature
sequence, and their process of selecting the optimal feature
subset is consistent with Steps 26–31 in Algorithm 1. Moreover,
for the proposed algorithm AAnFSCF, we calculate the optimal
feature subset of parameter β in the range [0, 1] with step
size 0.1.

2) Experimental Preparation: First, assume that each origi-
nal dataset is a clean dataset (i.e., no noise samples). Then, each
data is randomly added 40% noise samples. Specifically, for each
dataset, 40% samples with the maximum or minimum value of
the class label are randomly selected, and then exchange the
sample labels of different class labels. These relabeled samples
are treated as noise samples.

The classification performance of algorithms are evaluated by
classifiers Naive Bayes (NB), Support Vector Machine (SVM),
and Classification And Regression Tree (CART). The default
parameters setting of these classifiers are adopted. The ten-fold
cross-validation is adopted to implement experiments. The orig-
inal dataset is randomly divided into ten subsets, of which nine
subsets are used as training data, and the remaining subset is
used as test data. The experiments are repeated ten times, and
the mean and standard deviation of the classification accuracy
are calculated as the final result.

3) Experimental Results and Analysis: The classification
performance of the eight feature reduction algorithms and
the original data under different classifiers are recorded in
Tables II, III, and IV. The classification performances are com-
pared in terms of the mean classification accuracy (the left side
of the “‖” symbol) and the number of selected features (the
right side of the “‖” symbol), respectively. The parameters cor-
responding to classification accuracy are shown in parentheses
after them. The last rows (Avg.) shows the average classification
accuracy and the number of selected features of these algorithms
on all datasets. The highest classification accuracy value corre-
sponding to each data is highlighted in bold font.

The experimental results of Tables II–IV are analyzed as
follows. Compared with the original data and seven contrasting
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Algorithm 1: AAnFSCF Algorithm.

algorithms, our algorithm AAnFSCF wins 11 times, 12 times,
and 9 times in Tables II–IV, respectively. However, other al-
gorithms win up to two times. It shows that the classification
performance of the algorithm AAnFSCF in most datasets is
higher than that of the other algorithms and original feature set.

Moreover, it is not difficult to find that algorithms DRSQR
and AR-FDRS have the worst classification performance. These

TABLE I
SUMMARY OF DATASETS

two algorithms are constructed based on the DRSA and FDRS
models, respectively, and they have no fault tolerance for noise
samples, which is the main reason for the poor classification
performance of the two algorithms. Although the algorithm AR-
VCDRSA uses a variable precision way (l is the fault-tolerance
level) to construct a fault-tolerant mechanism, this algorithm
is based on Boolean relation and cannot accurately describe
the preference relationship in numerical features. The classi-
fication performance of algorithms mRMR-RMI and HARCC
is moderate and close to the classification performance of the
original data. The advantage of these two algorithms is that
they comprehensively consider the relevance between features
and decision, and the correlation between features. But these
two algorithms still do not have antinoise mechanism. The
algorithms O-Simba and O-ReliefF achieve better classification
performance. The main reason is that these two algorithms use
the information of class labels to select important features and
avoid the influence of noise through multiple iterations. But their
classification performance is still significantly worse than our
algorithm AAnFSCF.

Overall, in terms of the size of the selected feature subset,
the feature subset output by algorithm AAnFSCF is larger
than that of algorithms DRSQR, AR-FDRS, and AR-VCDRSA,
but smaller than that of algorithms HARCC, O-Simba, and
O-ReliefF. The reason why algorithms DRSQR, AR-FDRS,
and AR-VCDRSA obtain a smaller feature subset is that they
unilaterally evaluate the dependence of features and decisions
to determine the importance of features, and do not consider
the classification information provided by class labels in the
feature space and the correlation between features. Since the
computational models of algorithms HARCC, O-Simba, and
O-ReliefF are disturbed by noise samples, it is easy to lead to
wrong feature evaluation results. Naturally, the feature subsets
obtained by these four algorithms contain redundant or irrelevant
features for classification. The feature subset obtained by our al-
gorithm AAnFSCF is also much smaller than the original feature
set. Compared with other algorithms, the algorithm AAnFSCF
can accurately delete redundant features and better reduce the
dimensionality of the feature space.

Subsequently, for feature selection algorithms that output
feature sequences, we evaluate the impact of the number of
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TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT FEATURE SELECTION ALGORITHMS ON CLASSIFIER NB (%)

TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT FEATURE SELECTION ALGORITHMS ON CLASSIFIER SVM (%)

TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE OF DIFFERENT FEATURE SELECTION ALGORITHMS ON CLASSIFIER CART (%)

selected features on classification performance. The relationship
between the number of selected features and the classification
accuracies of different algorithms with classifier SVM are shown
in Fig. 6. Because algorithms DRSQR, HARCC, AR-FDRS, and
AR-VCDRSA each output a feature subset, they do not need
to learn the feature subset from the entire feature sequences.
Therefore, the algorithms that output a feature subset do not
need to perform this test, and naturally they do not appear in
Fig. 6.

By observing Fig. 6, it is find that in addition to datasets
Sonar, Derm, Hous, and Cred, our algorithm AAnFSCF quickly
reaches the highest point of classification accuracy value on
the remaining 8 datasets. Moreover, the classification accuracy
values of the highest points of algorithm AAnFSCF are higher

than that of other algorithms and the original data on most
datasets. This characteristic is highlighted on datasets WPBC,
Iono, Derm, Auto, WDBC, Aust, Germ, and Wred. This shows
that the proposed algorithm AAnFSCF is effective, and it can
accurately select the important features for ordinal classification.

C. Statistical Test

This section statistically tests the classification performance
of eight algorithms on three different classifiers by using Fried-
man’s test (F-test) and Nemenyi’s posthoc test (N-test).

For F-test, the significance level is set as 0.1, and the null
hypothesis that “all algorithms have the the same performance”.
The critical value is 1.796 from the F-test critical value table.
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Fig. 6. Classification accuracy changes w.r.t. the number of selected features with classifier SVM. (a) WPBC. (b) Sonar. (c) Iono. (d) Derm. (e) Auto.
(f) Hous. (g) WDBC. (h) Aust. (i) Cred. (j) Germ. (k) Wred. (l) Wite.

Fig. 7. Comparisons of the classification accuracy with the N-test on three classifiers. (a) NB. (b) SVM. (c) CART.

The values of τF on classifiers NB, SVM, and CART are 23.659,
18.700, and 15.228, respectively. Obviously, the values of τF on
different classifiers are all larger than the critical value. Thus,
the null hypothesis is rejected in the F-test.

Subsequently, the significant differences between any two
algorithms are shown by using the N-test. The critical difference
CD = 2.780 when the significance level is 0.1. The test results
are shown in Fig. 7, the average ranking of each algorithm is
marked on the number line. If the algorithms are connected by
horizontal lines, there is no significant difference between the
corresponding algorithms.

From Fig. 7, it is not difficult to find that our algorithm
AAnFSCF significantly different from algorithms AR-FDRS,
DRSQR, AR-VCDRSA, and HARCC on the three classifiers.
Algorithms O-ReliefF and mRMR-RMI are not significantly

different from the proposed algorithm AAnFSCF on the three
classifiers, but algorithms AAnFSCF and O-Simba have a signif-
icant difference on classifier SVM. Furthermore, our algorithm
AAnFSCF ranks first on different classifiers and far outperforms
the second-ranked algorithm. Therefore, this statistical test also
shows that the proposed algorithm AAnFSCF has good classi-
fication performance.

D. Parameter Sensitivity Analysis of Algorithm AAnFSCF

This section explores the sensitivity of the parameter β in al-
gorithm AAnFSCF to classification accuracy tested by classifier
NB. The experimental results are shown in Fig. 8.

By observing Fig. 8, it is easy to find that for most datasets,
the first several features of the feature sequence output by the
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Fig. 8. Effect of parameter β and the selected features on the classification accuracy tested by classifier NB. (a) WPBC. (b) Sonar. (c) Iono. (d) Derm. (e) Auto.
(f) Hous. (g) WDBC. (h) Aust. (i) Cred. (j) Germ. (k) Wred. (l) Wite.

algorithm AAnFSCF can reach the highest point of classification
accuracy. This shows that features that provide important ordinal
classification information can be extracted from the data by
the algorithm AAnFSCF and placed at the front of the fea-
ture sequence. Moreover, for most datasets, the classification
accuracy values corresponding to different parameters fluctuate
significantly when the size of the feature subsets is the same.
This shows that the feature sequences corresponding to different
parameters are also different. This indicate that a better feature
sequence for classification can be obtained by adjusting the
parameter β.

E. Robustness Evaluations of Algorithm AAnFSCF

This section evaluates the robustness of feature selection
algorithms in terms of feature sequences (subsets) and feature
scores.

1) Evaluate the Robustness of Feature Sequences (subsets):
Each data in Table I is added with 0%, 10%, 20%, 30%, 40%, and
50% noise samples respectively, so that each data generates six
kinds of data with different noise levels. The same algorithm may
obtain different feature sequences (subsets) on data containing
different noise levels, and the similarity between them is used
as a criterion to evaluate the robustness of the algorithm.

For the algorithm that outputs feature sequences, assum-
ing that feature sequences Eli = {eli1 , eli2 , . . . , elim} and Flj =

{f lj
1 , f

lj
2 , . . . , f

lj
m} are respectively obtained at noise levels li

and lj , the similarity of these two feature sequences is calculated
as follows:

Sse(Eli , Flj ) = 1− 6
m∑

k=1

(elik − f
lj
k )2

m(m2 − 1)
. (25)

For the algorithm that outputs feature subsets, assum-
ing that feature subsets Pli = {pli1 , pli2 , . . . , pli|P |} and Qlj =

{qlj1 , q
lj
2 , . . . , q

lj
|Q|} are obtained at noise levels li and lj , respec-

tively. The similarity of these two feature subsets is calculated
as follows:

Ssu(Pli , Qlj ) =
|Pli ∩Qlj |

|Pli |+ |Qlj | − |Pli ∩Qlj |
. (26)

The same algorithm can obtain 6 feature sequences (subsets)
under different noise levels, and the similarity of any two feature
sequences (subsets) are calculated to form the similarity matrix
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Fig. 9. Robustness evaluation of feature scores for different algorithms under different noise levels. (a) Derm. (b) Hous. (c) WDBC. (d) Aust. (e) Cred. (f) Germ.
(g) Wred.

TABLE V
SIMILARITY OF FEATURE SEQUENCES (SUBSETS) UNDER DIFFERENT NOISE

LEVELS

S = [Sij ]6×6, where Sij refers to the similarity between the
generated feature sequences (subsets) at noise levels i and j. The
average value of the similarity matrix S is the final evaluation
index, and the larger it is, the more robust the algorithm is. The
experimental results are shown in Table V, where the number in
bold face indicates the highest similarity corresponding to the
current row.

From Table V, we find that our algorithm AAnFSCF achieves
relatively high similarity values, which is also proved from the
perspective of the average. This proves that the feature sequence
generated by our algorithm AAnFSCF has good robustness in
noisy environment.

2) Evaluate the Robustness of Feature Scores: For algo-
rithms that generate feature sequences, we compare their robust-
ness of feature scores (also known as feature importance values)

under different noise levels. Specifically, for a certain algorithm,
we get the score of each feature under different noise levels, and
calculate the standard deviation of these feature scores as the
evaluation index. The smaller the evaluation index, the better.
For example, the scores obtained for feature c under different
noise levels can form a vector c = (v

l0%
c , v

l10%
c , . . . , v

l50%
c ), and

then the standard deviation std(c) of the values in the vector c is
calculated as the experimental result. The experimental results
of seven datasets selected are shown in Fig. 9 in the form of
radar graph, where a point in the subgraph corresponds to a
std(c) value. Obviously, an algorithm is more robust if it covers
a smaller area. By observing Fig. 9, we can roughly find that the
coverage area corresponding to the AAnFSCF algorithm is the
smallest, where the subgraphs Fig. 9(b), (c), (e), and (g) are the
most significant. This manifests that our algorithm AAnFSCF
has better robustness in noisy environments.

VI. CONCLUSION

This article develops a novel feature selection method for
ordinal classification from the perspectives of robustness, CS,
and feature-redundancy. First, a robust FDRS model is proposed,
which calculates the density of samples by using an AKNN
strategy and designs an approximate calculation mechanism to
actively antinoise. Then, the CS and feature-redundancy are de-
fined in this robust fuzzy dominance rough approximation space,
where the CS is characterized by approximation sets and the
feature-redundancy describes the redundancy between features
by FRCMI. Finally, a robust feature evaluation index that com-
prehensively considers CS and feature-redundancy is proposed,
and the corresponding feature selection algorithm AAnFSCF is
also designed. Extensive experiments are performed in noisy
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environments, and the results demonstrate that our algorithm
AAnFSCF not only has better classification performance but
also good robustness. However, the robust FDRS model and
feature selection method proposed in this article are only suitable
for data mining from single granularity knowledge space. For
more complex or multimodal ordinal classification tasks, it is
necessary to develop a robust FDRS model and feature selection
method from a multigranularity perspective, thereby improving
their generalization ability in practical applications. Therefore,
in future work, we will explore robust FDRS model from a
multigranularity perspective and investigate multigranularity
uncertainty measures for feature selection of ordinal classifi-
cation.
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