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Two-Way Concept-Cognitive Learning via Concept
Movement Viewpoint

Weihua Xu , Doudou Guo , Jusheng Mi, Yuhua Qian , Member, IEEE, Keyin Zheng, and Weiping Ding

Abstract— Representation and learning of concepts are critical
problems in data science and cognitive science. However, the
existing research about concept learning has one prevalent
disadvantage: incomplete and complex cognitive. Meanwhile,
as a practical mathematical tool for concept representation and
concept learning, two-way learning (2WL) also has some issues
leading to the stagnation of its related research: the concept
can only learn from specific information granules and lacks
a concept evolution mechanism. To overcome these challenges,
we propose the two-way concept-cognitive learning (TCCL)
method for enhancing the flexibility and evolution ability of
2WL for concept learning. We first analyze the fundamental
relationship between two-way granule concepts in the cognitive
system to build a novel cognitive mechanism. Furthermore, the
movement three-way decision (M-3WD) method is introduced to
2WL to study the concept evolution mechanism via the concept
movement viewpoint. Unlike the existing 2WL method, the pri-
mary consideration of TCCL is two-way concept evolution rather
than information granules transformation. Finally, to interpret
and help understand TCCL, an example analysis and some
experiments on various datasets are carried out to demonstrate
our method’s effectiveness. The results show that TCCL is more
flexible and less time-consuming than 2WL, and meanwhile,
TCCL can also learn the same concept as the latter method
in concept learning. In addition, from the perspective of concept
learning ability, TCCL is more generalization of concepts than
the granule concept cognitive learning model (CCLM).

Index Terms— Concept-cognitive learning (CCL), concept evo-
lution, granular computing, three-way decision, two-way learning
(2WL).

I. INTRODUCTION

THE development of big data has opened up a whole
new era for artificial intelligence [7], [20], [28]. As an

essential basis to support artificial intelligence, the theory and
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method of big-data analysis are related to the formulation of
man–machine intelligence. The data–information–knowledge–
wisdom (DIKW) hierarchy is one of the fundamental concepts
in the big-data analysis theory. That is, data creates informa-
tion, information creates knowledge, and knowledge creates
wisdom [29]. Specifically, the DIKW hierarchy emphasizes
discovering the correct information that human-being from
data can use, and finally, using the obtained information to
guide human decision-making. As is well known, the knowl-
edge acquisition process is inseparable from the representation
and learning of concepts [14], [18], [32]. Currently, cognitive
learning for concepts is emerging in artificial intelligence and
cognitive science [10], [15], [25].

Concept learning and concept cognitive are two emerg-
ing issues in machine learning and cognitive science. Note
that people learning a new concept can often generalize
successfully from very few examples, yet machine-learning
approaches typically require tens or hundreds of examples
to perform with similar accuracy [3]. Therefore, concept-
cognitive learning (CCL) theory emerges that simulates
the human cognitive process by integrating concept learn-
ing and concept cognitive. Concepts can be learned from
objects/attributes and acquired through a pair of cognitive
operators to describe the relationship between objects and
attributes, namely concept generation. In addition, the acquired
concepts can also be cognitive through a specific learning
model, that is, concept evolution. However, some existing
CCL system lacks concept generation and evolution capability.
For instance, Xu et al. [26] and Xu and Li [27] propose the
two-way learning (2WL) system to learn concepts, while it
lacks the concept evolution ability due to the main forces
on the granule description and transformation mechanism.
Moreover, Shi et al. [31] study the concept-cognitive learning
method via concept space learning, which also lacks the con-
cept generation ability due to its primary focus on constructing
concept space. Hence, a novel CCL system is required to pro-
mote the concept generation and evolution capability of cog-
nitive learning, which is one of the main goals of this article.

Moreover, we noticed that 2WL methods [26], [27] still have
some problems: 1) the sufficient and necessary granule concept
could only be obtained from the necessary or sufficient granule
concept; 2) the two-way granule concept cannot be obtained
from the sufficient and necessary granules; and 3) the conclu-
sion that the number of sufficient and necessary granules is less
than 16 is inaccurate. Although 2WL is a classic and effective
concept-cognitive learning model, these problems lead to the
stagnation of its related research. Therefore, pointing out and
solving these problems is another motivation for this article.
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Fig. 1. Block diagram of the proposed approach.

The concept-cognitive learning theory establishes rigorous
cognitive models and provides new semantics interpretation for
knowledge discovery in the learning process. In other words,
knowledge of the natural world can be embodied through these
particular conceptual structures, and wisdom can be learned
through these particular conceptual structures. All in all,
CCL has been investigated from various aspects. Nevertheless,
flexibility and evolution ability in concept learning still needs
to be explored. Note that the core idea of movement-based
three-way decision [4], [5], [6] is to move objects among
three regions by specific action or strategy and then complete
evolutionary learning of different regions to form a new tri-
partition. This article applies the naive idea of M-3WD to the
two-way concept-cognitive learning (TCCL) model to think
about its cognitive mechanism. In this mechanism, we use
the existing methods and expressions of M-3WD to learn
more concepts to achieve concept evolution, which is concept
movement. Therefore, the last motivation in the current article
is how to integrate this idea into CCL systems.

In this article, to cope with these limitations, a novel CCL
system (TCCL) is proposed via a concept movement view. The
block diagram of the proposed approach is shown in Fig. 1.
The main contributions of this article are as follows.

1) We propose a TCCL method to address the incomplete
and complex cognitive problem of 2WL. The core idea
is to introduce the concept-cognitive mechanism and M-
3WD model into 2WL, simultaneously enhancing the
ability of concept generation and concept evolution.

2) We formulate a novel cognitive mechanism for 2WL
by exploring the relationship between different granule
concepts. This mechanism can be more flexible and
less time-consuming to learn concepts from the given
clue, and meanwhile, we verify that our method achieves
better concept learning performance than other methods.

3) We present a concept evolution strategy from the move-
ment perspective to evolve concept space. One can
acquire more concepts to form knowledge and provide a
new research view for knowledge-discover and decision-
making. Experimental results on 12 datasets show the
effectiveness of the proposed strategy.

Fig. 2. Categorization of CCL.

This article is organized as follows. Section II briefly
reviews the development of concept-cognitive learning and
some challenges of 2WL. Section III presents a novel cog-
nitive mechanism based on 2WL (i.e., TCCL). A movement-
based learning strategy for TCCL is presented in Section IV.
Section V gives an example analysis. The experimental analy-
sis is given in Section VI. Finally, this article is concluded
with further work in Section VII.

II. RELATED WORK

In this section, we use Fig. 2 to categorize various concept
models under the concept-cognitive learning theory, where the
contributions of this article are highlighted in bold font. The
diagram may be viewed as a list of examples rather than an
exhaustive summary.

During the past few years, we have witnessed a growing
interest in concept-cognitive learning. The theory is moti-
vated by a particular cognitive mechanism to explore the
learning model of concepts from data, which is a valuable
data analysis and knowledge discovery method. Currently,
CCL theory focuses on three aspects: 1) concept analysis
method; 2) concept learning strategy; and 3) concept cognition
mechanism. Recent studies along these lines of thought have
fostered many concept-cognitive learning models. Regarding
concept analysis, scholars mainly carried out a series of studies
in concept lattice, concept reduction, and multigranularity
analysis. Zhang and Xu [24] first investigate concepts from the
unknown through a pair of cognitive operators. Yan et al. [8],
[9] combines the three-way decision with the partial-order
structure to study the learning and cognitive of concept learn-
ing, and a three-way concept (TWC) based on apposition and
subposition is constructed in [22].
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Fig. 3. Processes of the novel cognitive mechanism based on 2WL.

In terms of concept learning, some research about 2WL,
approximate concept learning, and granule concept learning
has also attracted wide attention. For instance, Li et al. [12],
[13] discuss concept learning via granular computing from the
cognitive view and study cognitive processes whose aims are
to deal with the problem of learning approximate cognitive
concepts. Zhang et al. [21] propose a solution to this issue
by introducing an incremental concept tree representation.
Horzyk et al. [11], Li et al. [1], Yuan et al. [19], and Hat-
wagner et al. [16] focus on continual learning and reduction
of concepts.

Especially, the research on concept-cognitive computing in
machine learning are emerging in recent years, Mi et al. [30]
focus on concept generalization and map all samples into dif-
ferent concept spaces containing various concepts formed by
a Galois connection; Zhao et al. [33] mainly discuss cognitive
concept learning from incomplete information and simulating
the cognitive processes via three types of similarities to learn
the granule concept.

A 2WL system is a cognitive process that learns from use-
less information [26], [27]. Meanwhile, we note that the 2WL
system has some problems: 1) the necessary and sufficient
granule concept has to obtain from the necessary or sufficient
granule concept; and 2) the two-way granule concept cannot
obtain from the necessary and sufficient granule concept.

Based on the above-mentioned issues, the relevant study
process of 2WL stagnates, and only a few research findings
are available. Note that the research of concept-cognitive
learning is at an early stage. Although there have been many
significant achievements, it also appears very important to
improve and enrich the area of CCL from various theories,
frameworks, models, and viewpoints. Following the path of
2WL, we investigate some noteworthy issues in the study of
2WL and describe a basic idea of TCCL for these issues.

III. NOVEL COGNITIVE MECHANISM BASED ON 2WL

As is well known, 2WL can transform a given information
granule into two-way granule concepts. Meanwhile, we find
that the sufficient and necessary granule concept can also be
transformed into a sufficient and necessary granule concept.
Hence, this section investigates the granule concept learning
method by analyzing the sufficient, necessary, and sufficient
and necessary granule concept relations.

The novel cognitive mechanism (i.e., TCCL mechanism)
depicting the cognitive process of three granule concepts is
shown in Fig. 3. It consists of three-stage: 1) the first stage is
preprocessing source data using the discretization method and
inputting an information granule; 2) we can learn sufficient
and necessary granule concepts according to Proposition 1;
and 3) we can learn the new granule concepts through the
granule concept stored in the second stage via Propositions
3–5. Thus, the granule concept space can be learned according
to the above method in Fig. 3.

A. Two-Way Learning

A formal context is a triple F = (U, A, I ), where U
and A are two nonempty finite sets of object and attribute,
respectively, and I is a binary relation on U × A. In addition,
a pair of set-valued mappings L : 2U → 2A and H : 2A →
2U are called concept cognitive operates if it satisfies the
properties in [26], and they are abbreviated as L and H ,
respectively.

Definition 1: Let L1 = P(U) and L2 = P(A) be two
complete lattices, L and H be two cognitive operators (i.e.,
(L1, L2, L, H ) be a cognitive system). For any X ∈ L1 and
B ∈ L2, denote

G1 = {(X, B)|B � L(X), X � H (B)} (1)

G2 = {(X, B)|L(X) � B, H (B) � X}. (2)

1) If (X, B) ∈ G1, then (X, B) is a necessary granule
concept of (L1, L2, L, H ). Simultaneously, G1 is a nec-
essary granule concept space.

2) If (X, B) ∈ G2, then (X, B) is a sufficient granule con-
cept of (L1, L2, L, H ). Simultaneously, G2 is a sufficient
granule concept space.

3) If (X, B) ∈ G1 ∩ G2, that is, (X, B) satisfies B = L(X)
and X = H (B), then (X, B) is a sufficient and necessary
granule concept of (L1, L2, L, H ). Simultaneously, G1∩
G2 is a sufficient and necessary granule concept space.

� is a quasi-order relationship.
From Definition 1, we only consider the situation that there
exist three granule concept spaces in (L1, L2, L, H ). However,
(X, B) /∈ G1 ∪ G2 is not a granule concept of (L1, L2, L, H ).
Moreover, if granule concepts do not exist at the beginning
of (L1, L2, L, H ). The approaches to learning these granule
concepts are as follows.

Property 1: (see [26]) Let (L1, L2, L, H ) be a cognitive
system, G1 be a necessary granule concept space, and G2 be a
sufficient granule concept space. If X ∈ L1 and B ∈ L2, then

1) (X ∧ H (B), B ∨ L(X)) ∈ G1

2) (X ∨ H (B), B ∧ L(X)) ∈ G1

3) (H (B), B ∧ L(X)) ∈ G1

4) (X ∧ H (B), L(X)) ∈ G1

5) (H L(X), B ∧ L(X)) ∈ G1

6) (X ∧ H (B), L H (B)) ∈ G1

7) (X ∨ H (B), L H (B)) ∈ G2

8) (H L(X), B ∨ L(X)) ∈ G2.

Property 2: (see [26]) Let (L1, L2, L, H ) be a cognitive
system. If (X1, B1) ∈ G1 and (X2, B2) ∈ G2, then
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1) (X1 ∨ H (B1), L(X1 ∨ H (B1))) ∈ G1 ∩ G2

2) (H (B1 ∨ L(X1)), B1 ∨ L(X1)) ∈ G1 ∩ G2

3) (X2 ∧ H (B2), L(X2 ∧ H (B2))) ∈ G1 ∩ G2

4) (H (B2 ∧ L(X2)), B2 ∧ L(X2)) ∈ G1 ∩ G2.

Thus, for (L1, L2, L, H ) be a cognitive system, we define “∨”
and “∧” are operators of cognitive system, and

(X1, B1) ∧ (X2, B2) = (X1 ∧ X2, L H (B1 ∨ B2)) (3)

(X1, B1) ∨ (X2, B2) = (H L(X1 ∨ X2), B1 ∧ B2). (4)

B. Sufficient and Necessary Granule Concept

Note that there are two issues in 2WL [26], [27]: 1)
the sufficient and necessary granule concept can only be
obtained by necessary or sufficient granule concepts way (i.e.,
Property 2); and 2) for arbitrary information granules, through
2WL method, the number of sufficient and necessary granule
concept no more than 16 in theory.

In this section, we first show some new standpoints, includ-
ing 1) sufficient and necessary granule concepts can be learned
directly from arbitrary information granules and 2) the number
of sufficient and necessary granule concepts is no more than
six (strictly speaking, no more than two in some cases). Then,
we can further present the new notion and proposition.

Let (L1, L2, L, H ) be a cognitive system, the granule
concept (X, B) is a sufficient and necessary granule concept,
if any X ∈ L1 and B ∈ L2, (X, B) ∈ G1 ∩ G2.

Proposition 1: Let (L1, L2, L, H ) be a cognitive system,
G1 be a necessary granule concept space, and G2 be a sufficient
granule concept space, G1 ∩ G2 be a sufficient and necessary
granule concept space. If X ∈ L1 and B ∈ L2, then

1) (H L(X), L(X)) ∈ G1 ∩ G2

2) (H (B), L H (B)) ∈ G1 ∩ G2.

Proof: It is directly obtained from the basic notions in
formal concept analysis and Definition 1.

Note that Proposition 1 directly states that (H L(X), L(X))
and (H (B), L H (B)) are two sufficient and necessary granule
concepts of the granule concept space G1 ∩ G2. Next, we will
examine the specific relationship between them.

Proposition 2: Let (L1, L2, L, H ) be a cognitive system.
For arbitrary information granule (X, B) ∈ G1 ∪ G2, there
is only one sufficient and necessary granule concept which
is itself [i.e., (X, B)]; Otherwise, we have two sufficient
and necessary granule concepts, that is, (H L(X), L(X)) and
(H (B), L H (B)).
Proof. To prove this proposition, we divide it into two steps
as follows.

1) For one sufficient and necessary granule concept.
Because (L1, L2, L, H ) is a cognitive system, it is
immediate from Properties 1 and 2.

2) For two sufficient and necessary granule concepts.
Because (L1, L2, L, H ) is a cognitive system, from
Definition 1 and Property 1, we have three cases of
granule concept: 1) G1; 2) G2; and 3) (G1 ∪ G2)

c, where
(·)c is the complement. Then, we divide it into three
cases to prove it.

a) If (X, B) ∈ G1, from Definition 1, we have
X � H (B) and B � L(X). Thus, from Prop-
erty 2-1), we have X ∨ H (B) = H (B), L((X ∨
H (B)) = L H (B); from Property 2-2), we have
B ∨ L(X) = L(X), H (B ∨ L(X)) = H L(X).
Hence, two sufficient and necessary granule con-
cepts are [H L(X), L(X)] and [H (B), L H (B)].

b) If (X, B) ∈ G2, similarly, we can prove this case.
c) If (X, B) ∈ (G1 ∪ G2)

c, it is immediate from
Definition 1 and Proposition 1.

By (i) and (ii), this proposition can be proved.
Intuitively, Propositions 1 and 2 show that [H L(X), L(X)]

and [H (B), L H (B)] are two sufficient and necessary granule
concepts in the 2WL system. For any X ∈ L1 and B ∈ L2,
if (X, B) is sufficient and necessary granule concept, then
(X, B) = (H L(X), L(X)) = (H (B), L H (B)). According to
the above discussion, we have the corollary as follows.

Corollary 1: Let (L1, L2, L, H ) be a cognitive system. For
arbitrary information granule (X, B) ∈ G1∪G2, the number of
the sufficient and necessary granule concepts is no more than
two.
According to the above discussion, one can directly learn
sufficient and necessary granule concepts from arbitrary infor-
mation granules through our method. The details are shown
in Algorithm 1.

Algorithm 1 Learn Granule Concept From Arbitrary Informa-
tion Granule
Input: Arbitrary information granule (X, B), a formal con-

text F = (U, A, I ), granule concept space G1, G2 and G3.
Output: Necessary granule concept, sufficient granule con-

cept, sufficient and necessary granule concept: (X1, B1),
(X2, B2), (X3, B3).

1: Let G1 = ∅, G2 = ∅, G3 = ∅;
2: while (X, B) ⊆ G1 ∪ G2 do
3: Learn necessary granule concept (X1, B1) from (X, B),

(X1
1, B1

1), (X1
2, B1

2), . . . , (X1
m, B1

m), m � 6, by four
methods according to Property 1;

4: Learn sufficient granule concept (X2, B2) from (X, B),
(X2

1, B2
1), · · · , (X2

m, B2
m), m � 2, by four methods

according to Property 1;
5: Learn sufficient and necessary granule concept (X3, B3)

from (X, B), (X3
1, B3

1), · · · , (X3
m, B3

m), m � 2, by two
methods according to Proposition 1;

6: G1 ← (X1, B1); G2 ← (X2, B2); G3 ← (X3, B3);
7: end while

Given a formal context F = (U, A, I ). The cardinality of
objects and attributes is denoted by |U | and |A|, respectively.
The cardinality of objects and attributes of arbitrary informa-
tion granule (X, B) is denoted by |X | and |B|, respectively.
Next, we can analyze the time complexity of Algorithm 1.
Running step 1, take O(1) due to initialized setting. In steps
2–7, its running time is decided by the while statement.
Thus, the running time complexity of Algorithm 1 takes
O(|U | · (|X | + |AT |)).

Authorized licensed use limited to: Southwest University. Downloaded on October 08,2023 at 07:56:55 UTC from IEEE Xplore.  Restrictions apply. 



6802 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

C. Granule Concept in Cognitive Systems

Intrinsically, a 2WL mechanism is the cognitive systems
begin to acquire concepts from the unknown. Note that 2WL
can effectively transform arbitrary information granules into
sufficient and necessary granule concepts, necessary granule
concepts, and sufficient granule concepts. However, it is not
suitable for transforming sufficient and necessary granule
concepts into other granule concepts (see Proposition 2).
In other words, when the information granule is sufficient and
necessary granule concept, Property 1 does not hold.

Inspired by the 2WL mechanism, we put forward a novel
cognitive mechanism for transforming sufficient and necessary
granule concepts into necessary or sufficient granule concepts.

Case 1: The method to transform a pair of sufficient and
necessary granule concepts into necessary granule concepts
can be represented in the following.

Proposition 3: Let (L1, L2, L, H ) be a cognitive system,
G1 ∩ G2 = {(H L(X), L(X))|X ∈ L1} ∪ {(H (B), L H (B))|B ∈
L2} be a sufficient and necessary granule concept space. Then
the following statements hold.

1) (H L(X), L(X) ∧ L H (B)) ∈ G1.
2) (H L(X) ∧ H (B), L(X)) ∈ G1.
3) (H (B), L H (B)∧ L(X)) ∈ G1.
4) (H (B)∧ H L(X), L H (B)) ∈ G1.
5) (H L(X) ∨ H (B), L(X)∧ L H (B)) ∈ G1.
6) (H (B)∧ H L(X), L H (B)∨ L(X)) ∈ G1.

Proof: 1) Because (L1, L2, L, H ) is a cognitive system,
from the basic notions in Section III-A and Definition 1,
we have L(H L(X)) = L(X) � L(X)∧L H (B) and H (L(X)∧
L H (B)) � H L(X) ∨ H (B) � H L(X).

Thus, (H L(X), L(X) ∧ L H (B)) ∈ G1.
The way to prove items 2)–6) is similar to 1).
This Proposition is proven.
Case 2: The method to transform a pair of sufficient and

necessary granule concepts into sufficient granule concepts can
be represented in the following.

Proposition 4: Let (L1, L2, L, H ) be a cognitive system,
G2 be a sufficient granule concept space, G1 ∩ G2 =
{(H L(X), L(X))|X ∈ L1} ∪ {(H (B), L H (B))|B ∈ L2} be
a sufficient and necessary granule concept space. Then the
following statements hold.

1) (H L(X), L(X) ∨ L H (B)) ∈ G2.
2) (H L(X) ∨ H (B), L(X)) ∈ G2.
3) (H (B), L H (B)∨ L(X)) ∈ G2.
4) (H (B)∨ H L(X), L H (B)) ∈ G2.

Proof: 1) Because (L1, L2, L, H ) is a cognitive system,
from the basic notions in Section III-A and Definition 1,
we have H (L(X) ∨ L H (B)) = H L(X) ∧ H (B) � H L(X)
and L(H L(X)) = L(X) � L(X) ∨ L H (B)).

Thus, (H L(X), L(X) ∨ L H (B)) ∈ G2.
The way to prove items 2)–4) is similar to 1).
This proposition is proven.
Case 3: The method to learn a pair of sufficient and

necessary granule concepts from itself can be represented in
the following.

Proposition 5: Let (L1, L2, L, H ) be a cognitive system,
G1 ∩ G2 = {(H L(X), L(X))|X ∈ L1} ∪ {(H (B), L H (B))|B ∈

L2} be a sufficient and necessary granule concept space. Then
the following statements hold.

1) (H (L(X)∧ L H (B)), L(X)∧ L H (B)) ∈ G1 ∩ G2.
2) (H L(X)∧ H (B), L(H L(X)∧ H (B))) ∈ G1 ∩ G2.

Proof. 1) Because (L1, L2, L, H ) is a cognitive system, from
the basic notions in Section III-A and Definition 1, we have
L(H (L(X) ∧ L H (B))) = L H (L(X ∨ H (B)) = L H L(X ∨
H (B)) = L(X ∨ H (B)) = L(X) ∧ L H (B) and H (L(X) ∧
L H (B)) = H (L(X) ∧ L H (B)).

Thus, (H (L(X)∧ L H (B)), L(X)∧ L H (B)) ∈ G1 ∩ G2.
2) This item can be obtained similarly.
This proposition is proven.
Based on the above discussion, a novel cognitive mecha-

nism based on 2WL of granule-concept (including arbitrary
information granule can transform to sufficient and necessary
granule concept, and sufficient and necessary granule concept
also can transform to necessary or sufficient granule concept)
is presented. The details of the novel cognitive mechanism are
shown in Algorithm 2.

Algorithm 2 Learn Granule Concept From Sufficient and
Necessary Granule Concept
Input: Arbitrary information granule (X, B).
Output: Necessary granule concept, sufficient granule con-

cept, sufficient and necessary granule concept: (X1, B1),
(X2, B2), (X3, B3); granule concept space: G1, G2, G3.

1: Construct a sufficient and necessary granule concept space
G3 by Algorithm 1;

2: Let G1 = ∅, G2 = ∅;
3: for all (X, B) ⊆ G3 do
4: Learn necessary granule concept (X1, B1) from (X, B),

(X1
1, B1

1), (X1
2, B1

2), . . . , (X1
m, B1

m), m � 6 by four
methods according to Proposition 3;

5: Learn sufficient granule concept (X2, B2) from (X, B),
(X2

1, B2
1), (X2

2, B2
2), . . . , (X2

m, B2
m), m � 4 by four

methods according to Proposition 4;
6: Learn sufficient and necessary granule concept (X3, B3)

from (X, B), (X3
1, B3

1), · · · , (X3
m, B3

m), m � 2 accord-
ing to Proposition 5;

7: end for
8: G1 ← (X1, B1); G2 ← (X2, B2). G3 ← (X3, B3).

Now, we can analyze the time complexity of Algorithm 2.
The time complexity of step 1 is O(|U |·(|X |+|AT |)). Running
step 2, take O(1) due to initialized setting. In steps 3–7, its
running time is decided by the for-loop, that is, O(|U | ·(|X |+
|AT |)). Running step 8, take O(1). Thus, the running time
complexity of Algorithm 2 takes O(|U | · (|X | + |AT |)).

IV. MOVEMENT-BASED LEARNING STRATEGY FOR TCCL

In this section, we mainly integrate a movement-based
learning strategy into TCCL (i.e., TCCL with the
movement-based learning strategy, M-TCCL) to further
explore the concept evolution mechanism.
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Fig. 4. Evolution framework of TCCL.

A. Movement Viewpoint

In Section III, we have demonstrated that the TCCL method
can learn the two-way granule concept from arbitrary infor-
mation granules. It is not difficult to find that the cognitive
mechanism of TCCL is consistent with the basic idea of
M-3WD. Thus, this section integrates the M-3WD method
with TCCL and studies a novel two-way concept-cognitive
mechanism via a concept movement view. Furthermore, from
the perspective of movement [5], [6], we can get an evolution
framework of TCCL as shown in Fig. 4.

From the perspective of movement, we focus on the evo-
lution of the granule concept from one granule concept space
to another, that is, the position of a new granule concept in
TCCL. The position function formally defines as follows.

Given a cognitive system (L1, L2, L, H ), a weak tri-
partition G = {G1,G2,G1 ∩ G2} of a whole G1 ∪ G2, let a
position function G p : G → G p produce the position of an
granule concept (X, B) ∈ G, where G p = {G1,G2,G3}. The
function is defined as follows:

G p((X, B)) =

⎧⎪⎨
⎪⎩

G1, (X, B) ∈ G1

G2, (X, B) ∈ G2

G3, (X, B) ∈ G1 ∩ G2.

(5)

The movement of a granule concept can be defined as an
evolution of its position caused by a pair of logical operators
(i.e., ∨ and ∧). The overall movement leads to a movement
from one tri-partition G to another G�, which is the movement
viewpoint. Thus, all results of cognitive learning lead to a new
granule concept space G� = {G�1,G�2,G�1 ∩ G�2}.

Given a weak tri-partition G = {G1,G2,G1 ∩ G2}, L and H
is a pair of cognitive operators. The movement of tri-partition
caused by cognitive operators L and H is denoted as G �L H

G�. The corresponding movement of the position of (X, B) ∈ G
is denoted as G p((X, B))�L H G p((X, B)).

When applying the logical operator (i.e., ∨ and ∧) and
cognitive operator (i.e., L and H ), any concept (X, B) ∈ G has
three possible movements that are, staying in the same granule
concept space or transferred to either of the other two. Thus,
for the movements of concept, there are nine possibilities as
follows:

G1 �L H G1,G1 �L H G2,G1 �L H G3

G2 �L H G1,G2 �L H G2,G2 �L H G3

G3 �L H G1,G3 �L H G2,G3 �L H G3 (6)

where for Gi �L H G j (i, j ∈ {1, 2, 3}), Gi represents the
position of (X, B) before movement, and G j represents the
position after movement, which is the process of concept
movement.

Inspired by Fig. 4 and the 2WL system (L1, L2, L, H ),
we proposed a novel learning strategy for TCCL from a
movement view. Cases 1–3 in Section III-C mainly discuss the
method to learn granule concepts from sufficient and necessary
granule concepts based on the two cognitive operators. In this
section, we mainly talk about the initial granule concept in
TCCL. Similar to the initial information X and B , X L and
B H represent extent and intent, respectively. Thus, we have
one of the following three cases.

Case 1’: Learning the necessary granule concept from the
sufficient and necessary granule concept can be represented in
the following.

Proposition 6: Let (L1, L2, L, H ) be a cognitive sys-
tem, G1 ∩ G2 = {(H L(X L), L(X L ))|X ∈ L1} ∪
{(H (B H), L H (B H))|B ∈ L2} be a sufficient and necessary
granule concept space. Then the following statements hold.

1) (H L(X), L(X ∨ H (B))) ∈ G1.
2) (H L(X ∧ H (B)), L(X)) ∈ G1.
3) (H L(X ∧ H (B)), L(X ∨ H (B)) ∈ G1.
4) (H (B ∨ L(X)), L H (B)) ∈ G1.
5) (H (B ∨ L(X)), L H (B ∧ L(X))) ∈ G1.
6) (H (B), L H (B ∧ L(X))) ∈ G1.

Proof. The proof can be derived by the basic notions in
Section III-A, Property 1, and Definition 1.

Case 2’: Learning sufficient granule concepts from a pair of
sufficient and necessary granule concepts can be represented
in the following.

Proposition 7: Let (L1, L2, L, H ) be a cognitive system,
G2 be a sufficient granule concept space, G1 ∩ G2 =
{(H L(X L), L(X L ))|X ∈ L1} ∪ {(H (B H), L H (B H))|B ∈ L2}
be a sufficient and necessary granule concept space. Then the
following statements hold.

1) (H L(X ∨ H (B)), L(X)) ∈ G2.
2) (H L(X ∨ H (B)), L(X ∧ H (B))) ∈ G2.
3) (H L(X), L(X ∧ H (B))) ∈ G2.
4) (H (B ∧ L(X)), L H (B)) ∈ G2.
5) (H (B ∧ L(X)), L H (B ∨ L(X))) ∈ G2.
6) (H (B), L H (B ∨ L(X))) ∈ G2.

Proof: The proof can be derived by the basic notions in
Section III-A, Property 1, and Definition 1.

Case 3’: Learning sufficient and necessary granule concepts
from a pair of sufficient and necessary granule concepts can
be represented in the following.

Proposition 8: Let (L1, L2, L, H ) be a cognitive sys-
tem, G1 ∩ G2 = {(H L(X L), L(X L ))|X ∈ L1} ∪
{(H (B H), L H (B H))|B ∈ L2} be a sufficient and necessary
granule concept space. Then the following statements hold.

1) (H L(X), L(X)) ∈ G1 ∩ G2.
2) (H (B), L H (B)) ∈ G1 ∩ G2.
3) (H L(X ∧ H (B)), L(X ∧ H (B))) ∈ G1 ∩ G2.
4) (H L(X ∨ H (B)), L(X ∨ H (B))) ∈ G1 ∩ G2.
5) (H (B ∨ L(X)), L H (B ∨ L(X))) ∈ G1 ∩ G2.
6) (H (B ∧ L(X)), L H (B ∧ L(X))) ∈ G1 ∩ G2.
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Proof. The proof can be derived by the basic notions in
Section III-A, Definition 1, and Proposition 1.

Based on Propositions 6–8, we need to point out that X L

and B H represent no more than one cognitive operation L
or H , respectively. It is easy to prove that X L ∈ {X, X ∨
H (B), X∧H (B)} and B H ∈ {B, B∨L(X), B∧L(X)}, where
X ∈ L1, B ∈ L2. Moreover, if X ⊆ H (B) or B ⊆ L(X),
the necessary, sufficient granule concept in Proposition 8
degenerates to the sufficient and necessary granule concepts in
Proposition 1; the sufficient and necessary granule concept in
Propositions 6–7 degenerates to the sufficient and necessary
granule concept of Proposition 1.

So far, a movement viewpoint of the TCCL method is
completed, and it is obvious that all the granule concepts can
be found after movement, where the semantic interpretation of
all the movements of the concept is considered in this section.
Next, we will mainly introduce the two-way granule concept
space to complete the cognitive process of TCCL.

B. Concept Movement

According to the above discussion, we can obtain the
method of granule concept learning in two ways. One is
learning concepts from the top to bottom: the theories of
evolving arbitrary information granules, sufficient granule
concepts, and necessary granule concepts into sufficient and
necessary granule concepts. The other method is from bottom
to top: evolving sufficient and necessary granule concepts into
sufficient or necessary granule concepts. However, we still
do not know how to initial granule concept space from a
movement perspective. Hence, we will discuss the concept
movement mechanism of the granule concept space in TCCL.

Definition 2: Let (L1, L2, L, H ) be a cognitive system,
where L and H be a pair of cognitive operators. A weak
tri-partition G is a set of three subspaces, denoted by G =
{G1,G2,G1 ∩ G2}. For (X L , B H ) ∈ G, we have

G�1 = {(X L , B H )|G p((X L , B H ))�L H G1}
G�2 = {(X L , B H )|G p((X L , B H ))�L H G2}
G�1 ∩ G�2 = {(X L , B H )|G p((X L , B H ))�L H G3} (7)

where G�1, G�2, G�1 ∩ G�2 are the new two-way granule concept
spaces, respectively.

It should be pointed out that (X L , B H ) is the two-way
granule concept obtained through cognitive learning in the
cognitive system (L1, L2, L, H ), where X ∈ L1 and B ∈ L2.

Corollary 2: Let (L1, L2, L, H ) be a cognitive system,
where L and H be a pair of cognitive operators. For G�1∪G�2 is
a finite nonempty granule concept space. A weak tri-partition
G� = {G�1,G�2,G�1 ∩ G�2}. For (X L , B H ) ∈ G�1 ∪ G�2, we have

G�1 = {(X L , B H )|B H � L(X L ), X L � H (B H)}
G�2 = {(X L , B H )|L(X L ) � B H , H (B H) � X L }
G�1 ∩ G�2 = {(X L , B H )|B H = L(X L ), X L = H (B H)}. (8)

According to the above analysis, one can learn two-way
granule concepts from arbitrary information granules or gran-
ule concepts through the learning mechanism of TCCL. Mean-
while, the concept movement strategy of TCCL is described
in Algorithm 3.

Algorithm 3 Process of Concept Movement
Input: Arbitrary information granule (X, B), a dataset G.
Output: Necessary, sufficient, sufficient, and necessary gran-

ule concept space: G�1, G�2, G�3.
1: Construct the necessary, sufficient, sufficient, and necessary

granule concept space: G1, G2, G3 by Alg.1;
2: for (X L , B H ) ∈ G3 do
3: Learn necessary granule concept granule concept

(X1, B1), (X1
1, B1

1), (X1
2, B1

2), . . . , (X1
m, B1

m), m �
6 from (X L , B H ), according to Proposition 6;

4: Learn sufficient granule concept granule concept
(X2, B2), (X2

1, B2
1), (X2

2, B2
2), . . . , (X2

m, B2
m), m �

6 from (X L , B H ), according to Proposition 7;
5: Learn sufficient and necessary granule concept (X3, B3),

(X3
1, B3

1), (X3
2, B3

2), . . . , (X3
m, B3

m), m � 6 according
to Proposition 8;

6: end for
7: G�1 ← G1 ∪ (X1, B1); G�2 ← G2 ∪ (X2, B2); G�3 ← G3 ∪

(X3, B3).

Now, we can analyze the time complexity of Algorithm 3.
For step 1, it will call Algorithm 1. Thus, the time complexity
of step 1 is O(|U | · (|X | + |AT |)). In step 2, its running time
is decided by the for-loop. Running steps 2–6 take O(|U | ·
(|X |+|AT |)). Thus, the time complexity of Algorithm 3 takes
O(|U | · (|X | + |AT |)).

C. Concept Evolution of TCCL

According to the concept learning method in literature [31],
we can learn a granule concept space GL H from a formal
context. Essentially, the granule concept in granule concept
space is a sufficient and necessary granule concept. In this
section, we study the concept evolution method of TCCL from
a given formal context rather than clues.

We demonstrate that the two-way granule concept can
evolve from a sufficient and necessary granule concept.
Of course, we can still learn the corresponding two-way
granule concepts from a formal context F = (U, A, I ). The
method to learn the two-way granule concept from a formal
context is as follows.

Case 4: The method to learn the necessary granule concept
from a formal context in TCCL.

Proposition 9: Let F = (U, A, I ) be a formal context,
L and H be two cognitive operators, and G1 be a nec-
essary granule concept space in TCCL. If (H L(x), L(x))
and (H (b), L H (b)) be two granule concepts in the concept
cognitive learning model (CCLM), as follows.

1) (H L(x), L(x ∨ H (b))) ∈ G1.
2) (H L(x ∧ H (b)), L(x)) ∈ G1.
3) (H L(x ∧ H (b)), L(x ∨ H (b)) ∈ G1.
4) (H (b ∨ L(x)), L H (b)) ∈ G1.
5) (H (b ∨ L(x)), L H (b ∧ L(x))) ∈ G1.
6) (H (b), L H (b∧ L(x))) ∈ G1.

Proof. It is directly obtained from Definition 1 and Proposi-
tion 3.
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Case 5: The method to learn the sufficient granule concept
from a formal context in TCCL.

Proposition 10: Let F = (U, A, I ) be a formal context,
L and H be two cognitive operators, and G2 be a suffi-
cient granule concept space in TCCL. If (H L(x), L(x)) and
(H (b), L H (b)) be two granule concepts in CCLM, as follows.

1) (H L(x ∨ H (b)), L(x)) ∈ G2.
2) (H L(x ∨ H (b)), L(x ∧ H (b))) ∈ G2.
3) (H L(x), L(x ∧ H (b))) ∈ G2.
4) (H (b ∧ L(x)), L H (b)) ∈ G2.
5) (H (b ∧ L(x)), L H (b ∨ L(x))) ∈ G2.
6) (H (b), L H (b∨ L(x))) ∈ G2.

Proof: It is directly obtained from Definition 1 and Propo-
sition 4.

Case 6: The method to learn the sufficient and necessary
granule concept from a formal context in TCCL.

Proposition 11: Let F = (U, A, I ) be a formal context,
L and H be two cognitive operators, and G2 be a suffi-
cient granule concept space in TCCL. If (H L(x), L(x)) and
(H (b), L H (b)) be two granule concepts in CCLM, as follows.

1) (H L(x), L(x)) ∈ G1 ∩ G2.
2) (H (b), L H (b)) ∈ G1 ∩ G2.
3) (H L(x ∧ H (b)), L(x ∧ H (b))) ∈ G1 ∩ G2.
4) (H L(x ∨ H (b)), L(x ∨ H (b))) ∈ G1 ∩ G2.
5) (H (b ∨ L(x)), L H (b ∨ L(x))) ∈ G1 ∩ G2.
6) (H (b ∧ L(x)), L H (b ∧ L(x))) ∈ G1 ∩ G2.

Proof: It is directly obtained from Definition 1 and Propo-
sition 5.

Algorithm 4 Concept Evolution of TCCL Based on CCLM
Input: A formal context F = (U, A, I )
Output: Two-way granule concept space G1, G2, G3.
1: Construct a sufficient and necessary granule concept space

GL H according to CCLM in paper [31];
2: for all (H L(x), L(x)), (H (b), L H (b)) ∈ GL H do
3: if H L(x) �⊂ H (b)&H (b) �⊂ H L(x) then
4: Learn necessary granule concept (X1, B1) from GL H ,

(X1
1, B1

1), (X1
2, B1

2), . . . , (X1
m, B1

m), m � 6 by six
methods according to Proposition 9;

5: Learn sufficient granule concept (X2, B2) from GL H ,
(X2

1, B2
1), (X2

2, B2
2), . . . , (X2

m, B2
m), m � 6 by six

methods according to Proposition 10;
6: Learn sufficient and necessary granule concept

(X3, B3) from GL H , (X3
1, B3

1), . . . , (X3
m, B3

m), m �
6 by six methods according to Proposition 11;

7: end if
8: end for
9: G1 ← (X1, B1); G2 ← (X2, B2); G3 ← (X3, B3).

According to the above discussion, TCCL can evolute
concepts based on granule concepts in CCLM from a for-
mal context. Meanwhile, the detail of TCCL is described
in Algorithm 4. Now, we can analyze the time complexity
of Algorithm 4. For step 1, it will call Algorithm 1, the
running time complexity is O(|U | · |AT |)). Thus, the time
complexity of step 2 is O(|GL H |). Running steps 3–7 take

TABLE I

DATASET INFORMATION AND ITS FORMAL CONTEXT

O(|U |2 · |AT |). Thus, running time complexity of Algorithm
4 takes O(|U |2 · |AT | · |GL H |).

V. EXAMPLE ANALYSIS

A formal context of the situations of developing countries
is presented in Appendix I. This formal context is denoted
by F = (U, A, I ). There are 128 objects that represent
the kinds of developing countries. The data are from [2]
and [26]. The descriptions of the characteristics including:
a1: Group of 77; a2: nonaligned; a3: least less developed
country (LLDC); a4: most seriously affected country (MSAC);
a5: organization of petroleum exporting countries (OPEC); a6:
African, Caribbean, and Pacific associables (ACP).

When the United Nations plan to grant loans to developing
countries to support them with economic growth. The United
Nations need fully acknowledge the political and economic
environment for the distribution of equity. The United Nations
must take attribute set A into account when decision-making
about which countries to choose. The approach introduced in
the article can be used to choose the candidate countries.

It is supposed that (X0, B0) is an arbitrary information
granule in a formal context, where X0 is the countries
and B0 is the characteristics. However, (X0, B0) is
just a clue given at the beginning, and it induces
the condition that the countries selected do not satisfy
the given characteristics and the countries satisfying the
given characteristics are not selected. Then, given X0 =
{x1, x11, x14, x35, x47, x52, x59, x78, x84, x92, x87, x95, x106} as
well as B0 = {a1, a2, a3, a6}.

When the funding is controlled, the United Nations can only
choose the countries which must meet the given condition
characteristic. Thus, the necessary information granule concept
is a great selection. Note that (X0, B0) satisfies X0 � L(B0).
Therefore, the countries in X0 satisfy and precede the given
characteristic in B0.

If the United Nations decides to consider as many countries
as possible, they may relax the conditions of some developing
countries. Note that a sufficient granule concept is a great
choice. Given (X0, B0) be the initial information granule, and
then we can obtain the sufficient granule concept of (X0, B0)
by Alg.1: (X1, B1), (X2, B2) ∈ G2, where X1 = {x1, x11,
x14, x17, x18, x21, x22, x23, x27, x31, x35, x37, x38, x41, x42,
x45, x46, x47, x52, x59, x64, x67, x68, x71, x72, x78, x83, x84,
x92, x94, x95, x96, x100, x103, x106, x108, x112, x114, x119, x122,
x126, x127}, X2 = U − {x16, x25, x58, x75, x80, x93, x105,
x118}.B1 = {a1, a2, a3, a6}, B2 = {a1, a2, a3, a6}.
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TABLE II

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN ZOO

TABLE III

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN BREAST CANCER

TABLE IV

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN MONKS-2

Meanwhile, we can obtain the sufficient granule concept of
(X0, B0) by Algorithm 2: (X2, B2), (X3, B3), (X4, B4) ∈ G2,
where X3 = {x11, x14, x17, x18, x21, x22, x23, x27, x31, x37, x38,
x41, x42, x45, x46, x64, x67, x68, x71, x72, x83, x84, x94, x96,
x100, x103, x108, x112, x114, x119, x122, x126, x127}, X4 = U −
{x16, x25, x58, x75, x80, x93, x105, x118}.B3 = {a1, a2, a3,
a6},B4 = {a1}.

Moreover, we can obtain the sufficient granule concept of
(X0, B0) by Algorithm 3: (X1, B1) ∈ G2, (X2, B2) ∈ G2,
(X3, B3) ∈ G2 and (X4, B4) ∈ G2.

Note that the sufficient granule concepts (X1, B1), (X2, B2),
and (X3, B3) say that the countries X1, X2, and X3 only meet
or do not meet the characteristic B1, respectively. While the
sufficient granule concepts (X4, B4) only meet or do not meet
the characteristic B4, this condition is relatively lenient.

If the United Nations hopes that the selected countries
must satisfy the given attributes, all the countries that meet
the shared characteristics must be chosen. Now the suffi-
cient and necessary granule concepts are a good choice.
Thus, we can compute the sufficient and necessary granule
concepts of (X0, B0) by Algorithm 1: (X5, B5) ∈ G1 ∩
G2 and (X6, B6) ∈ G1 ∩ G2. Meanwhile, we can obtain
the sufficient and necessary granule concept of (X0, B0) by

Algorithm 2 is the same as Algorithm 1, where X5 =
{x11, x14, x17, x18, x21, x22, x23, x27, x31, x37, x38, x41, x42,
x45, x46, x64, x67, x68, x71, x72, x83, x94, x96, x100, x103, x108,
x112, x114, x119, x122, x126, x127}, X6 = U − {x16, x25, x58,
x75, x80, x93, x105, x118}. B5 = {a1, a2, a3, a6}, B6 = {a1}.

Meanwhile, we can obtain the sufficient and necessary
granule concepts of (X0, B0) by Algorithm 3 is the same as
Algorithm 1, that is, (X5, B5) and (X6, B6). The sufficient
and necessary granule concepts (X5, B5) and (X6, B6) say that
the countries X5 and X6 meet the characteristics B5 and B6,
respectively.

Moreover, the outcome of Algorithm 1 in this article is the
same in [26]. Besides, we can learn more granule concepts via
Algorithms 2 and 3 than the method in [26]. For Algorithm 4,
we will verify its validity in Section VI-C.

VI. EXPERIMENTS

In this section, we validate the effectiveness of TCCL
for the performance of concept learning based on a formal
context. Specifically, we compare TCCL with other CCL
mechanisms, including TWC [22], 2WL [26], and CCLM [31].
All experimental setup of comparison methods is consistent
with corresponding references. The experimental computing
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TABLE V

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN APPENDICITIS

TABLE VI

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN GLASS IDENTIFICATION

TABLE VII

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN TIC-TAC-TOE

TABLE VIII

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN MAMMOGRAPHIC MASS

program on a personal computer and its specific configuration
is OS: Microsoft WIN10; Processor: Intel1 Core2 i7-10750H
CPU @ 2.60GHz; Memory: 32GB; Programming language:
Python.

A. Experimental Design

To extensively validate the performance of different
approaches, we randomly selected 12 datasets with different
scales from UCI Repository (see https://www.uci.edu/) and
carried out numerical experiments under different information

1Registered trademark.
2Trademarked.

granule clues, “/” means applying no work for the data, and
“Discretization” is to discretize a range of numeric attributes
into nominal attributes by the method shown in [23]. For
convenience, the 12 converted datasets by nominal scale [17]
are denoted datasets 1–12. The detailed information about the
dataset is shown in Table I. To reduce the randomness of
the experiment, we ran ten times on each dataset to obtain
the average results.

B. Evaluating the Performance of Concept Learning

To experiment with the outcome of the approaches and
make comparisons, we randomly take 2%, 5%, 10%, and

Authorized licensed use limited to: Southwest University. Downloaded on October 08,2023 at 07:56:55 UTC from IEEE Xplore.  Restrictions apply. 



6808 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

TABLE IX

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN VOWEL

TABLE X

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN BANKNOTE

TABLE XI

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN MUSHROOM

15% objects in each dataset as the initial X0 and 15%, 20%,
and 30% attributes as the initial B0. Specifically, we compare
TCCL (i.e., Algorithms 1 and 2) and TCCL with concept
movement (i.e., Algorithm 3) with the 2WL system [26]. Thus,
the number of initial information granules is 4 ∗ 3 pairs in
each dataset. In this section, we adopt the number of two-way
granule concepts (including sufficient and necessary granule
concept, sufficient granule concept, and necessary granule
concept) and running time to evaluate the performance of
concept learning.

1) Number of Two-Way Granule Concept: This part mainly
verifies the number of two-way granule concepts generated
by the three algorithms in our article. Next, the number of
resulting two-way granule concepts of the datasets are shown
in Tables II–XIII. The average (Ave.) value and standard
deviation (SD) of the number of two-way granule concepts
are shown in the table, where G is the sum of the number of
granule concepts, that is, |G| = |G1| + |G2| + |G3|. As seen
from the resulting number of two-way granule concepts in
Tables II–XIII, when given a dataset, for an arbitrary infor-
mation granule, we can obtain the following conclusion.

1) The number of sufficient and necessary granule concepts
is no more than 6 in Algorithms 1–3, and the 2WL

method. This also verifies our conclusion in Proposi-
tions 1 and 2. Meanwhile, Algorithm 1 in our article has
the same necessary, sufficient granule concept learning
ability as the 2WL method in [26], but the whole granule
concept learning ability of Algorithm 3 is better than
that of it. Hence, we can say that TCCL with concept
movement can perform better than 2WL and TCCL in
two-way granule concept learning.

2) The sample size of initial information affects the number
of two-way granule concepts, and as the size increases,
the number of two-way granule concepts decreases.
From the perspective of cognition, this is also consistent
with the process of human cognition because the more
initial cues, the more accurate the results.

3) In some cases, the failure to learn sufficient and neces-
sary granule concepts is because the sample size of the
initial clue is too large, and the information in the clue
conflicts with each other, leading to the failure to learn
sufficient and necessary granule concepts.

Meanwhile, we used Wilcoxon paired test to examine
whether there exists a significant difference between Algo-
rithm 3 and 2WL. Table XIV records the average number
of two-way granule concepts and P-values. Given the test
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TABLE XII

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN HTRU-2

TABLE XIII

NUMBER OF TWO-WAY GRANULE CONCEPT (AVE.±SD) IN SKIN SEGMENTATION

TABLE XIV

AVERAGE NUMBER OF TWO-WAY GRANULE CONCEPT AND WILCOXON

PAIRED TEST RESULTS

threshold is 0.05, we find that all the P-values are smaller
than 0.05, which illustrates the significance between Algorithm
3 and 2WL.

2) Running Time: This part mainly verifies the running time
of two-way granule concepts generated by the three algorithms
in our article. Meanwhile, to reduce the randomness of the
experiment, we still ran ten times on each dataset to obtain
the average results. As seen from the comparison of running
time for four methods (i.e., Algorithms 1–3, 2WL) in Fig. 5,
when given a dataset, for an arbitrary information granule,
we can obtain the following conclusion.

1) The running time of the four methods on the same
datasets is related to the initial sample size. The larger
the initial clue size is, the more time is needed.

2) The method proposed in this article saves more time
than the 2WL method in [26] on the premise of ensuring
learning ability. In particular, Algorithms 1 and 2 can be
considered in particular decision-making because they
can save much time.

C. Evaluating the Performance of Concept Evolution

Note that TCCL with concept movement can learn new
granule concepts from one concept that has been learned
(i.e., Algorithm 3). Next, we will verify the performance of
concept movement in this section. Note that more time will

TABLE XV

COMPARISON OF GRANULE CONCEPT NUMBER (AVE.±SD)
IN 12 DATASETS

be consumed when we verify the evolution ability of this
article based on the existing concept learning method in [31]
and [22], that is, we can continue to evolve the concept space
via a concept movement viewpoint. Therefore, this article
considers the number of granule concepts and the concept
evolution ability of granule concepts to verify the effectiveness
of concept evolution, in which the concept evolution ability
refers to the ratio of the number of concepts compared. In this
section, we first process the data according to the method
of [31] and then randomly take 10%, 1%, and 0.1% objects as
original information clues in datasets 1–5, datasets 6–9, and
datasets 10–12, respectively.

This part mainly verifies the concept evolution ability of the
proposed M-TCCL method (i.e., Algorithm 4) by analyzing
the number of granule concepts and the evolution ability
of granule concepts. Table XV records the average values
of granule concepts and corresponding standard errors for
three methods. From this table, we found that the number
of granule concepts is more significant than CCLM and
TWC methods on 12 datasets, which shows that M-TCCL
can learn more granule concepts, that is, it has a more vital
evolutionary ability compared with CCLM and TWC methods.
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Fig. 5. Comparison of running time on 12 selected datasets. (a) Zoo. (b) Breast cancer. (c) Monks-2. (d) Glass identification. (e) Appendicitis.
(f) Mammographic mass. (g) Tic-Tac-Toe. (h) Vowel. (i) Banknote. (j) Mushroom. (k) HTRU-2. (l) Skin segmentation.

Fig. 6. Comparison of the number of granule concepts.

Fig. 7. Comparison of evolution ability of granule concepts.

Figs. 6 and 7 further show the advantages of M-TCCL in
evolutionary ability. To test whether there is a significant
difference between Algorithm 4 and the other two comparison

TABLE XVI

AVERAGE NUMBER OF GRANULE CONCEPT AND WILCOXON PAIRED TEST
RESULTS BETWEEN THREE METHODS

algorithms, we take the Wilcoxon pairwise test and record the
results in Table XVI. Given that the test threshold is 0.05,
all the test P-values are 0.488×10−3<0.05, and we could
reject the null hypothesis (there is no difference between the
two algorithms) and consider there is a significant difference
between M-TCCL, CCLM, and TWC algorithms.

In addition, we evaluate the evolution ability of granule
concepts and record the corresponding results in Table XVII.
From this table, we know the granule concept evolution ability
of Algorithm 4 to CCLM and TWC methods is all greater than
1. Meanwhile, we further adopt the T -test to examine whether
the concept evolution ability is significantly greater than 1. All
the test P-values recorded in Table XVII are smaller than 0.05,
which means the concept evolution ability of Algorithm 4 is
significantly more robust than the CCLM and TWC methods.
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TABLE XVII

COMPARISON OF GRANULE CONCEPT EVOLUTION ABILITY
IN 12 DATASETS

TABLE XVIII

COMPARATIVE ANALYSIS BETWEEN FIVE CCL MECHANISMS

D. Comparative Analysis Between Five CCL Mechanisms

According to the discussion in this section, we compare
our method with other CCL mechanisms, including the 2WL
mechanism [26], TWC mechanism [22], and CCLM mech-
anism [31]. Thus, we further make the comparative analy-
sis between our mechanism (including TCCL and M-TCCL
mechanisms) and others.

For clarity, all the similarities and differences are summed
in Table XVIII. This table shows that the TCCL and M-TCCL
mechanisms have the same characteristics except for the
concept evolution. The five mechanisms consider the formal
context, learning of clues (concept learning from given clues),
concept evolution ability, granule concept space, and the
number of concepts. These can also reflect that it is essential
and reasonable to study our method to process the concept
learning of given clues and evolute the concept space.

Both mechanisms utilize a pair of cognitive operators to
learn the concept from the formal context. However, as shown
in Table XVI, three main contributions and advantages are
obtained in our model. First, our method introduces the 2WL
method into concept-cognitive learning theory to learn the
concept from a given clue (X, B), where the concept spaces of
different cases (i.e., G1, G2, G1∩G2) are also involved. Second,
the TCCL can also learn the same concept as the 2WL, but it
takes less time-consuming. Finally, the M-TCCL can continue
to evolve concept space, which is more straightforward to
show the effectiveness of TCCL with concept movement.

VII. CONCLUSION

TCCL is an effective cognitive system to describe the
human cognitive process, and it can achieve the decision task
by the given clues. The essence of TCCL is learning more
from the unknown through a pair of cognitive operators and
mapping it into granule concept space for different semantic
interpretations (i.e., G1, G2, and G3). The movement viewpoint
is mainly from the M-3WD model, the essential action through

a pair of logical operators (i.e., ∨ and ∧). The theory of TCCL
has been rigorously verified, and simulations in real datasets
also validate the practicability of TCCL in the current article.

Generally speaking, the sufficient and necessary granule
concept is an exact cognitive concept from a given clue.
In other words, it is crucial to learn pseudo-concept based
on the known clue, especially in decision-making problems.
The current article introduces a novel CCL system for concept
cognitive and concept evolution. As an extension of 2WL,
TCCL theory learning concepts from two ways, including top
to bottom and bottom to top (i.e., a movement viewpoint).
Furthermore, corresponding algorithms and experiments on
various datasets demonstrate the effectiveness of the proposed
TCCL compared with the 2WL system and CCLM methods.

The current TCCL just studies learning a granule concept
from a given clue and the concept evolution based on the
concept of what has been learned. So, there still exist some
limitations that need to be concerned about, such as how to
learn the concept from fuzzy data or interval data via our
method, especially handling big data. Moreover, our method
needs to consume more time in the process of concept evolu-
tion. Thus, how to improve the efficiency of concept evolution
also deserves to be investigated. Our future work will continue
to focus on these points.
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