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Abstract
Rough set theory is a mathematical tool widely employed in various fields to handle uncertainty. Feature selection, as an
essential and independent research area within rough set theory, aims to identify a small subset of important features by
eliminating irrelevant, redundant, or noisy ones. In human life, data characteristics constantly change over time and other
factors, resulting in ordered datasets with varying features. However, existing feature extraction methods are not suitable for
handling such datasets since they do not consider previous reduction results when features change and need to be recomputed,
leading to significant time consumption. To address this issue, the incremental attribute reduction algorithm utilizes prior
reduction results effectively reducing computation time. Motivated by this approach, this paper investigates incremental
feature selection algorithms for ordered datasets with changing features. Firstly, we discuss the dominant matrix and the
dominance conditional entropy while introducing update principles for the new dominant matrix and dominance diagonal
matrix when features change. Subsequently, we propose two incremental feature selection algorithms for adding (IFS-A) or
deleting (IFS-D) features in ordered data set. Additionally, nine UCI datasets are utilized to evaluate the performance of our
proposed algorithm. The experimental results validate that the average classification accuracy of IFS-A and IFS-D under four
classifiers on twelve datasets is 82.05% and 80.75%, which increases by 5.48% and 3.68% respectively compared with the
original data.
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1 Introduction

By integrating rough set theory (RST), feature selection
effectively achieves data dimensionality reduction and offers
precise semantic interpretation for the results, garnering con-
tinuous attention from numerous scholars [1–4]. Feature
selection, also known as attribute reduction, is to eliminate
redundant attributes in the data by using the constraints of
specific metrics to improve the performance of subsequent
learning algorithms. In life, data sets often change with time
and other variables, and these changes are called dynamic
data sets. Feature selection algorithms for dynamic data sets
usually adopt incremental methods [5–9]. The incremental
approach has attracted a lot of interest because it effectively
utilizes existing reduction results and thus saves a lot of time
and space overhead.
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With the emergence of the big data and complex data
era, there has been an increase in the complexity and
diversity of data, leading to continuous advancements and
innovations in feature selection methods. Numerous fea-
ture selection algorithms have been proposed by scholars.
Recently, deep learning [10–12] has also been applied to fea-
ture selection problems. Zhao et al. [13] introduced a feature
selection algorithm based on multi-dimensional deep neural
networks (DNNs), combined with relatively rare population
loops. Semwal et al. [14] described a highly robust feature
extraction method that successfully addressed classification
problems. Chen et al. [15] developed a target feature predic-
tion method based on EEG analysis, which found successful
applications across various domains such as economics field
[16], remote control systems [17], and traffic field [18].
Inspired by Darwin’s theory of evolution, evolutionary algo-
rithms [19] simulate natural evolution behaviors to solve
optimization problems including feature selection tasks. Nag
et al. [20] investigated a simplified classifier approach for fea-
ture extraction and selection methods using multi-objective
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genetic programming. Labani et al. [21] proposed and vali-
dated a text features-based multi-objective genetic algorithm
incorporating relative criteria. Ma et al. [22] presented a
classification-oriented genetic programming-based method
for feature selection. Das et al. [23] described an algorithm
that simultaneously addresses two objectives through joint
feature extraction. Li et al. [24] demonstrated an approach
that combines multi-objective features with genetic algo-
rithms.

In 1982, Polish mathematician Z. Pawlak proposed the
Rough Set Theory (RST) [25], which serves as a math-
ematical tool to handle uncertainty alongside probability
theory, fuzzy set theory, and evidence theory. Simultane-
ously, RST provides an important theoretical foundation
for feature selection problems [26–28]. Feature selection
aims to eliminate redundant attributes and select relevant
attribute information in order to achieve efficient learning
tasks. Currently, numerous scholars have proposed various
feature selection algorithms based on knowledge partition-
ing, closeness measures, mutual information, granularity
analysis, among others. However, classical rough set the-
ory is not suitable for handling ordered data. Therefore, the
Greco team introduced a dominance relation-based feature
extraction method [29] and applied it in multidimensional
prediction scenarios [30]. Additionally, other models such
as the monotone variable consistency rough set method [31],
rough set model based on stochastic dominance [32], rough
set model based on soft dominance [33], and frequently
described rough set model [34] have been developed by
scholars.

The above algorithm is effective when dealing with
static data, but it is complex and redundant when recon-
structing feature selection space when facing complex and
changeable real data. Dynamic incremental learning is an
effective approach for efficiently acquiring new informa-
tion from dynamic datasets by leveraging prior knowledge.
Over time, numerous scholars have proposed a plethora
of attribute reduction algorithms for incremental learning,
which can be broadly categorized into object-oriented [35–
40], attribute-oriented [41–43], and attribute-value-oriented
[44–49] approaches.

The change of data set samples prompted Liang et al. [35]
to propose a dynamic update algorithm based on informa-
tion value. Zhang et al. [36] demonstrated an active selection
algorithm that dynamically selects sample features. Yang et
al. [37, 38] developed a dynamic sample selection method
based on the principle of active learning and also investigated
the feature extraction method for variable heterogeneous
data. Shu et al. [39] described a dynamic feature selection
algorithm that integrates multiple types of information. Ye
et al. [40] introduced and validated a dynamic algorithm
based on matrix pseudo-values. Considering the change in
attribute values within data set, Chen et al. [41] proposed

an incremental feature selection method based on identi-
fiable relations to dynamically add attributes. Wang et al.
[42] devised an entropy-based algorithm to handle dynami-
cally changing datasets effectively. Zeng et al. [43] explored
an incremental attribute reduction method for mixed data
using fuzzy rough sets. In order to handle the fluctuations
in attribute values within a data set, Wang et al. [44] pro-
posed an algorithm based on representative entropy. Wei et
al. [45, 46] introduced a feature selectionmethod that utilizes
the discriminant matrix and further developed an acceler-
ated incremental algorithm based on compressed decision
table techniques. Cai et al. [47] presented a dynamic fea-
ture selection algorithm based on coarse and fine granularity
approaches. Building upon this foundation, Dong and Chen
[48] devised a novel RST-based incremental feature selec-
tion algorithm that simultaneously incorporates sample and
attribute additions. Jing et al. [49] put forth an incremen-
tal approach for calculating decision table reductions amidst
changes in entities and properties over the course of time.

By analyzing the aforementioned algorithms, including
their application scenarios and experimental demonstration
datasets, as well as reproducing and testing them on ordered
data sets, it was discovered that algorithms which alter
attribute characteristics are not used on ordered data sets. In
light of this, there is an urgent need to propose an algorithm
for changing attributes in ordered data sets. The proposal
by Shannon [50] has led to extensive research on infor-
mation entropy as a measure of uncertainty. Subsequent
studies have applied this concept to data with sequential
relationships, such as the ascending and descending condi-
tional entropy proposed by Hu et al. [51]. Meanwhile, in
discernibility-based rough set approach (DRSA) [52], the
correlation between objects establishes an antisymmetric
preference order, resulting in spatial irregularity. However,
studying DRSA using collections becomes cumbersome and
complex, particularly for non-static datasets. Therefore, this
paper presents a multi-dimensional change incremental fea-
ture selection method for ordered datasets based on matrix
dominant conditional entropy, the algorithms we propose
in the following paper mainly uses the conditional entropy
under the advantageous condition to construct thematrix effi-
ciently and overcome the existing difficulties. We investigate
the variation of matrix dominant conditional entropy as the
number of attributes increases and decreases, respectively.
Additionally, we suggest a corresponding feature selection
algorithm to identify the important attributes. The main
contributions of this paper are as follows: (1) Introducing
a matrix-based technique for computing dominance con-
ditional entropy in ordered data set and demonstrating its
associated properties; (2) Proposing two dynamic incremen-
tal feature extraction algorithms, namely IFS-A and IFS-D;
(3) Conducting experiments to verify the efficacy of our sug-
gested approach, employing a set of nine UCI datasets.
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The documentation is structured as follows: Section 2
introduces the fundamentals, including dominance relations
and information entropy. In Section 3, we present the calcu-
lation methods for the dominant matrix, dominant diagonal
matrix, and dominant conditional entropy of the matrix.
Based on these methods, a static feature extraction algorithm
is proposed. Section 4 investigates and proposes two incre-
mental feature selection algorithms (IFS-A and IFS-D) in
terms of attribute increase and decrease. Section 5 analyzes
experimental results frommultiple perspectives such as clas-
sification accuracy and time to demonstrate the effectiveness
of our proposedmethod. Finally, we finalize our research and
offer a glimpse into forthcoming obstacles in Section 6.

2 Preliminaries

In this section, we provide a comprehensive overview of the
fundamental principles underlying DRSA.

2.1 Dominance relation

Definition 2.1 ([28]) Given a 4-tuple I = (O,C, V , h),
where O is a non-empty finite set of objects; C is a non-
empty finite set of attributes; V = ⋃

c∈C Vc, Vc is the domain
of attribute c; h : O × C → V is the information func-
tion with h(o, c) ∈ Vc, ∀c ∈ C and ∀o ∈ O . If there is
an ascending or descending sequence between any of the
attributes, it is an ordered data set (ODS), which is denoted
by I� = (O,C, V , h).

Definition 2.2 ([32]) Let I� = (O,C, V , h) be an ODS,
∀A ⊆ C, A �= ∅, the dominance relation RA is defined as
follows:

RA = {(o1, o2) ∈ O × O|h(o1, c) ≥ h(o2, c),∀c ∈ A}. (1)

Property 2.1 ([32]) For a dominance relation in an ordered
data set RA, we have:

(1) Reflexive: ∀o ∈ O , then oRAo;
(2) Non-symmetric: ∀o1, o2 ∈ O , if there is o1RAo2, then

we can’t have o2RAo1;
(3) Transitive: ∀o1, o2, o3 ∈ O , if o1RAo2 and o2RAo3,

then o1RAo3.

Definition 2.3 ([32]) Given an ODS I� = (O,C, V , h),
∀A ⊆ C, A �= ∅, the two relational sets of o1 are called
A-dominating sets and A-dominated sets, respectively, and
they are defined as follows:

R+
A (o1) = {o2 ∈ U |o2RAo1} ; (2)

R−
A (o1) = {o2 ∈ U |o1RAo2} . (3)

Property 2.2 ([32]) For any A, B ⊆ C and ∀o ∈ O , the
subsequent characteristics are valid.

(1) Let A ⊆ B, then R+
B (o) ⊆ R+

A (o) and R−
B (o) ⊆ R−

A (o);
(2) R+

A (o) ∩ R+
B (o) = R+

A∪B(o) and R−
A (o) ∩ R−

B (o) =
R−
A∪B(o).

Example 1 Table 1 shows the English and math scores of
the three students and the corresponding ratings, where c1
and c2 represent English and math, respectively, and o1,
o2, o3 represent three students. Then P = {c1, c2} ,U =
{o1, o2, o3} , DP is a dominance relation. Thedominant order
relation for decision d is pass ≺ good ≺ perfect.

2.2 Entropy theory

In this section, we will provide a comprehensive overview
of dominance entropy and introduce the attribute reduction
method known as ordered decision data set (ODDS) for
enhanced academic understanding.

Definition 2.5 ([51]) Let I� = (O,C ∪ {d}, V , h) be an
ODDS, for ∀A, B ⊆ C , the dominance information entropy
(DIE) about A and A ∪ B are defined as follows:

DE�
A (O) = − 1

|O|
n∑

i=1

log

∣
∣R+

A (oi )
∣
∣

|O| . (4)

DE�
A∪B (O)=− 1

|O|
n∑

i=1

log

∣
∣R+

A (oi ) ∩ R+
B (oi )

∣
∣

|O| =− 1

|O|
n∑

i=1

log

∣
∣R+

A∪B (oi )
∣
∣

|O| .

(5)

Definition 2.6 ([51]) Let I� = (O,C ∪ {d}, V , h) be an
ODDS, for ∀A ⊆ C , the dominance conditional entropy
(DCE) is defined as follows:

DE

d|A(O)=− 1

|U |
n∑

i=1

log

∣
∣R+

d (oi ) ∩ R+
A (oi )

∣
∣

∣
∣R+

A (oi )
∣
∣

=− 1

|O|
n∑

i=1

log

∣
∣
∣R+

{d}∪A (oi )
∣
∣
∣

∣
∣R+

A (oi )
∣
∣

.

(6)

According to Definition 2.6, the hierarchical relationship
reflected by DCE is manifested through the production of

Table 1 The grade table of the subject

o1 o2 o3

c1 98 87 78

c2 95 88 65

d perfect good pass
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consistent objects, which are closely associated with both the
set of information condition attributes and decision attributes
provided.

In the process of feature extraction, the importance of a
certain feature can be evaluated and the importance between
different features can be explored.

Definition 2.7 ([6]) Let I� = (O,C ∪ {d}, V , h) be an
ODDS, for ∀A ⊆ C and ∀c ∈ A, the internal significance
measures of the dominance conditional entropy is defined as
follows:

φ(c, A, d) = DE�
d|A−{c}(O) − DE�

d|A(O). (7)

Definition 2.8 ([6]) Let I� = (O,C ∪ {d}, V , h) be an
ODDS, for ∀B ⊆ C and ∀c ∈ (C − B), the external sig-
nificance measures of the dominance conditional entropy is
defined as follows:

ψ(c, B, d) = DE�
d|B(O) − DE�

d|B∪{c}(O). (8)

The above two definitions are used to select the impor-
tant condition attributes from the attribute set and to select
the important attributes after removing an attribute. If
φ(c, A, d) > 0, attribute c holds greater importance.

Definition 2.9 Given I� = (O,C ∪ {d}, V , h) is an ODDS,
for ∀A ⊆ C , the attribute set A is a reduct subset of I� if the
following holds:

(1) DE�
d|A(O) = DE�

d|C (O);

(2) ∀c ∈ A, DE�
d|A−{c}(O) �= DE�

d|A(O).

The condition mentioned above (1) is utilized to ensure
that the classification capability of the chosen subset of
attributes is comparable to that of the origin feature set.
The purpose of condition (2) is to progressively eliminat-
ing unnecessary attributes from the chosen subset, thereby
ensuring its non-redundancy and indispensability for each
attribute in the set. As a result, if both conditions mentioned
earlier are satisfied by the selected attribute subset, it can be
referred to as a reduction; otherwise, it would be considered
a relative reduction.

3 Static feature selectionmethod based on
matrix dominance conditional entropy

In this section, we first define the dominant matrix of ODDS.
Then, the matrix dominance conditional entropy (MDCE)
and the static feature selection algorithm (SFS) based on
MDCE are proposed.

3.1 Matrix dominant conditional entropy

Definition 3.1 Let I� = (O,C∪{d}, V , h) be anODDS, for
∀A ⊆ C , RA is a dominance relation, the dominant matrix

is described like X�A
O =

[
x A
(i, j)

]

n×n
, where

x A
(i, j) =

{
1, o j RAoi ;
0, otherwise.

(9)

Property 3.1 X
�A
O =

[
x A
(i, j)

]

n×n
is a dominant matrix, char-

acterized by the following properties.

(1) x A
(i,i) = 1, where i ∈ {1, 2, . . . , n};

(2)
∑n

j=1 x
A
(i, j) = ∣

∣R+
A (oi )

∣
∣ and

∑n
i=1 x

A
(i, j) = ∣

∣R−
A

(
o j

)∣
∣,

where i, j ∈ {1, 2, . . . , n}.

Definition 3.2 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
for ∀A, B ⊆ C , and given two dominant matrices X�A

O =[
x A
(i, j)

]

n×n
and X

�B
O =

[
x B(i, j)

]

n×n
. We define X�A

O ∩ X
�B
O

as follows:

X
�A
O ∩ X

�B
O =

[
x A
(i, j) × x B(i, j)

]

n×n
. (10)

Above formula provides a method for obtaining new
dominant matrices X

�A
O and X

�B
O , which is of practical

significance as it allows the simultaneous acquisition of dom-
inant matrices for attribute sets A and B.

Proposition 3.1 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
for ∀A, B ⊆ C, then X

�A∪B
O = X

�A
O ∩ X

�B
O establishes.

Proof According to Definition 3.1, X�A∪B
O =

[
x A∪B
(i, j)

]

n×n
.

If x A∪B
(i, j) = 1, o j ∈ R+

A∪B (oi ). Then, we have o j ∈ R+
A (oi )

and o j ∈ R+
B (oi ), x A

(i, j) = 1 and x B(i, j) = 1. Then

x A∪B
(i, j) = x A

(i, j) × x B(i, j) = 1, and the reverse is also true.

If x A∪B
(i, j) = 0, i.e., o j /∈ R+

A∪B (oi ), that is, o j /∈ R+
A (oi ) or

o j /∈ R+
B (oi ), i.e., x A

(i, j) = 0 or x B(i, j) = 0. Consequently, we

obtain x A∪B
(i, j) = x A

(i, j) × x B(i, j) = 0, the same holds true if the

situation is reversed. Finally, there are x A∪B
(i, j) = x A

(i, j)×x B(i, j),

i.e., X�A∪B
O = X

�A
O ∩ X

�B
O holds. ��

Definition 3.3 Given I� = (O,C ∪ {d}, V , h) is an ODDS,
for ∀A ⊆ C , the dominant diagonal matrix and its inverse

matrix for X
�A
O =

[
x A
(i, j)

]

n×n
are defined as D

�A
O =

[
d A
(i, j)

]

n×n
and

(
D

�A
O

)−1 =
[

1
d A
(i, j)

]

n×n
, respectively,

where

d A
(i, j) =

{∑n
l=1 x

A
(i,l), i, j ∈ [1, n], i = j;

0, i, j ∈ [1, n], i �= j .
(11)
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1

d A
(i, j)

=
⎧
⎨

⎩

1∑n
l=1 x

A
(i,l)

, i, j ∈ [1, n], i = j;
0, i, j ∈ [1, n], i �= j .

(12)

At the same time we define the | · | operation as
∣
∣
∣D

�A
O

∣
∣
∣ =

�n
i= j=1d

A
i j .

Corollary 3.1 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
for ∀A ⊆ C . The matrix dominance conditional entropy of
condition attribute A under decision attribute d is defined as
follows:

MDE�
d|A(O) = − 1

|O| log
∣
∣
∣
∣D

�A∪{d}
O ×

(
D

�A
O

)−1
∣
∣
∣
∣ . (13)

Proof According to Definition 2.6, we have DE

d|A(O) =

− 1
|O|

∑n
i=1 log

∣
∣
∣R+

{d}∪A(oi )
∣
∣
∣

∣
∣R+

A (oi )
∣
∣ = − 1

|O| log
�n

i=1

∣
∣
∣R+

{d}∪A(oi )
∣
∣
∣

�n
i=1

∣
∣R+

A (oi )
∣
∣ . Acc-

ording to Definitions 3.1 and 3.3, the dominance diagonal

matrices D�A
O =

[
d A
(i, j)

]

n×n
and D

�A∪{d}
O =

[
d A∪{d}
(i, j)

]

n×n
,

where d A
(i, j) = ∣

∣R+
A (oi )

∣
∣ and d A∪{d}

(i, j) =
∣
∣
∣R+

A∪{d} (oi )
∣
∣
∣.

Because

∣
∣
∣
∣D

�A∪{d}
O ×

(
D

≥A
O

)−1
∣
∣
∣
∣ = �n

i=1
d A∪d}
(i, j)

d A
(i, j)

= �n
i=1d

A∪|d}
(i, j)

�n
i=1d

A
(i, j)

= �n
i=1

∣
∣
∣R+

{d}∪A(oi )
∣
∣
∣

�n
i=1

∣
∣R+

A (oi )
∣
∣ . Thus, we can get DE�

d|A(O) = MDE�
d|A

(O). The results obtained from both matrix and non-matrix
methods for calculating the dominance conditional entropy
are found to be identical.

The core component of MDCE, as derived from formula

(13), is given by

∣
∣
∣
∣D

�A∪{d}
O ·

(
D

�A
O

)−1
∣
∣
∣
∣. Here, the dimensions

of the diagonal matrix are indicated from D
�A∪{d}
O to D

�A
O .

Its interpretation resembles that of formula (6). Finally, an
illustrative example is provided to demonstrate the compu-
tational approach for Corollary 3.1. ��

Example 2 The ordered decision data set presented inTable 2
serves to elucidate the subsequent analysis. In Table 2, U =

Table 2 An ordered decision data set

U c1 c2 c3 c4 d

o1 2 3 2 3 1

o2 3 1 2 2 2

o3 1 2 3 3 2

o4 2 3 1 3 3

o5 3 1 2 2 4

o6 1 2 3 3 2

o7 3 1 2 2 2

{o1, o2, o3, o4, o5, o6, o7},C ={c1, c2, c3, c4}. The different
feature rankings are like this Vc1 : 1 ≺ 2 ≺ 3, Vc2 : 1 ≺ 2 ≺
3, Vc3 : 1 ≺ 2 ≺ 3, Vc4 : 2 ≺ 3, and Vd : 1 ≺ 2 ≺ 3 ≺ 4.
According to Definition 3.1, the dominant matricesX≥C

O and

X
�d
O are as follows:

X
�C
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

, X
�d
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1
0 1 1 0 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 0 0
0 1 1 0 1 1 1
0 1 1 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

Taking X
�C
O as an exemplar, the verification of Property

3.1 is conducted in the following manner.

(1) For ∀i ∈ {1, 2, . . . , 7}, xC(i,i) = 1;

(2) For ∀i, j ∈ {1, 2, . . . , 7}, ∑7
j=1 x

C
(i, j) = ∣

∣R+
C (oi )

∣
∣ and

∑7
i=1 x

C
(i, j) = ∣

∣R−
C

(
o j

)∣
∣. While i = 1, R+

C (o1) =
{o1}, there is

∑7
j=1 x

C
(1, j) = ∣

∣R+
C (o1)

∣
∣ = 1; while

j = 1, R−
C (o1) = {o1, o4}, we have

∑7
i=1 x

C
(i,1) =

∣
∣R−

C (o1)
∣
∣ = 2.

According to Definition 3.2, the matrix X
�C∪{d}
O rep-

resenting the dominance relation is computed in the
following manner.

X
�C∪{d}
O = X

�C
O ∩ X

�d
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 × 1 0 × 1 0 × 1 0 × 1 0 × 1 0 × 1 0 × 1
0 × 0 1 × 1 0 × 1 0 × 0 1 × 1 0 × 1 1 × 1
0 × 0 0 × 1 1 × 1 0 × 0 0 × 1 1 × 1 0 × 1
1 × 0 0 × 1 0 × 1 1 × 1 0 × 1 0 × 1 0 × 1
0 × 0 1 × 0 0 × 0 0 × 0 1 × 1 0 × 0 1 × 0
0 × 0 0 × 1 1 × 1 0 × 0 0 × 1 1 × 1 0 × 1
0 × 0 1 × 1 0 × 1 0 × 0 1 × 1 0 × 1 1 × 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

Consequently, based on Definition 3.3, the dominance
relation is determined by calculating the diagonal matrices

D
�C
O and D

≥C∪{d}
O , as well as the inverse matrix

(
D

≥C
O

)−1
,

resulting in

D
�C
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

,D
�C∪{d}
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

,
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(
D

≥C
O

)−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 0 0 0 0 0 0
0 1

3 0 0 0 0 0
0 0 1

2 0 0 0 0
0 0 0 1

2 0 0 0
0 0 0 0 1

3 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 1

3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

Finally, we have MDE�
d|C (O) = − 1

7 log
∣
∣
∣D

�C∪{d}
O ×

(
D

�C
O

)−1
∣
∣
∣
∣ = 0.3693.

Corollary 3.2 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
for ∀A ⊆ C and ∀c ∈ A, the internal significance measure of
matrix dominance conditional entropy is defined as follows:

φM (c, A, d) = MDE�
d|(A−{c})(O) − MDE�

d|A(O). (14)

Corollary 3.3 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
for ∀B ⊆ C and ∀c ∈ (C − B), the external significance
measure of matrix dominance conditional entropy is defined
as follows:

ψM (c, B, d) = MDE�
d|B(O) − MDE�

d|B∪{c}(O). (15)

Clearly, the internal and external significance measures
of the matrix dominance conditional entropy are similar to
Definitions 2.8 and 2.9 in the previous section.

3.2 Static feature selection algorithm based on
MDCE

The feature selection algorithm based onMDCE in ODDS is
presented in this section. Regarding this algorithm, it recal-
culates the reduction from scratch when there are changes in
the reduction data object. Therefore, although not classified
as a dynamic attribute reduction algorithm like the feature
incremental algorithm, it serves as a basic for the subsequent
paper’s incremental feature selection algorithm.

The subsequent steps outline Algorithm 1. Step 2 involves
calculating the matrix dominance conditional entropy of the
ODDS. Next six steps aim to identify significant important
attributes and obtain preliminary reduced subsets. Steps 10−
16 primarily focus on determining if there exist important
core attributes among the initially filtered attributes, until
it is verified that any remaining attributes are unnecessary.
The last for loop involve eliminating redundant attributes
from the existing attribute set to ensure indispensability of
each attribute. The time complexity and space complexity of
Algorithm 1 can be expressed as O(|C ||O|2 + 2|C |2|O|2 +
|B|2|O|2) and O(|O|2 + |C ||O|2), respectively.

Algorithm 1 Static feature selection algorithm.
Input: An ODDS I� = (O,C ∪ {d}, V , h).
Output: A reduct RedO .

1 Initialize RedO ← ∅;
2 Calculate MDE�

d|C (O) in O via using (17);

3 for eachck ∈ C do
4 Calculate φM (ck ,C, d) via using (18);
5 if φM (ck ,C, d) > 0, then
6 RedO ← RedO ∪ {ck};
7 end
8 end
9 B ← RedU ;

10 while MDE�
d|B(O) �= MDE�

d|C (O) do
11 for each cl ∈ C do
12 Calculate ψM (cl , B, d) via using (19);
13 end
14 Select cmax = max {ψM (cl , B, d) , cl ∈ (C − B)};
15 B ← B ∪ {cmax };
16 end
17 for each c ∈ B do
18 if MDE�

d|(B−{c})(O) = MDE≥
d|B(O), then

19 B ← B − {c};
20 end
21 end
22 RedO ← B ;
23 return RedO ;

4 Incremental multi-objective feature
selectionmethod based onmatrix
dominance conditional entropy

The features in an ordered data set may increase or decrease
over time. The process of statically computing reductions
can be complicated by the presence of repeated computa-
tions. Therefore, this section proposes and elaborates on two
types of incremental attribute reduction algorithms that uti-
lize previously obtained results to save time and space while
reducing algorithmic complexity.

4.1 An incremental multi-objective feature selection
method when adding features

In this section, we initially examine the change process
of matrix dominance conditional entropy as the attribute
increases and present the corresponding feature selection
algorithm.

4.1.1 Matrix dominance conditional entropy adjust
principle when adding features

The addition of new features will inevitably alter the domi-
nance relationship between the original objects. It is evident
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that in order for the original dominant object to maintain its
advantage, it must also uphold its superiority under the influ-
ence of these new features. Hence, modifications are made
to the dominant matrix.

Proposition 4.1 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
where C = {c1, c2, . . . , cn}. For ∀A ⊆ C, assume as the

dominant matrix on O concerning A is X�A
O =

[
x A
(i, j)

]

n×n
,

the feature set A+ = {
cn+1, cn+2, . . . , cn+n′

}
is added to

I�. The adjust dominant matrix is defined as X
�A∪A+
O =[

x ′A∪A+
(i, j)

]

n×n
, where

x ′A∪A+
(i, j) =

{
1, h(o j , c) ≥ h(oi , c),∀c ∈ A ∪ A+;
0, otherwise.

(16)

The rationale for updating the dominantmatrix is provided
by Proposition 4.1 as multiple features are incorporated. The
fundamental idea is to assess whether the recently incor-
porated conditional features of the primary dominant entity
maintain their dominance according to the adjust matrix rep-
resenting dominant relationships. Illustrative examples are
presented below.

Example 4 A noval attribute setC+ = {c5} is added to Table
2. There is c5 = {1, 2, 2, 1, 3, 2, 2}, where feature rankings
is Vc5 : 1≺ 2≺ 3. The newly introducedmatrixX�C∪C+

O rep-
resents the dominance relation among conditional attributes
and can be denoted as

X
�C∪C+
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

Proposition 4.2 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
where C = {c1, c2, . . . , cn}. For ∀A ⊆ C, then the dominant

diagonal matrix is D�A
O =

[
d A
(i, j)

]

n×n
, the feature set A+ =

{
cn+1, cn+2, . . . , cn+n′

}
is added to I�. The adjust domi-

nant diagonal matrix is defined asD�A∪A+
O =

[
d ′A∪A+
(i, j)

]

n×n
,

where

d ′A∪A+
(i, j) =

{
d A
(i, j) − x ′A∪A+

(i, j) , h(o j , c) ≥ h(oi , c), ∀c ∈ A ∪ A+;
d A
(i, j), h(o j , c) < h(oi , c), ∀c ∈ A ∪ A+.

(17)

Example 5 Building upon Example 4, given matricesX�C∪C+
O

and D
�C
O , we can apply Proposition 4.2 to adjust matrix

D
�C∪C+
O as

D
≥C∪C+
U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 0 0 0 0 0 0 0
0 3 − 0 0 0 0 0 0
0 0 2 − 0 0 0 0 0
0 0 0 2 − 0 0 0 0
0 0 0 0 3 − 2 0 0
0 0 0 0 0 2 − 0 0
0 0 0 0 0 0 3 − 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

Next, we will outline the detailed steps for calculating a
new MDCE after incorporating multiple attribute character-
istics. As a new object set O+, we are aware that the origin
matrices are X�A

O ,X
�A
O∪O+ ,D

�A
O , and D

�A
O∪O+ . When A+ is

added to I�, we can readily acquire the adjust dominant diag-

onal matrices D�A∪A+
O and D

�A
O∪O+ . Therefore, by applying

Corollary 3.1, theMDE�
d|A∪A+ (O) can be performed effort-

lessly.

4.1.2 An incremental feature selection algorithmwhen
adding features

The incremental feature selection algorithm (IFS-A) is pre-
sented in Algorithm 2, drawing inspiration from the updating
principle of MDCE.

The specific procedures outlined in Algorithm 2 are pre-
sented below. Steps 2-4 progressively compute the updated
dominant matrix and its dominant diagonal matrix. Then
determines the adjustedMDCEbased onCorollary 3.1. Steps
6-10 primarily aim to ascertain if the new MDCE matches
both theMDCE of the initial attribute subset (i.e., raw reduc-
tion) and that below this complete attribute set, keeping the
original subset of attributes unchanged if necessary. Steps 11-
16 arrange the eliminated attributes in descending order to
form a fresh set and modify the selected attribute subset until
reaching Step 12. Steps 17-22 eliminate redundant attributes
from the existing attribute set to ensure indispensability
of each attribute within it. Finally, steps 23-24 present the
ultimate reduction outcome. In brief, the time and space com-
plexity are O

(|O||C+||C ′| + (|C ′| − |B|)|O|2 + |B|2|O|2)
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Algorithm 2 IFS-A algorithm
Input:
(1) A raw ODDS I� = (O,C ∪ {d}, V , h), where
C = {c1, c2, . . . , cn}. New attributes set
C+ = {cn+1, cn+2, . . . , cn+n};
(2) The original reduct RedO on O;

(3) The original dominant matrices X�C
O =

[
xC(i, j)

]

n×n
,

X
�C∪{d}
O =

[
xC∪{d}
(i, j)

]

n×n
,X�RedO

O =
[
x RedO(i, j)

]

n×n
, and

X
�d
O =

[
xd(i, j)

]

n×n
;

(4) The original dominance diagonal matrices

D
�C
O =

[
dC(i, j)

]

n×n
,D

�C∪{d}
O =

[
dC∪{d}
(i, j)

]

n×n
,D

�RedO
O =

[
dRedO
(i, j)

]

n×n
and D

�RedO∪{d}
O =

[
dRedO∪{d}
(i, j)

]

n×n
.

Output: A new reduct RedO ′ .
1 Initialize B ← RedO ,C ′ ← C ∪ C+,X

�C ′
O ← X

�C
O ,D

�C ′
O ←

D
�C
O ,D

�C ′∪{d}
O ← D

�C∪{d}
O ;

2 Compute new dominant matrices X�C ′
O ←

[
x ′C
(i, j)

]

n×n
,X

�B
O ←

[
x ′B
(i, j)

]

n×n
,X

�d
O ←

[
x ′d
(i, j)

]

n×n
via

using Proposition 4.1;

3 Compute dominant matrices X�C ′∪{d}
O and X

�B∪{d}
O ;

4 Compute new dominance diagonal matrices

D
�C
O =

[
dC(i, j)

]

n×n
, D

�C∪{d}
O =

[
dC∪{d}
(i, j)

]

n×n
,D

�RedO
O =

[
dRedO
(i, j)

]

n×n
and D

�B∪{d}
O ←

[
d ′B∪{d}
(i, j)

]

n×n
via using

Proposition 4.2;
5 Compute newMDCEMDCE MDE�

d|C ′ (O) and MDE�
d|B(O);

6 if MDE�
d|C ′ (O) = MDE

�
d|B(O), then

7 go to step17;
8 else
9 go to step11;

10 end
11 For each

c ∈ (
C ′ − B

)
, compute ψM (c, B, d), then save the result as

{
c′
0, c

′
1, . . . , c

′
|C ′−B|

}
;

12 while MDE�
d|C ′ (O) �= MDE�

d|B(O) do
13 for cz ∈ C ′ − B do
14 Select B ← B ∪ {

c′
z

}
, then calculate MDE�

d|B(O);

15 end
16 end
17 for each c ∈ B do
18 calculate MDE�

d(B−{c})(O);

19 if MDE�
d|(B−{c})(O) = MDE�

d|B(O), then
20 B ← B − {c};
21 end
22 end
23 RedO ′ ← B ;
24 return RedO ′ ;

and O
(|O|2 + (|C ′| − |B|)|O|2), respectively. The specific

comparison between SFS and IFS-A is shown in Table 3.
From Table 3, it is evident that the IFS-A algorithm

exhibits lower time and space complexity compared to the
SFSalgorithm.This discrepancy arises because theSFSalgo-
rithm recomputes reductions from scratchwhenever there are
changes in features, whereas the IFS-A algorithm leverages

previous reduction results, thereby significantly reducing
both time and space complexity. Consequently, employing
the IFS-A algorithm can considerably expedite reduction cal-
culations for extensive datasets.

4.2 An incremental multi-objective feature selection
method when deleting features

The change process of the dominant conditional entropy of
the matrix is preliminarily investigated in this section when
the attribute is deleted, and a corresponding feature selection
algorithm is provided.

4.2.1 Matrix dominance conditional entropy adjust
principle when deleting features

Similar to Section 4.1.1, this section introduces the updating
mechanism of matrix dominance conditional entropy when
ODDS deleting features.

Proposition 4.3 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
where C = {o1, o2, . . . , on}. For ∀A ⊆ C, suppose that

the dominant matrix is X�A
O =

[
x A
(i, j)

]

n×n
, the feature set

A− = {
oq1, oq2, . . . , oqn′

}
is deleted from I�. The adjust

dominant matrix is defined as X
�A−A−
O =

[
x ′A−A−
(i, j)

]

n×n
,

where

x ′A−A−
(i, j) =

{
1, h(o j , c) ≥ h(oi , c),∀c ∈ A − A−;
0, otherwise.

(18)

Example 6 A feature set C− = {c3, c4} is deleted from
Table 2. The new conditional attribute dominant matrix
X

�C−C−
O can be expressed as

X
�C−C−
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0 0
0 1 0 0 1 0 1
1 0 1 1 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 1 1 0 1 0
0 1 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

Proposition 4.4 Let I� = (O,C ∪ {d}, V , h) be an ODDS,
where C = {c1, c2, . . . , cn}. For ∀A ⊆ C, given the

dominant diagonal matrix D
�A
O =

[
d A
(i, j)

]

n×n
, then fea-

ture set A− = {
cq1, cq2, . . . , cqn′

}
is deleted from I�. The

adjust dominant diagonal matrix is defined as D�A−A−
O =[

d ′A−A−
(i, j)

]

n×n
, where

d ′A−A−
(i, j) =

⎧
⎨

⎩

d A
(i, j) + x ′A−A−

(i, j) , h(o j , c) ≥ h(oi , c), ∀c ∈ A − A−;
d A
(i, j), h(o j , c) < h(oi , c), ∀c ∈ A − A−.

(19)
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Table 3 Time and space complexity comparison of SFS and IFS-A

Algorithm SFS IFS-A

Time complexity O
(|C ′| |O|2 + 2|C ′|2 |O|2 + |B|2 |O|2) O

(|O| ∣∣C+∣
∣
∣
∣C ′∣∣ + (|C ′| − |B|) |O|2 + |B|2 |O|2)

Space complexity O
(|O|2 + |C ′| |O|2) O

(|O|2 + (|C ′| − |B|) |O|2)

Example 7 Building upon Example 6, givenmatricesX�C−C−
O

and D
�C
O , we can apply Proposition 4.4 to adjust matrix

D
�C−C−
O as

D
�C−C−
O =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + 1 0 0 0 0 0 0
0 3 + 0 0 0 0 0 0
0 0 2 + 2 0 0 0 0
0 0 0 2 + 0 0 0 0
0 0 0 0 3 + 0 0 0
0 0 0 0 0 2 + 2 0
0 0 0 0 0 0 3 + 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7×7

.

4.2.2 An incremental feature selection algorithmwhen
deleting features

Motivated by the refreshing principle of MDCE, Algorithm
3 introduces a novel approach called IFS-D, which is a
multi-feature incremental feature selection algorithm when
deleting features in ODDS.

The step-by-step procedure of Algorithm 3 is outlined
below. Steps 2-3 progressively calculate the updated dom-
inant matrix and its corresponding diagonal matrix. Then we
determine the new MDCE. Next five steps primarily aim to
ascertain if the newMDCEmatches both the original attribute
subset’s MDCE (raw reduction) and the overall attribute
set’s new MDCE, thereby preserving the raw subset of
attributes when necessary. Arrange the eliminated attributes
in descending order and update the selected attribute sub-
set through steps 10-15. Finally, we eliminate redundant
attributes from the existing set to ensure that each attribute
remains essential.

The time and space complexity are O(|O| + (|C ′| −
|B|)|O|2 + |B|2|O|2) and O

(|O|2 + (|C ′| − |B|)|O|2) in
general, respectively. We have also conducted a comparison
between the complexity of the SFS and the IFS-D, with the
corresponding findings presented in Table 4.

The time and space complexity of the IFS-D algorithm is
demonstrated to be smaller than that of the SFS algorithm,
as shown in Table 4. This disparity arises from the fact that
when there are changes in features, the SFS algorithm recom-
putes reductions from scratch, whereas the IFS-D algorithm
leverages previous reduction results, resulting in a significant
reduction in both time and space complexity. Consequently,
for large-scale data reduction calculations, the IFS-D algo-
rithm offers substantial time savings.

5 Experiments

A set of experiments are carried out to verify the efficiency
of the incremental algorithm proposed for attribute features.
Table 5 summarizes the nineUCIdatasets used in these exper-
iments. All algorithms in this study were implemented using
Python within Anaconda Navigator environment and exe-
cuted on a computer equipped with an AMDRyzen 7 4800H
CPU (2.90 GHz) with Radeon Graphics, 8 GB memory, and
running on a 64-bit Windows 10 operating system.

We conducted a comparative experiment to assess the
effectiveness of our suggested algorithm. We compared our
IFS-A and IFS-D algorithmswith four feature selection algo-
rithms, namely SFS, DRSQR, FEAR, and NRSAR. The
SFS algorithm is shown in Algorithm 1. DRSQR is a quick
reduction algorithm built upon dominant RST. FEARutilizes
fuzzy entropy for attribute reduction while NRSAR employs
neighborhood rough sets for reducing attributes. The paper
employs four classical classifiers, namely BayesNet (BN),
RandomTree (RT), K-NearestNeighbor (KNN), and Adap-
tive boosting (Adaboost), to assess the impact of attribute
reduction on classification accuracy through 10-fold cross-
validation.

Table 4 Time and space complexity comparison of SFS and IFS-D

Algorithm SFS IFS-D

Time complexity O(|C ′| |O|2 + 2|C ′|2 |O|2 + |B|2 |O|2) O(|O| + (|C ′| − |B|) |O|2 + |B|2 |O|2)
Space complexity O(|O|2 + |C ′| |O|2) O(|O|2 + (|C ′| − |B|) |O|2)
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5.1 Experimental effect analysis of IFS-A algorithm

The algorithm IFS-A is analyzed from three perspectives:
classification accuracy, algorithm time, and index perfor-
mance evaluation.

Algorithm 3 IFS-D algorithm
Input:
(1) A raw ODDS I� = (O,C ∪ {d}, V , h), where
C = {c1, c2, . . . , cn}.
C− = {

cq1, cq2, . . . , cqn′
}
is a deleted feature set ;

(2) The original reduct RedO on O;
(3) The original dominant matrices

X
�C
O =

[
xC(i, j)

]

n×n
, X

�C∪{d}
O =

[
xC∪{d}
(i, j)

]

n×n
,X

�RedO
O =

[
x RedO
(i, j)

]

n×n
and X

RedO∪{d}
O =

[
x RedO∪{d}
(i, j)

]

n×n
;

(4) The original dominance diagonal matrices

D
�C
O =

[
dC(i, j)

]

n×n
, D

�C∪{d}
O =

[
dC∪{d}
(i, j)

]

n×n
,D

�RedO
O =

[
dRedO
(i, j)

]

n×n
and D

�RedO∪{d}
O =

[
dRedO∪{d}
(i, j)

]

n×n
.

Output: A new reduct RedU ′ .
1 Initialize

B ← RedO ,C ′ ← C − C−,X
�C ′
O ← X

�C
O ,X

�C ′∪{d}
O ←

X
�C∪{d}
O ,D

�C ′
O ← D

�C
O ,D

�C ′∪{d}
O ← D

�C∪{d}
O ;

2 Compute new dominant matrices

X
�C ′
O ←

[
x ′C
(i, j)

]

n×n
,X

�B
O ←

[
x ′B
(i, j)

]

n×n
,X

�C ′∪{d}
O ←

[
x

�C ′∪{d}
(i, j)

]

n×n
and X

�B′∪{d}
O ←

[
x

�B′∪{d}
(i, j)

]

n×n
via using Proposition 4.3 ;

3 Compute new dominance diagonal matrices

D
�C ′
O ←

[
d ′C
(i, j)

]

n×n
,D

�C ′∪{d}
O ←

[
d ′C∪{d}
(i, j)

]

n×n
,D

�B
O ←

[
d ′B
(i, j)

]

n×n
,D

�B∪{d}
O ←

[
d ′B∪{d}
(i, j)

]

n×n
via using Proposition 4.4;

4 Calculate new MDCE MDCE MDE�
dC ′ (O) and MDE�

d|B(O);

5 if MDE�
dC ′ (O) = MDE

�
d|B(O), then

6 go to step16;
7 else
8 go to step10;
9 end

10 For each
c ∈ (

C ′ − B
)
, calculate ψM (c, B, d), then save the result as

{
c′
0, c

′
1, . . . , c

′
|C ′−B|

}
;

11 while MDE�
d|C ′ (O) � MDE�

d|B(O) do
12 for cz ∈ C ′ − B do
13 Select B ← B ∪ {

c′
z

}
then calculate MDE�

d|B(O);

14 end
15 end
16 for each c ∈ B do
17 calculate MDE�

d(B−{c})(O);

18 if MDE�
d|[B−{c})(O) = MDE�

d|B(O), then
19 B ← B − {c};
20 end
21 end
22 RedO ′ ← B ;
23 return RedO ′ ;

5.1.1 Comparison of classification accuracy

The IFS-A algorithm proposed in this paper is compared
to four other algorithms to evaluate its classification accu-
racy. Each data set listed in Table 5 is divided into two parts:
a random selection of 50% features as the raw feature set,
and the remaining 50% features added to it. The IFS-A,
SFS, DRSQR, FEAR, and NRSAR algorithms are utilized to
compute fresh reductions based on these sets. Experimental
results can be found in Tables 6 and 7, where ’Origin’ repre-
sents the classification effect of the full set of attributes. The
numbers in parentheses following the classification accuracy
in Table 6 indicate the reduced number of attributes. Addi-
tionally, Tables 7, 10, and 11 follow a same format as Table 6.

Based on the chart provided above, it can be observed
that algorithm IFS-A consistently outperforms other algo-
rithms in terms of classification accuracy across all scenarios.
Moreover, its average score significantly surpasses others,
indicating a remarkably high level of accuracy for the IFS-A
algorithm.

5.1.2 Comparison of feature selection time

The effectiveness of IFS-A is verified in this section through
a comparison of computation time and speed-up ratio. To
conduct our tests, we created five test sets for each data set
listed in Table 5. Initially, we randomly selected 50% of the
attributes as the origin attribute set. Then, from the remain-
ing 50%, we added attributes to the origin attribute set to
create a dynamic data set for testing purposes. Specifically,
we randomly selected 10%, 20%, 30%, 40%, and 50% of the
remaining attributes and added them to the original attribute
set. It is worth noting that since both BCC and Abalone data
sets have less than ten attribute (9 forBCCand8 forAbalone),
we initially selected only four attributes for BCC and three
attributes for Abalone.We then gradually added one attribute
at a time. By comparing the computation times for various
algorithms applied to these data sets, Fig. 1 illustrates com-
putation times for all algorithms. The X-axis represents the
size of the added attribute set, while the Y-axis represents
computation time.

From Fig. 1, it is evident that as the attribute feature set
increases, the computation time for these five algorithms also
increases. Each subgraph clearly demonstrates that algorithm
IFS-A has significantly lower computation time compared to
other algorithms. This difference is particularly noticeable
when dealing with large data sets, where algorithm IFS-A
proves to be highly efficient in terms of saving time. Hence,
we can conclude that algorithm IFS-A exhibits exceptional
efficiency.

Subsequently, we validate the effectiveness of the IFS-A
algorithm by analyzing its acceleration ratio. By utilizing the
data presented in Fig. 1, we calculate the acceleration ratio of
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Table 5 Details of the datasets ID Abbreviation Datasets Objects Attributes Classes

1 Abalone Abalone 4177 8 3

2 BCC Breast Cancer Coimbra 116 9 2

3 Codon Codon_usage 13028 68 10

4 DMT Detect Malware Types 7107 280 8

5 Eye EEG Eye State 14980 14 2

6 Letter Letter-recognition 20000 16 26

7 OLD Ozone Level Detection 2536 73 2

8 RLS Rocket League Skillshots 297 18 7

9 Wine Wine 178 13 3

IFS-A compared to four other algorithms. The results of our
experiments are depicted in Fig. 2. These algorithms con-
sistently exhibit high speed ratios across various datasets.
However, due to a potentially dense curve, identifying trends
may be challenging. To address this issue, we present our
results in a tridimensional context. To illustrate, Fig. 2(a)
shows that the X-axis corresponds to the capacity of the
added attribute set. The Y-axis represents BCC, Wine, RLS
andOLDdatasets respectively; their experimental results fall
within a value range of [0-3]. Meanwhile,the Z-axis displays
experimental results for DMT, Codon, Eye and Letter data
sets with a value range between [0-250]. Subsequently, in
Fig. 2(b), (c), (d), as well as Fig. 4(a), (b), (c) and (d), follow
a similar structure as Fig. 2(a).

The results presented in Fig. 2 clearly demonstrate that
algorithm IFS-A exhibits a superior acceleration ratio com-
pared to the other algorithms across each data set. This
indicates that algorithm IFS-A outperforms the remaining
four algorithms in terms of speed for each empirical data set.
Moreover, for large-scale data sets, algorithm IFS-A demon-
strates a significantly higher level of efficiency, surpassing the

other four algorithms by dozens or even hundreds of times.
These findings once again validate the exceptional efficiency
achieved by algorithm IFS-A.

5.1.3 Analysis of evaluation index

The algorithm is divided into two categories based on the
measurement index on the sample, which are the measure-
ment based on classification and the measurement based on
ranking. This paper chooses to evaluate the effectiveness of
the algorithm based on Average Precision (AP) and Ranking
Loss (RL) in ranking metrics.

AP reflects the average probability of the predicted label
ranking for all samples, where the one before the rele-
vant label is also the relevant label. The formula for AP is
expressed as follows:

AP( f ) = 1

n

n∑

i=1

1

|Ri |
∑

l∈Ri

{
k ∈ Ri | r f (oi , k) � r f (oi , l)

}

r f (oi , l)

(20)

Table 6 Comparison accuracy(%) of five algorithms on BN and RT

Datasets BN RT
Origin NRSAR FEAR DRAQR SFS IFS-A Origin NRSAR FEAR DRAQR SFS IFS-A

Abalone 51.27 57.02(3) 54.11(2) 53.32(3) 51.82(1) 57.32(2) 80.07 82.15(3) 74.13(2) 79.81(3) 86.25(1) 88.76(2)

Bcc 64.21 61.37(4) 64.98(5) 57.42(9) 63.25(5) 65.71(6) 80.03 81.17(4) 69.98(5) 85.17(9) 66.74(5) 82.22(6)

Codon 76.34 64.92(11) 72.18(13) 61.40(23) 75.72(14) 75.81(8) 77.4 72.89(11) 71.54(13) 80.84(23) 71.08(14) 84.66(8)

DMT 81.55 82.85(89) 74.27(94) 81.99(65) 77.52(66) 84.29(77) 76.44 79.28(89) 74.48(94) 79.46(65) 83.42(66) 83.99(77)

Eye 81.74 77.63(10) 73.19(8) 67.25(8) 88.75(5) 92.36(6) 60.11 55.39(10) 54.18(8) 57.62(8) 59.38(5) 61.25(6)

Letter 73.28 69.97(8) 71.11(9) 69.77(8) 71.92(5) 74.71(6) 79.77 71.89(8) 74.13(9) 77.93(8) 78.19(5) 82.46(6)

OLD 69.87 65.28(24) 74.29(38) 71.18(39) 67.99(41) 72.56(27) 74.98 73.36(24) 81.77(38) 82.68(39) 64.29(41) 87.94(27)

RLS 81.64 83.21(15) 82.29(11) 79.66(12) 84.58(14) 87.77(9) 77.27 81.19(15) 83.24(11) 82.22(12) 79.97(14) 90.03(9)

Wine 98.15 81.30(2) 85.44(11) 92.34(10) 98.15(12) 98.15(12) 84.90 86.89(2) 66.81(11) 87.19(10) 79.28(12) 93.47(12)

Average 75.34 71.51 72.43 70.48 75.52 78.74 76.77 76.02 72.25 79.21 74.29 83.86

123



Incremental feature selection... 4901

Table 7 Comparison accuracy(%) of five algorithms on KNN and Adaboost

Datasets KNN Adaboost
Origin NRSAR FEAR DRAQR SFS IFS-A Origin NRSAR FEAR DRAQR SFS IFS-A

Abalone 92.16 77.35(3) 74.18(2) 88.45(3) 81.47(1) 95.29(2) 75.29 74.98(3) 73.78(2) 77.97(3) 84.25(1) 87.73(2)

Bcc 77.67 74.69(4) 67.77(5) 69.96(9) 73.90(5) 80.74(6) 79.57 74.19(4) 81.76(5) 74.87(9) 69.77(5) 81.31(6)

Codon 71.07 69.50(11) 69.97(13) 72.09(23) 75.81(14) 79.69(8) 77.63 72.89(11) 71.01(13) 70.18(23) 68.80(14) 81.57(8)

DMT 84.49 85.69(79) 86.74(84) 83.97(76) 87.22(89) 90.01(57) 83.29 79.28(79) 77.45(84) 82.49(76) 84.47(89) 91.78(57)

Eye 76.29 73.46(10) 77.28(8) 81.11(8) 79.99(5) 82.33(6) 69.92 59.37(10) 58.82(8) 63.35(8) 65.81(5) 70.01(6)

Letter 73.99 67.89(8) 72.39(9) 77.71(8) 76.58(5) 82.11(6) 73.19 66.81(8) 73.79(9) 75.21(8) 74.86(5) 80.09(6)

OLD 73.46 71.16(35) 72.29(34) 75.58(42) 74.42(41) 75.09(38) 82.23 84.47(35) 83.39(34) 85.57(42) 79.99(41) 87.57(38)

RLS 67.72 59.88(11) 63.87(12) 66.99(8) 69.20(12) 68.81(14) 69.25 71.10(11) 72.24(12) 74.49(8) 67.72(12) 77.43(14)

Wine 90.21 65.36(2) 96.08(11) 91.78(10) 98.15(12) 99.35(12) 70.56 67.72(2) 71.83(11) 72.44(10) 75.28(12) 79.54(12)

Average 78.56 71.66 75.62 78.63 79.64 83.71 75.66 72.31 73.79 75.17 74.55 81.89

Fig. 1 The time taken by various algorithms when features are added at different ratios
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Fig. 2 The speed-up ratios between IFS-A and other four algorithms

where f denotes the different algorithms, n denotes the num-
ber of samples, r f (o, l) represents the ordinal position of
label l among all the predicted labels.

RL reflects the average probability of an irrelevant label
being ranked before a relevant label in the predicted label
ranking for all samples. The RL formula is expressed as fol-
lows:

RL( f ) = 1

n

n∑

i=1

1

|Ri |
∣
∣Ri

∣
∣

∣
∣
{
(l, k) | r f (oi , l) � r f (oi , k) , (l, k) ∈ Ri × Ri

}∣
∣

(21)

where Ri denotes the complement of Ri .
The performance of the IFS-A algorithm and the other

four algorithms on nine datasets is presented in Tables 8
and 9. These tables showcase the average performance val-
ues of the four classifiers based on two evaluation indexes. A
higher value for the AP evaluation index indicates superior
algorithm performance, while a lower value for the RL eval-
uation index suggests better algorithm performance. Based
on these results, it can be observed that the IFS-A algorithm
demonstrates superior performance compared to others.
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Table 8 Comparing the performance of algorithms using the AP evaluation metric

Datasets NRSAR FEAR DRAQR SFS IFS-A

Abalone 0.3927±0.0356 0.3468±0.0557 0.2213±0.0562 0.7388±0.0192 0.7422±0.0031

Bcc 0.5928±0.0213 0.5130±0.0197 0.5213±0.0211 0.3267±0.0325 0.6001±0.0112

Codon 0.4147±0.0426 0.3927±0.0233 0.3527±0.0477 0.2419±0.0334 0.5122±0.0123

DMT 0.5219±0.0164 0.4287±0.0243 0.4372±0.0366 0.2769±0.0170 0.5388±0.0117

Eye 0.3436±0.0142 0.4435±0.0119 0.4178±0.0385 0.4656±0.0287 0.4772±0.0174

Letter 0.4005±0.0133 0.5112±0.0344 0.5231±0.0441 0.7211±0.0291 0.7388±0.0196

OLD 0.4387±0.0147 0.5032±0.0478 0.6198±0.0367 0.4232±0.0189 0.6278±0.0369

RLS 0.4143±0.0223 0.4248±0.0267 0.4331±0.0758 0.4041±0.0363 0.4892±0.0737

Wine 0.5327±0.0184 0.5243±0.0145 0.4769±0.0231 0.5627±0.0190 0.5797±0.0107

Average 0.4502 0.4542 0.4448 0.4623 0.5896

Table 9 Comparing the performance of algorithms using the RL evaluation metric

Datasets NRSAR FEAR DRAQR SFS IFS-A

Abalone 0.4033±0.2694 0.3834±0.2305 0.3953±0.2451 0.3993±0.2656 0.3488±0.2280

Bcc 0.2628±0.4424 0.2617±0.4151 0.2638±0.4500 0.2583±0.4075 0.2369±0.3709

Codon 0.5738±0.2754 0.5398±0.2473 0.5571±0.2826 0.5656±0.3558 0.5132±0.2700

DMT 0.6435±0.5327 0.4623±0.3116 0.5372±0.4242 0.4686±0.3582 0.3179±0.2447

Eye 0.7626±0.4820 0.7503±0.4508 0.7494±0.3829 0.7528±0.4514 0.7159±0.4871

Letter 0.4917±0.3243 0.4665±0.3927 0.4854±0.2452 0.4958±0.2351 0.4355±0.1752

OLD 0.4168±0.3927 0.4359±0.3267 0.3687±0.2153 0.5254±0.3245 0.3154±0.5423

RLS 0.6173±0.2160 0.5793±0.2034 0.6289±0.2894 0.5760±0.2168 0.5723±0.3329

Wine 0.4909±0.3428 0.4676±0.2873 0.4734±0.4204 0.4892±0.3466 0.4341±0.2797

Average 0.5181 0.4830 0.4955 0.5034 0.4322

Table 10 Comparison accuracy(%) of five algorithms on BN and RT

Datasets BN RT
Origin NRSAR FEAR DRAQR SFS IFS-D Origin NRSAR FEAR DRAQR SFS IFS-D

Abalone 91.13 87.65(3) 86.78(2) 88.19(2) 83.37(1) 92.01(2) 70.56 72.20(3) 74.75(2) 66.98(2) 64.78(1) 75.99(2)

Bcc 88.97 79.88(4) 76.54(4) 85.67(8) 86.62(5) 89.47(6) 84.48 79.77(4) 82.21(4) 85.79(8) 75.92(5) 73.39(6)

Codon 84.76 75.62(21) 73.64(17) 82.57(13) 81.90(15) 84.82(9) 74.72 70.79(21) 68.97(17) 70.45(13) 71.47(15) 79.28(9)

DMT 75.59 82.28(73) 81.54(64) 82.20(43) 76.69(52) 84.47(77) 82.64 85.41(73) 86.64(64) 83.26(43) 79.94(52) 87.74(77)

Eye 84.16 78.54(7) 75.53(8) 81.56(6) 82.05(3) 85.38(4) 58.24 57.73(7) 57.64(8) 50.59(6) 52.94(3) 60.11(4)

Letter 83.99 77.89(6) 79.31(7) 87.17(3) 83.46(5) 87.51(9) 71.88 67.71(6) 69.98(7) 71.11(3) 67.78(5) 73.89(9)

OLD 83.46 79.91(27) 83.65(29) 86.87(34) 79.95(38) 85.51(39) 76.92 66.73(27) 71.98(29) 79.92(34) 82.18(38) 83.33(39)

RLS 81.42 78.42(14) 74.52(13) 78.54(11) 75.59(10) 84.58(9) 74.59 71.64(14) 76.27(13) 74.75(11) 80.06(10) 83.77(9)

Wine 82.97 77.39(2) 79.55(9) 84.22(8) 85.88(10) 86.94(10) 85.59 74.98(2) 63.97(9) 87.53(8) 81.17(10) 88.04(10)

Average 84.05 79.73 79.01 84.11 81.72 86.74 75.51 71.88 72.49 74.49 72.92 78.39
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Table 11 Comparison accuracy(%) of five algorithms on KNN and Adaboost

Datasets KNN Adaboost
Origin NRSAR FEAR DRAQR SFS IFS-D Origin NRSAR FEAR DRAQR SFS IFS-D

Abalone 65.36 67.88(3) 64.89(2) 70.13(2) 64.97(1) 72.11(2) 75.62 77.64(3) 69.94(2) 72.79(2) 74.98(1) 76.85(2)

Bcc 82.23 81.11(4) 79.56(4) 78.87(8) 81.87(5) 83.54(6) 80.01 84.41(4) 82.64(4) 83.38(8) 82.74(5) 83.99(6)

Codon 72.65 70.79(21) 71.29(17) 73.85(13) 71.78(15) 75.43(9) 77.27 75.83(21) 72.55(17) 73.02(13) 73.42(15) 80.01(9)

DMT 60.03 63.26(64) 64.27(75) 59.92(66) 64.68(78) 69.91(73) 65.29 70.87(64) 72.34(75) 64.32(66) 69.75(78) 74.65(73)

Eye 73.34 76.46(7) 74.95(8) 68.38(6) 80.08(3) 81.39(4) 71.65 62.76(7) 70.54(8) 70.78(6) 68.79(3) 72.77(4)

Letter 71.83 72.99(6) 70.94(7) 70.83(3) 75.77(5) 76.74(9) 79.22 69.82(6) 75.21(7) 75.53(3) 77.48(5) 80.12(9)

OLD 86.89 89.91(21) 84.78(17) 83.96(34) 86.78(35) 89.07(27) 90.57 91.42(21) 92.03(17) 86.78(34) 89.96(35) 93.31(27)

RLS 65.57 66.93(10) 61.43(13) 71.13(11) 73.49(10) 75.76(11) 78.95 75.87(10) 76.83(13) 81.15(11) 82.65(10) 84.77(11)

Wine 64.80 65.24(2) 63.68(9) 59.97(8) 65.51(10) 66.86(10) 77.69 62.65(2) 71.44(9) 73.98(8) 80.06(10) 83.55(10)

Average 71.41 72.73 70.64 70.78 73.88 76.76 77.36 74.59 75.95 75.75 77.31 81.11

Fig. 3 The time taken by various algorithms when features are added at different ratios

123



Incremental feature selection... 4905

Fig. 4 The speed-up ratios between IFS-D and other four algorithms

5.1.4 Overview of IFS-A

By conducting comparative experiments to evaluate the
classification efficiency, feature selection time, and other
indicators of various algorithms, it can be inferred that
the IFS-A algorithm outperforms other algorithms in terms
of performance. In comparison with alternative algorithms,
the computation time required by the IFS-A algorithm for

achieving feasible reduction is significantly shorter while
yielding more accurate results.

5.2 Experimental effect analysis of IFS-D algorithm

The algorithm IFS-D is analyzed from three perspectives:
classification accuracy, algorithm time, and index perfor-
mance evaluation.
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Table 12 Comparing the performance of algorithms using the AP evaluation metric

Datasets NRSAR FEAR DRAQR SFS IFS-D

Abalone 0.4960±0.0241 0.4637±0.0209 0.4723±0.0437 0.4883±0.0192 0.4997±0.0204

Bcc 0.1363±0.0264 0.1367±0.0260 0.1363±0.0264 0.1353±0.0253 0.1411±0.0218

Codon 0.8103±0.0219 0.7713±0.0314 0.7783±0.0259 0.7970±0.0321 0.8276±0.0294

DMT 0.4267±0.2386 0.4752±0.1531 0.4637±0.2412 0.5271±0.1537 0.5877±0.1321

Eye 0.7557±0.0220 0.7367±0.0198 0.7490±0.0286 0.7610±0.0241 0.7755±0.0431

Letter 0.4726±0.1216 0.4511±0.0237 0.4168±0.0356 0.4223±0.0145 0.4889±0.0227

OLD 0.6592±0.0179 0.6325±0.0286 0.6418±0.0375 0.7141±0.0425 0.7227±0.0315

RLS 0.7429±0.2165 0.6787±0.0121 0.7132±0.1928 0.7146±0.0190 0.7698±0.0421

Wine 0.4797±0.0220 0.4633±0.0275 0.4607±0.0321 0.4740±0.0271 0.4845±0.0252

Average 0.5533 0.5344 0.5369 0.5593 0.5886

5.2.1 Comparison of classification accuracy

In this section, we compare the classification accuracy of
our proposed IFS-D algorithm with four other algorithms.
For each data set in Table 5, we randomly select 50% of the
features as the initial feature set, while deleting the remain-
ing 50%. We then apply algorithms IFS-D, SFS, DRSQR,
FEAR, and NRSAR to compute new reductions based on the
modified feature set. The experimental results can be found
in Tables 10 and 11, where ’Origin’ represents the classi-
fication accuracy of the original attribute set. Based on the
chart provided above, it can be observed that algorithm IFS-D
consistently outperforms other algorithms in terms of classi-
fication accuracy across all scenarios. Moreover, its average
score significantly surpasses others, indicating a remarkably
high classification accuracy for the HRA-D algorithm.

5.2.2 Comparison of feature selection time

In this section, we assess the efficiency of the IFS-D algo-
rithm and conduct a comparison with four other algorithms
in terms of computation time and acceleration ratio. For each

data set listed in Table 5, we generate five test sets. Initially,
we randomly select 50% of the attributes to form the origin
feature set. Subsequently, we randomly eliminate attributes
from the remaining 50% to create dynamic data sets for test-
ing purposes (specifically, random selection and deletion of
10%, 20%, 30%, 40%, and 50% of the rest attributes in the
original set). Figure 3 illustrates detailed variations in all
algorithmswhen attributes changes. Thex-axis represents the
capacity of deleted attributes sets, while the y-axis represents
computation time. From Fig. 3, it is evident that as attribute
sets decrease consistently, so does computation time for all
five algorithms. However, algorithm IFS-D exhibits signifi-
cantly lower computation times compared toother algorithms
across all subgraphs. This effect is particularly pronounced
for large data sets, indicating a substantial time-saving advan-
tage offered by algorithm IFS-D’s high efficiency.

Following that, we proceed to validate the effectiveness
of the IFS-D algorithm based on its acceleration ratio. By
examining the results presented in Fig. 3, we computed the
acceleration ratio of IFS-D relative to the others. The experi-
mental findings are depicted in Fig. 4. As evident from Fig. 4,
IFS-D consistently demonstrates a positive acceleration ratio

Table 13 Comparing the performance of algorithms using the RL evaluation metric

Datasets NRSAR FEAR DRAQR SFS IFS-D

Abalone 0.0508±0.0011 0.0478±0.0015 0.0488±0.0019 0.0504±0.0012 0.0443±0.0016

Bcc 0.0287±0.0030 0.0287±0.0029 0.0287±0.0029 0.0285±0.0030 0.0281±0.0028

Codon 0.0653±0.0025 0.0647±0.0024 0.0641±0.0025 0.0649±0.0026 0.0638±0.0023

DMT 0.0397±0.0014 0.0369±0.0017 0.0463±0.0022 0.0427±0.0011 0.0299±0.0002

Eye 0.0357±0.0009 0.0356±0.0009 0.0357±0.0009 0.0356±0.0009 0.0350±0.0008

Letter 0.0264±0.0001 0.0287±0.0013 0.0267±0.0003 0.0457±0.0015 0.0190±0.0011

OLD 0.0417±0.0011 0.0478±0.0013 0.0428±0.0017 0.0452±0.0016 0.0348±0.0007

RLS 0.0397±0.0002 0.0537±0.0018 0.0478±0.0054 0.0576±0.0007 0.0243±0.0014

Wine 0.0442±0.0024 0.0418±0.0021 0.0426±0.0029 0.0441±0.0025 0.0396±0.0024

Average 0.0414 0.0429 0.0426 0.0461 0.0354
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across all datasets, indicating its superior speed compared to
the employed alternative algorithms. Furthermore, for larger
datasets in particular, IFS-D surpasses the performance of the
other four algorithms by significant margins ranging from
tens to even hundreds of times. These discoveries reaffirm
that maintaining algorithmic efficiency remains a prominent
characteristic of IFS-D.

5.2.3 Analysis of evaluation index

According to the experimental evaluation index of Section
5.1.3, Tables 12 and 13 present the experimental results of
the IFS-D and other algorithms on nine datasets using two
evaluation metrics (averaging the effects of the four classi-
fiers). A higher value for the AP evaluation metric indicates
superior algorithm performance, while smaller values for RL
evaluation metrics indicate better algorithm performance.

It is evident from the aforementioned findings that algo-
rithm IFS-D outperforms the others.

5.2.4 Overview of IFS-D

The comparative study conducted on the algorithm, taking
into account its effectiveness, efficiency, and performance
evaluation, leads to the finding that our proposed IFS-D
algorithm surpasses other algorithms. In terms of computa-
tion time needed for obtaining feasible reduction, the IFS-D
algorithm demonstrates significantly shorter compared to
alternative approaches while achieving superior accuracy
outcomes.

6 Conclusion

In this paper, we present an incremental feature selection
algorithm based on matrix dominance conditional entropy.
Firstly, we provide an introduction to the fundamental
knowledge of feature selection. Secondly, we introduce the
concepts related to the research, such as dominance rela-
tion matrix and dominance conditional entropy. Then, we
propose twonovel algorithms for incremental attribute reduc-
tion: IFS-A and IFS-D. Finally, we validate the effectiveness
of our algorithm through experiments.

The exploration of dynamic feature selection algorithms
inmore intricate dynamic data environments is an immensely
significant avenue for further investigation. Specifically, our
forthcoming research will concentrate on three key areas:
(1) devising an incremental algorithm for feature selection
to effectively handle fluctuations in the number of objects
within a dataset; (2) implementing the dynamic attribute
reduction algorithm into the prevailing fuzzy rough set
model; and (3) conducting additional examinations on incre-

mental methods for reducing attributes in set-valued decision
information systems.
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