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Multi-source data is a comprehensive data type that combines multiple sources of information 
or datasets. Compared to point-valued data, interval-valued data provides a more accurate 
representation of the uncertainty and variability associated with objects. In practical situations, 
data obtained from multiple sources may contain missing values for various reasons. Therefore, it 
is essential to develop multi-source information fusion technology in order to achieve information 
fusion or information extraction from multi-source incomplete data. This paper aims to explore 
the information fusion problem of multi-source incomplete interval-valued datasets. The primary 
contributions of this study involve utilizing the principle of statistical distribution and KL 
divergence to establish a metric for measuring the similarity between intervals. Firstly, this 
approach helps to reduce the problem of disregarding internal information within interval values, 
which can result in the loss of valuable information. Secondly, we establish an interval fuzzy 
similarity relation based on the mentioned concept of similarity among interval values. Moreover, 
we investigate the uncertainty measurement of incomplete interval-valued decision datasets and 
design an emerging information entropy fusion method. Finally, we comprehensively evaluate the 
effectiveness of the proposed method. Experimental results indicate that the proposed approach 
has advantage over the maximum, minimum, mean, and information entropy fusion method 
based on tolerance relationship. In addition, the distance metric used in this article can improve 
the fusion classification effect compared to several common interval-valued distance measures.

1. Introduction

In real life, data often carries a great deal of uncertainty. As an important research topic in terms of big data analysis, multi-source 
information fusion is a comprehensive processing process of multi-level and multi-aspect data or information to realize automatic 
detection, correlation, connection and evaluation of multi-source data, and obtain more essential and more precise information 
than a single information source [1]. At sometime, information fusion technology can integrate various information with spatial 
redundancy, time redundancy or complementary information constraints through specific rules to build a unified representation. 
This helps to reduce the ambiguity and uncertainty of the data and enhances characterization of the information [2,3]. Multi-source 
information fusion was successfully employed in military fields, such as military command automation system, multi-target tracking 
and recognition, precision guided weapons, remote sensing monitoring, wireless communication, medical diagnosis [4–7] and so on 
in civil fields.
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Information structure and uncertainty measurement are two important research directions in terms of granular computing. Ac-

cording to the equivalence or similarity relationship between samples, samples can be divided into corresponding equivalence classes 
or information granules. The set of all information granules constitutes an information structure within the system [8], and infor-

mation structure is an essential method for studying information systems. Rough set theory, proposed by Pawlak [9], serves as an 
effective mathematical tool for coping with uncertainty, and has been successfully applied to fields of intelligent information process-

ing, including decision analysis [11,12], machine learning [10,13,14], approximate inference [15], pattern identification and data 
mining [16–19]. From the perspective of data analysis, rough set theory has numerous advantages. Given these advantages, many 
scholars have combined it with multi-source information fusion and achieved excellent results. For example, Dong et al. [20] con-

sidered information fusion processing based on rough set theory. Wang et al. [21] studied information fusion based on multi-source 
sensors. Chen et al. [22] put forward six new kinds of double-quantitative multigranulation rough fuzzy set models in multi-source 
decision systems. Lin et al. [23] investigated an information fusion method based on a combination of multigranulation rough 
sets and evidence theory. Zhang et al. [24] researched a data-level fusion model, which uses the neighborhood rough set model 
to build up the domain granular structure, and uses the idea of granularity calculation to establish an uncertainty measurement 
methods. Yang et al. [25] introduced a novel fusion approach based multi-granulation approach which can reduce information loss 
during convergence. Uncertainty measure, as a robust evaluation tool, can effectively describe the uncertainty of decision system or 
datasets. Researchers can study the methods of uncertainty in datasets from different views to discuss the uncertainty of informa-

tion system [30,31]. C.E. Shannon [32] proposed that information entropy is an uncertainty degree that is extensively applied in 
information fusion; In [26], Pawlak provided four uncertainty measures, which are respectively used to evaluate the accuracy and 
roughness of approximate classification in decision system. Qian et al. [27] offered a fuzzy information granularity measure based on 
a binary particle size structure. Wang et al. [28] presented uncertainty measure based on general fuzzy relationships for information 
systems. Yao Sheng et al. [29] introduced a method that combines tolerance information entropy and mixed approximate roughness 
to measure the information system indefinitely. Xu et al. [33] used conditional entropy to measure the importance of a source. 
However, in reality, there is a lost amount of scoped data, and isn’t easy to analyze and mine the critical knowledge in the data.

It is worthy nothing that the above uncertainty measurement methods are based on symbolic data or fuzzy data in all single-

valued information systems [34–36]. However, there are many types of data in practical situation, and it is difficult to analyze and 
mine essential knowledge from the data, due to limitations in both objective environment and people’s subjective understanding, 
many things can’t be accurately expressed, and they are described in the form of interval value pairs. Interval values are expressed 
as upper bound and lower bound, which is an uncertain representation of accurate data, mainly to preserve the information of 
things to the greatest extent, there are a lot of applications in real life. Compared with single-valued data, interval-valued data can 
effectively describe the randomness and uncertainty of information. For instance, the temperature sampling results over a period of 
time are often presented in the form of interval values, because the data at a certain moment is meaningless, and interval values 
can well reflect the temperature range in a period of time. Accurate values can also be expressed in the form of interval values, 
which reflects the accuracy of characterization. Thus, it is of great practical significance to measure the uncertainty of interval 
data. Many scholars have studied interval-valued data. Zhang et al. [37] studied the up-down approximation operator of information 
systems. Qian et al. [38] introduced the rough set method of dominant relationships to study interval-valued information systems. Liu 
et al. [39] put forward 𝛼-approximation equivalence relations to decrease the unsupervised attributes of interval-valued information 
systems. Xie et al. [40] investigated a definition of the probability similarity between interval-valued to measure the uncertainty of 
the interval-valued information system. Yager [41] studied a monotone set measures for multi-source mixed data. Xu et al. [42] used 
the DS evidence theory to offer a fault diagnosis method that fuses different diagnostic evidence with interval-valued data. Huang 
et al. [43] designed a new fusion model based on fuzzy information granulation, which converts multivariate interval-valued data 
into trapezoidal fuzzy numbers. Xu et al. [44] raised four incremental fusion mechanisms for dynamic interval-valued ordered data.

It can be seen that the above research is the knowledge discovery and rule extraction of complete information. However, there 
are much incomplete data in reality due to the aging of sensor failure led to data loss, measurement failure and storage loss. Missing 
of values in an information system may lead to the loss of a significant amount of useful data. So, it is essential to grasp the 
reliability of the whole data from these systems. In the last few years, lots of scholars have also studied incomplete information 
systems, Dai et al. [45] constructed similarity relationship on IIVIS, and presented uncertainty measures based on 𝛼-weak similarity. 
Luo et al. [46] proposed an incremental feature selection model from information-theoretic angle for dynamic defective data. Zhao 
et al. [47] established the feature selection of incomplete decision information system by using a new extended rough set model. 
Li et al. [48] investigated a novel interval set model for knowledge acquisition to summarize incomplete data. Han et al. [49]

defined a generalized information entropy based on interval-valued similarity relation to fill incomplete information. However, 
most of the above research focus on single-source incomplete information systems, and it is clear that these methods cannot be 
straightly employed to the fusion of multi-source data. Some scholars have also studied the MsIIvIS. For example, Zhang et al. [50]

studied the dynamic fusion mechanism of simultaneous changes of information sources and attributes for incomplete interval-valued 
data tables. Xu et al. [51] developed an information fusion model based on information entropy. There are few researchers on the 
fusion of incomplete interval-valued data at present. In addition, the distance measure is only considered the endpoint information 
of interval-valued. And the contribution of the inner interval to the information is ignored [44,50], which causes the loss of the 
practical information of the interval. Based on above analysis, it is necessary to introduce a new information fusion model. First of 
all, we treat the interval as a probability distribution and use the Kullback-Leibler divergence to construct the distance measurement 
of the incomplete interval-valued information systems. And the similarity is constructed using this distance. Furthermore, an interval 
similarity relationship is created according to the similarity, and the concept of information granularity is proposed based mentioned 
2

relation. Finally, from the perspective of the information granular structure, the infimum fusion function that we construct according 
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Fig. 1. The framework of this paper.

to the uncertainty measurements, and the multi-source information system is fused. The framework of this paper is shown in Fig. 1. 
Contributions of this work are summarized as below:

(1) To address the issue of losing valuable information due to the neglect of information within interval values, we employed the 
principle of statistical distribution. We transformed interval values into a probability distribution form and used KL divergence 
to quantify the dissimilarity between two interval distributions.

(2) Based on the distance, we defined a new similarity and present a new similarity relation. We established fuzzy similarity 
relations based on the distance measurement. According to the relation, we introduced the concept of information structure and 
established the entropy measurements.

(3) We constructed infimum fusion function based on the significantly measurements. Furthermore, experimental results have 
demonstrated that our proposed method enhances fusion performance.

The rest of this work consists of the following contents: Section 2 gives the basic definitions of distance measurement, similarity, 
and reviews the concepts of information tables. Section 3 offers uncertainty measures of multi-source incomplete interval-valued 
decision systems. An infimum-measure fusion function is provided in section 4. Section 5 analyzes the results of the experiment and 
the effectiveness and efficiency of fusion. Finally, in section 6 summarizes the work of this paper and future research.

2. Preliminary

In this section, we will formally review some mathematical concepts and definitions employed in this work.

2.1. Similarity between interval values

Many difference measurements of interval values are associated with distance. Numerous scholars have done a great deal of work 
to measure the difference of interval values. So far to, there are some familiar distances that can be used to reflect diverseness in 
interval values. For example:

City-block distance,

𝐷𝑐 = |𝑦− − 𝑥−|+ |𝑦+ − 𝑥+|.
Euclid distance,
3

𝐷𝐸 = |𝑦− − 𝑥−|2 + ||𝑦+ − 𝑥+||2.
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Hausdorff distance etc.,

𝐷𝐻 =max(|𝑦− − 𝑥−| , ||𝑦+ − 𝑥+||),
where 𝑥 = [𝑥−, 𝑥+] and 𝑥 = [𝑦−, 𝑦+] are two interval values, where 𝑥−, 𝑦− is left endpoint and 𝑥+, 𝑥+ is right endpoint.

However, the above distance measure mentioned above only is considered from the endpoints of interval value. The internal 
contribution to information of interval-valued endpoints is ignored, leading to the loss of effective information with in interval-

valued. Therefore, this paper uses the probability distribution principle to characterize an interval as a probability distribution, and 
utilizes Kullback-Leibler divergence to calculate the distance between distributions.

Definition 1. For continuous random variables, the Kullback-Leibler divergence of the two probability distributions 𝑃 and 𝑄 is 
defined in the integral form as follows:

𝐾𝐿(𝑃 ‖𝑄 ) = ∫ 𝑃 (𝑥) ln
(
𝑃 (𝑥)
𝑄(𝑥)

)
𝑑𝑥, (1)

where 𝑃 (𝑥) and 𝑄(𝑥) is the probability density function of 𝑃 , 𝑄. In the field of probability statistics, Kullback-Leibler divergence can 
be employed to measure the distance between two probability distributions.

Definition 2. Let 𝑥𝑖 = [𝑥𝑖−, 𝑥𝑖+], 𝑦𝑗 = [𝑦𝑗−, 𝑦𝑗+] be two interval values and 𝑎 ∈ 𝐴, where 𝑥𝑖, 𝑦𝑗 ∈ 𝑈 . The novel distance measurement 
between 𝑥𝑖 and 𝑦𝑗 is defined as follows:

𝑥𝑖 ∼𝑁(𝜇1, 𝜎21 ) , 𝑦𝑗 ∼𝑁(𝜇2, 𝜎22 ), (2)

where

𝜇1 =
𝑥𝑖

++𝑥𝑖
−

2
, 𝜇2 =

𝑦𝑗
+ + 𝑦𝑗

−

2
, (3)

𝜎1 =
𝑥𝑖

+ − 𝑥𝑖
−

2
, 𝜎2 =

𝑦𝑗
+ − 𝑦𝑗

−

2
. (4)

Based on 𝐾𝐿 divergence, the interval-valued distance between 𝑥𝑖 and 𝑦𝑗 is defined as follows:

𝑑𝑎(𝑥𝑖, 𝑦𝑗 ) =
√
𝑑𝑖𝑠𝑎(𝑥𝑖, 𝑦𝑗 ), (5)

where

𝑑𝑖𝑠𝑎(𝑥𝑖, 𝑦𝑗 ) =
𝐾𝐿𝑎(𝑥𝑖

‖‖‖𝑦𝑗 ) +𝐾𝐿𝑎(𝑦𝑗 ‖‖𝑥𝑖 )
2

. (6)

Let 𝑥𝑖 = [𝑥𝑖−, 𝑥𝑖+], 𝑦𝑗 = [𝑦𝑗−, 𝑦𝑗+] be two interval values and 𝑎 ∈ 𝐴, where 𝑥𝑖− < 𝑥𝑖
+, 𝑦𝑗− < 𝑦𝑗

+. The similarity of 𝑥𝑖 and 𝑥𝑗 can be 
defined as below:

𝑆𝑖𝑚𝑎(𝑥𝑖, 𝑦𝑗 ) =
1

1 + 𝑑𝑎(𝑥𝑖, 𝑦𝑗 )
. (7)

Obviously, similarity 𝑆𝑖𝑚𝑎(𝑥, 𝑦) satisfies both reflexivity and symmetry.

But in fact, when we collect a great amount of data, we may acquire missing data. Therefore, it is indispensable to give a novel 
distance measure for incomplete interval-valued information datasets.

Definition 3. In incomplete interval-valued information datasets, suppose 𝑥𝑖 =∗ or 𝑦𝑗 =∗, where ∗ is a missing value. The distance 
between two intervals can be expressed as below:

i.e.

𝑑𝑎
(
𝑥𝑖, 𝑦𝑗

)
=

{
0 𝑥𝑖 =∗ 𝑜𝑟 𝑦𝑗 =∗√

𝑑𝑖𝑠𝑎
(
𝑥𝑖, 𝑦𝑗

)
𝑒𝑙𝑠𝑒,

(8)

𝑆𝑖𝑚𝑎

(
𝑥𝑖, 𝑦𝑗

)
=

{
1 𝑥𝑖 =∗ 𝑜𝑟 𝑦𝑗 =∗
1

1+𝑑𝑎
(
𝑥𝑖,𝑦𝑗

) 𝑒𝑙𝑠𝑒.
(9)

2.2. Multi-source incomplete interval-valued information system

𝐼𝐼𝑣𝐼𝑆 = (𝑈, 𝐴, 𝑉 , 𝑓 ) is an incomplete interval-valued information, where 𝑈 = {𝑥1, 𝑥2, ..., 𝑥𝑛} represents a non-empty and finite 
object set, and 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑝} is non-empty and finite attribute set. Set 𝑉 is called the range of attribute 𝐴. Function 𝑓 ∶𝑈 ×𝐴 → 𝑉

is information function, ∀𝑥 ∈𝑈, 𝑎 ∈𝐴, 𝑓 (𝑥, 𝑎) = [𝑓−(𝑥, 𝑎), 𝑓+(𝑥, 𝑎)] or 𝑓 (𝑥, 𝑎) =∗, where ∗ represents missing value).

Let 𝐼𝐼𝑣𝐼𝑆𝑖 = (𝑈, 𝐴, 𝑉𝑖, 𝑓𝑖) be the i-th 𝐼𝐼𝑣𝐼𝑆, where the meanings of 𝑈 , 𝐴, 𝑉𝑖 and 𝑓𝑖 as mentioned above. Generally, a multi-source 
4

incomplete interval-valued information system is defined as below:
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Table 1

Physical examination report of the first hospital 𝐼𝐼𝑣𝐼𝑆1 .

𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 [125.59, 136.29] [1.00, 4.99] [116.25, 125.97] [65.98, 109.89] [42.29, 187.98] *

𝑥2 [124.58, 198.34] [4.00, 11.00] [114.96, 123.98] [85.62, 121.99] [82.60, 224.88] *

𝑥3 [109.23, 120.02] [2.89, 10.00] * [121.08, 176.99] [67.00, 85.99] [88.20, 96.73]

𝑥4 [125.19, 134.25] * [110.98, 120.45] [48.93, 91.69] [101.99, 260.88] *

𝑥5 [119.69, 133.97] [10.00, 20.00] [110.45, 296.98] * [136.43, 279.25] [45.99, 75.98]

𝑥6 [126.34, 215.07] [8.40, 18.00] * [83.00, 163.98] [68.29, 88.98] [28.65, 62.98]

𝑥7 [117.97, 129.40] [12.00, 21.00] [169.34, 269.98] [80.98, 156.99] * [32.69, 68.80]

𝑥8 [159.58, 232.69] [6.30, 15.00] [219.65, 314.68] [103.25, 159.97] * [26.98, 66.42]

Table 2

Physical examination report of the second hospital 𝐼𝐼𝑣𝐼𝑆2 .

𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 [125.60, 136.30] [1.00, 5.00] * [65.99, 110.08] * [71.30, 96.08]

𝑥2 * [4.00, 11.00] [115.36, 124.00] [86.26, 120.89] [82.65, 224.90] [69.25, 89.06]

𝑥3 [109.49, 120.00] [3.00, 10.00] [126.97, 185.34] * [67.03, 86.00] [88.25, 96.79]

𝑥4 [125.29, 134.69] [3.00, 8.00] [111.00, 120.04] [62.45, 97.99] * [68.43, 89.09]

𝑥5 * [10.00, 20.00] [110.40, 296.99] [82.60, 121.92] [136.45, 279.28] [46.00, 75.99]

𝑥6 [125.99, 215.00] [8.40, 18.00] * [83.02, 163.98] [68.30, 89.00] [28.68, 43.00]

𝑥7 [118.80, 129.68] [12.00, 21.00] [169.45, 269.99] * [79.65, 95.28] [32.70, 68.82]

𝑥8 [159.98, 232.99] [6.30, 15.00] * [103.30, 159.99] [109.26, 260.39] *

Table 3

Physical examination report of the third hospital 𝐼𝐼𝑣𝐼𝑆3 .

𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 [200.15, 253.67] [1.00, 5.00] [116.30, 125.99] [66.00, 109.92] [42.29, 187.98] [71.25, 96.10]

𝑥2 [124.58, 198.34] [4.00, 11.00] [114.98, 124.00] [85.65, 121.94] [82.60, 224.88] [69.28, 89.08]

𝑥3 [109.23, 120.02] [2.99, 10.00] * [166.35, 196.96] * [88.20, 96.73]

𝑥4 [125.19, 134.25] [3.00, 8.00] [110.98, 120.45] [62.20, 97.76] [101.99, 260.88] [68.45, 89.10]

𝑥5 * [10.00, 20.00] [110.45, 296.98] * * [45.95, 75.96]

𝑥6 * [8.40, 18.00] [176.36, 258.94] [83.03, 163.96] [68.29, 88.98] [28.68, 62.96]

𝑥7 [117.97, 129.40] [12.00, 21.00] * * [79.62, 95.25] [32.72, 68.80]

𝑥8 [160.00, 232.99] * [219.68, 314.70] [103.28, 159.99] [109.25, 260.40] [26.95, 66.45]

𝑀𝑠𝐼𝐼𝑣𝐼𝑆 = {𝐼𝐼𝑣𝐼𝑆𝑖 ||𝐼𝐼𝑣𝐼𝑆𝑖 = (𝑈,𝐴,𝑉𝑖, 𝑓𝑖), 𝑖 = 1,2,⋯ ,𝑁}.

Similarly, 𝐼𝐼𝑣𝐷𝐼𝑆 = (𝑈, 𝐴, 𝑉𝐴, 𝑓𝐴, 𝐷, 𝑉𝐷, 𝑓𝐷) represents incomplete interval-valued decision information system, where the con-

notations of 𝑈 , 𝐴, 𝑉𝐴 and 𝑓𝐴 are in agreement with those mentioned in the 𝐼𝐼𝑣𝐼𝑆, 𝐷 represents the decision attribute set. 𝑉𝐷
represents the range of the decision attribute value. Information function is expressed as 𝑓𝐷 ∶ 𝑈 ×𝐷→ 𝑉𝐷 . 𝐼 = [0, 1], 𝐼𝑈 is called as 
the family consisted of all fuzzy sets on 𝑈 .

Let 𝐼𝐼𝑣𝐷𝐼𝑆 = (𝑈, 𝐴, 𝑉𝐴𝑖 , 𝑓𝐴𝑖 , 𝐷, 𝑉𝐷𝑖
, 𝑓𝐷𝑖

) be the i-th 𝐼𝐼𝑣𝐷𝐼𝑆, where the connotations of 𝑈 , 𝐴, 𝑉𝐴𝑖 , 𝑓𝐴𝑖 , 𝐷, 𝑉𝐷𝑖
and 𝑓𝐷𝑖

as men-

tioned above. In general, a multi-source incomplete interval-valued decision information system (MsIIvDIS) is expressed as follows:

𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆 = {𝐼𝐼𝑣𝐷𝐼𝑆𝑖 ||𝐼𝐼𝑣𝐷𝐼𝑆𝑖 = (𝑈,𝐴,𝑉𝐴𝑖 , 𝑓𝐴𝑖 ,𝐷,𝑉𝐷𝑖
, 𝑓𝐷𝑖

), 𝑖 = 1,2,⋯ ,𝑁}.

For convenience, this article abbreviated the above expression. We use (𝑈,𝐴⋃𝐷)𝑖 to represent the decision information system 
and (𝑈,𝐴𝑖) to represent the information system.

Example 1. In order to better understand the definition of MsIIvDIS, we give the example as follows. With the awakening of peo-

ple’s health awareness, more and more friends began to develop the habit of regular physical examination. However, because 
the interval between medical examinations is long, and the specific time and place are not fixed. As a result, many people have 
several physical examinations, which are not carried out in the same hospital. After receiving the results of the physical examina-

tion, some people will find that the numerical results of the physical examination they did in several hospitals are very different. 
Tables 1–4 respectively represent the physical examination results of eight people in four hospitals. Attributes 𝑎1 − 𝑎6 indicate 
hemoglobin counts, leukocyte counts, blood fat, blood sugar, platelet counts, and Hb level, respectively. Where “∗” is the miss-

ing value that represents a doctor cannot ensure the level of this project or people forget to check this project. Suppose that 
5

𝑉𝐷 = {𝐿𝑒𝑢𝑘𝑒𝑚𝑖𝑎 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 , 𝑁𝑜𝑛 𝑙𝑒𝑢𝑘𝑒𝑚𝑖𝑎 𝑝𝑎𝑡𝑖𝑒𝑛𝑡} , and 𝑈∕𝐷 = {𝑌1, 𝑌2}, where 𝑌1 = {𝑥1, 𝑥2, 𝑥6, 𝑥8}, 𝑌2 = {𝑥3, 𝑥4, 𝑥5, 𝑥7}.
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Table 4

Physical examination report of the fourth hospital 𝐼𝐼𝑣𝐼𝑆4 .

𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 * * [116.25, 125.97] [65.95, 119.58] [42.30, 187.96] [34.30, 96.12]

𝑥2 [198.35, 216.56] [4.00, 11.00] [114.96, 123.98] [85.65, 121.98] [82.61, 224.90] [69.30, 89.10]

𝑥3 [109.25, 120.06] [2.99, 10.00] [127.00, 185.35] * [67.08, 85.97] [88.20, 96.73]

𝑥4 [65.89, 134.30] [3.00, 8.00] [110.99, 120.47] [42.28, 67.80] [101.98, 260.89] *

𝑥5 [109.72, 123.99] [10.00, 20.00] [110.48, 296.96] [82.60, 121.90] * [46.00, 75.96]

𝑥6 * [8.39, 18.00] [176.40, 258.96] [83.00, 163.98] [68.29, 88.98] [28.70, 62.98]

𝑥7 * [12.00, 21.00] [169.34, 269.98] [80.98, 156.99] [79.65, 95.28] [32.69, 68.82]

𝑥8 [98.24, 120.69] [6.30, 15.00] [219.65, 314.68] * [109.30, 260.44] [26.98, 66.42]

2.3. Fuzzy similarity relation in 𝐼𝐼𝑣𝐷𝐼𝑆

Fuzzy similarity relation is the basis of dividing decision table and the basis of information granulation in decision system. The 
product of this process is information granule, which is the basic component of information structure.

Definition 4. Suppose that (𝑈,𝐴⋃𝐷)𝑖 is the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. For condition attribute subset 𝐵 ⊆ 𝐴, the fuzzy similarity relation is 
expressed as follows:

𝑅𝑖
𝐵
= ( ∧

𝑏∈𝐵
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑘))

𝑛×𝑛
(∀𝑥𝑗 ∈𝑈, (𝑥𝑗 , 𝑥𝑘) ∈ 𝑛 × 𝑛),

where 𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 , 𝑥𝑘) denotes the similarity of 𝑥𝑗 and 𝑥𝑘 under attribute 𝑏 in the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖.

𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ) contains the similarity between the object and all other objects in the universe, and can be acknowledged to be a fuzzy 

information granule. The set of these information granules forms a fuzzy set vector, which is called fuzzy similarity class. And

𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ) =

𝑅𝑖
𝐵
(𝑥𝑗 , 𝑥1)
𝑥1

+
𝑅𝑖
𝐵
(𝑥𝑗 , 𝑥2)
𝑥2

+⋯+
𝑅𝑖
𝐵
(𝑥𝑗 , 𝑥𝑛)
𝑥𝑛

.

Proposition 1. Let the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖(𝑈,𝐴)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) and the attribute subset 𝐵 ⊆𝐴, for ∀𝑥𝑖 ∈𝑈 . The following properties are true:

(1) On the 𝑈 , 𝑅𝑖
𝐵

is a fuzzy similarity relation.

(2) 𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ) =

⋃
𝑏∈𝐵

𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 ), 𝑎𝑛𝑑

⋃
𝑥𝑖∈𝑈

𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ) = 1̃.

(3) When 𝐶 ⊆ 𝐵, have 𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ) ⊆ 𝑆𝑖𝑚𝑖

𝐶
(𝑥𝑗 ).

Proof. (1) For ∀𝑥𝑗 , 𝑥𝑘 ∈ 𝑈 and 𝑏 ∈ 𝐵, since 𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 , 𝑥𝑗 ) = 1 and 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑘) = 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑘, 𝑥𝑗 ), then 𝑅𝑖

𝐵
(𝑥𝑗 , 𝑥𝑗 ) = ∧

𝑏∈𝐵
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑗 ) = 1, 

𝑅𝑖
𝐵
(𝑥𝑗 , 𝑥𝑘) = ∧

𝑏∈𝐵
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑘) = ∧

𝑏∈𝐵
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑘, 𝑥𝑗 ) = 𝑅𝑖

𝐵
(𝑥𝑘, 𝑥𝑗 ). So 𝑅𝑖

𝐵
satisfies both reflexivity and symmetry. Thus, 𝑅𝑖

𝐵
is a fuzzy 

similarity relation.

(2) For ∀𝑥𝑘 ∈𝑈 , we know (𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ))(𝑥𝑘) =𝑅𝑖

𝐵
(𝑥𝑗 , 𝑥𝑘) = ∧

𝑏∈𝐵
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑘) = ∧

𝑏∈𝐵
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 )(𝑥𝑘) = (

⋂
𝑏∈𝐵

𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 ))(𝑥𝑘).

And ( ⋃
𝑥𝑖∈𝑈

𝑆𝑖𝑚𝑖
𝐵
(𝑥𝑗 ))(𝑥𝑘) = ∨

𝑥𝑖∈𝑈
𝑆𝑖𝑚𝑖

𝐵
(𝑥𝑗 , 𝑥𝑘) = ∨

𝑥𝑖∈𝑈
𝑅𝑖
𝐵
(𝑥𝑗 , 𝑥𝑘) =𝑅𝑖

𝐵
(𝑥𝑘, 𝑥𝑘) = 1̃.

(3) For ∀𝑥𝑗 , 𝑥𝑘 ∈ 𝑈 , since 𝐶 ⊆ 𝐵, then ∧
𝑏∈𝐵

𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 , 𝑥𝑘) ≤ ∧

𝑏∈𝐶
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑘). So, for any 𝑥𝑘 ∈ 𝑈 , (𝑆𝑖𝑚𝑖

𝐵
(𝑥𝑗 ))(𝑥𝑘) = 𝑅𝑖

𝐵
(𝑥𝑗 , 𝑥𝑘) =

∧
𝑏∈𝐵

𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 , 𝑥𝑘) ≤ ∧

𝑏∈𝐶
𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 , 𝑥𝑘) =𝑅𝑖

𝐶
(𝑥𝑗 , 𝑥𝑘) = (𝑆𝑖𝑚𝐶 (𝑥𝑗 ))(𝑥𝑘). Hence, 𝑆𝑖𝑚𝑖

𝐵
(𝑥𝑗 ) ⊆ 𝑆𝑖𝑚𝑖

𝐵
(𝑥𝑘). □

Example 2 (Continued from Example 1). In accordance with to the above definition, we can figure up the fuzzy similarity class. Let’s 
take attribute 𝑎1 of the first information source as an example.

Firstly, according to Definition 2 we can calculate the distance between 𝑥𝑖 and 𝑥𝑗 (𝑖, 𝑗 = 1, 2, ..., 8) w.r.t. 𝑎1. The specific calculation 
process of distance 𝑑𝑎1 (𝑥𝑖, 𝑥𝑗 ) is as follows:

𝑓 (𝑥1, 𝑎1) = [125.59,136.29], 𝑓 (𝑥2, 𝑎2) = [124.58,198.34],

𝜇1 = 130.94, 𝜎1 = 5.35,

𝜇2 = 161.46, 𝜎2 = 36.88.

Suppose that:

𝑓 (𝑥1, 𝑎1) ∼𝑁(130.94,5.352), 𝑓 (𝑥2, 𝑎1) ∼𝑁(111.46,36.882)
6

so according to the Definition 2 we can calculation the KL divergence,



International Journal of Approximate Reasoning 164 (2024) 109081W. Xu, K. Cai and D.D. Wang

𝐾𝐿(𝑓 (𝑥1, 𝑎1)‖‖𝑓 (𝑥2, 𝑎1) ) = 0.11130,

𝐾𝐿(𝑓 (𝑥2, 𝑎1)‖‖𝑓 (𝑥1 , 𝑎1)) = 0.18375.

Thus, 𝑑𝑎1 (𝑥1, 𝑥2) = 4.4376, the same we can also obtain a distance matrix,

𝑑𝑎1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.3841 0.1565 0.0152 0.0353 0.4722 0.0659 0.5791
0.3841 0 0.5290 0.4003 0.4031 0.0813 0.4412 0.1979
0.1565 0.5290 0 0.1434 0.1247 0.6223 0.0902 0.7496
0.0152 0.4003 0.1434 0 0.0291 0.4889 0.0544 0.5968
0.0353 0.4031 0.1247 0.0291 0 0.4921 0.0359 0.6055
0.4722 0.0813 0.6223 0.4889 4.3409 0 0.5315 0.1315
0.0659 0.4412 0.0902 0.0544 0.4178 0.5315 0 0.6477
0.5791 0.1979 0.7496 0.5968 5.5241 0.1315 0.6477 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

so the similarity between 𝑥𝑖 and 𝑥𝑗 w.r.t. 𝑎1 in the first 𝐼𝐼𝑣𝐼𝑆1 can be calculated as follows,

𝑆𝑖𝑚1
𝑎1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.7225 0.8647 0.9850 0.9659 0.6793 0.9382 0.6333
0.7225 1 0.6540 0.7142 0.7127 0.9248 0.6938 0.8348
0.8647 0.6540 1 0.8746 0.8891 0.6164 0.9172 0.5716
0.9850 0.7142 0.8746 1 0.9717 0.6716 0.9493 0.6263
0.9659 0.7127 0.8891 0.9717 1 0.6702 0.9653 0.6299
0.6793 0.9248 0.6164 0.6716 0.6702 1 0.6529 0.8838
0.9382 0.6938 0.9172 0.9493 0.9653 0.6529 1 0.6069
0.6333 0.8348 0.5716 0.6263 0.6299 0.8838 0.6069 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the fuzzy similarity class in the 1-th 𝐼𝐼𝑣𝐼𝑆1 can be calculated as follows,

𝑆𝑖𝑚1
𝑎1
(𝑥1) =

1
𝑥1

+ 0.7225
𝑥2

+ 0.8647
𝑥3

+ 0.9850
𝑥4

+
0.9659
𝑥5

+ 0.6793
𝑥6

+ 0.9382
𝑥7

+ 0.6333
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥2) =

0.7225
𝑥1

+ 1
𝑥2

+ 0.6540
𝑥3

+ 0.7142
𝑥4

+ 0.7127
𝑥5

+ 0.9248
𝑥6

+ 0.6938
𝑥7

+ 0.8348
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥3) =

0.8647
𝑥1

+ 0.6540
𝑥2

+ 1
𝑥3

+ 0.8746
𝑥4

+ 0.8891
𝑥5

+ 0.6164
𝑥6

+ 0.9172
𝑥7

+ 0.5716
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥4) =

0.9850
𝑥1

+ 0.7142
𝑥2

+ 0.8746
𝑥3

+ 1
𝑥4

+ 0.9717
𝑥5

+ 0.6716
𝑥6

+ 0.9493
𝑥7

+ 0.6263
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥5) =

0.9659
𝑥1

+ 0.7127
𝑥2

+ 0.8891
𝑥3

+ 0.9717
𝑥4

+ 1
𝑥5

+ 0.6702
𝑥6

+ 0.9653
𝑥7

+ 0.6299
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥6) =

0.6793
𝑥1

+ 0.9248
𝑥2

+ 0.6164
𝑥3

+ 0.6716
𝑥4

+ 0.6702
𝑥5

+ 1
𝑥6

+ 0.6529
𝑥7

+ 0.8838
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥7) =

0.9382
𝑥1

+ 0.6938
𝑥2

+ 0.9172
𝑥3

+ 0.9493
𝑥4

+ 0.9653
𝑥5

+ 0.6529
𝑥6

+ 1
𝑥7

+ 0.6069
𝑥8

,

𝑆𝑖𝑚1
𝑎1
(𝑥8) =

0.6333
𝑥1

+ 0.8348
𝑥2

+ 0.5716
𝑥3

+ 0.6263
𝑥4

+ 0.6299
𝑥5

+ 0.8838
𝑥6

+ 0.6069
𝑥7

+ 1
𝑥8

.

3. Uncertainty measurement of 𝑴𝒔𝑰𝑰𝒗𝑫𝑰𝑺 based on information granularity

The procedure of information granularity is to separate a sample into various information granularities under the given rules, 
in which each granular is the set of samples gathered through indiscernible relations, similar relations, etc. In this paper, each 
granular is the set of samples gathered by 𝛿-similarity equivalence relation, and 𝛿-similarity equivalence relation is a similar relation. 
Then, all the granular forms an adjacent granular structure. Based on the 𝛿-similarity equivalent granular structure, the uncertainty 
measure is defined. In this section, we introduce the definitions and properties of 𝛿-similarity equivalence relation, and then define 
the uncertainty measures based on information structure.

3.1. 𝛿-similarity equivalence relation and information structure

So far, many measures have described the distance between two fuzzy sets. Such as Chebyshev distance, Hamming distance, the 
Euclid distance, the Minkowski distance, etc. But in this subsection, we use the Euclidean distance. Expressed as follows:

Let 𝐹 (𝑥), 𝐺(𝑥) be two fuzzy sets. Assume 𝐹 , 𝐺 ∈ 𝐼𝑈 , the Euclidean distance as follows:

1
𝑛∑ 2

1∕2
7

𝑑𝐸 (𝐹 ,𝐺) = (
𝑛
𝑗=1

(𝐹 (𝑥𝑗 ) −𝐺(𝑥𝑗 )) ) .
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Definition 5. Assume that (𝑈,𝐴⋃𝐷)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) is the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. For attribute subset 𝐵 ⊆𝐴 and a given parameter 𝛿 ∈ [0, 1]. 
Then the 𝛿-similarity equivalence relation is presented as below:

𝐴𝐸𝑅𝛿
𝐵,𝑖

= {(𝑥𝑗 , 𝑥𝑘) ∈𝑈 ×𝑈 ∶ ∀𝑏 ∈𝐵,𝑑𝑖
𝐸
(𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 ), 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑘)) < 𝛿}. (10)

For any 𝑥𝑗 ∈𝑈 , the 𝛿-similarity equivalence class can be presented as below:

(𝑥𝑗 )𝛿𝐵,𝑖 = {𝑥𝑘 ∈𝑈 ∶ (𝑥𝑗 , 𝑥𝑘) ∈𝐴𝐸𝑅𝛿
𝐵,𝑖

}. (11)

For any 𝐵 ⊆ 𝐴, the 𝛿-similarity equivalence class satisfies (𝑥𝑗 )𝛿𝐵,𝑖 =
⋂
𝑏∈𝐵

(𝑥𝑗 )𝛿𝑏,𝑖. In other words, a family of 𝛿-similarity equivalence 

relation forms covering of U, i.e., ∑𝑥∈𝑈 (𝑥)𝛿𝐵 =𝑈 . Then, for ∀𝑥𝑖, 𝑥𝑗 ∈ (𝑥)𝛿
𝐵

, which cannot be distinguished under (𝑥)𝛿
𝐵

. Thus, 𝛿-similarity 
equivalence relation can be viewed as an information granularity.

Definition 6. For a given parameter 𝛿 ∈ [0, 1] and 𝐵 ⊆ 𝐴, the 𝛿-similarity equivalence granular structure is a information structure 
can be defined by:

𝐴𝐸𝐺𝑆𝛿
𝑖
(𝐵) = ((𝑥1)𝛿𝐵,𝑖, (𝑥2)

𝛿
𝐵,𝑖
, (𝑥3)𝛿𝐵,𝑖, ..., (𝑥|𝑈 |)𝛿𝐵,𝑖).

Proposition 2. Assume that (𝑈,𝐴⋃𝐷)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) is the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. For 𝐵, 𝐶 ⊆𝐴 and 𝛿 ∈ [0, 1], the following properties are true:

(1) (𝑥𝑗 )𝛿𝐵,𝑖 ≠∅ and ⋃
𝑥𝑗∈𝑈

(𝑥𝑗 )𝛿𝐵,𝑖 =𝑈 .

(2) If 𝐶 ⊆ 𝐵, then (𝑥𝑗 )𝛿𝐵,𝑖 ⊆ (𝑥𝑗 )𝛿𝐶,𝑖.

(3) 0 ≤ 𝛿1 ≤ 𝛿2 ≤ 1, (𝑥𝑗 )
𝛿1
𝐵,𝑖

⊆ (𝑥𝑗 )
𝛿2
𝐵,𝑖

.

Proof. (1) For 𝑥𝑗 ∈𝑈 and 𝑏 ∈ 𝐵, we have 𝑑𝑖
𝐸
(𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 ), 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 )) = 0 ≤ 𝛿, so 𝑥𝑗 ∈ (𝑥𝑗 )𝛿𝐵 . Thus (𝑥𝑗 )𝛿𝐵,𝑖 ≠∅ and ⋃

𝑥𝑗∈𝑈
(𝑥𝑗 )𝛿𝐵,𝑖 =𝑈 .

(2) For ∀𝑥𝑘 ∈ (𝑥𝑗 )𝛿𝐵 , we know ∀𝑏 ∈ 𝐵, 𝑑𝐸 (𝑆𝑖𝑚𝑖
𝑏
(𝑥𝑗 ), 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑘)) ≤ 𝛿, since 𝐶 ⊆ 𝐵, then ∀𝑏 ∈ 𝐶 , 𝑑𝐸 (𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑖), 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 )) ≤ 𝛿, so according 

to the Definition 8, we know 𝑥𝑘 ∈ (𝑥𝑗 )𝛿𝐶 , thus (𝑥𝑗 )𝛿𝐵 ⊆ (𝑥𝑗 )𝛿𝐶 .

(3) For ∀𝑥𝑘 ∈ (𝑥𝑗 )
𝛿1
𝐵,𝑖

, we have ∀𝑏 ∈ 𝐵, 𝑑𝑖
𝐸
(𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 ), 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑘)) ≤ 𝛿1. Since 𝛿1 ≤ 𝛿2, then ∀𝑏 ∈ 𝐵, 𝑑𝑖

𝐸
(𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑗 ), 𝑆𝑖𝑚𝑖

𝑏
(𝑥𝑘)) ≤ 𝛿1 ≤ 𝛿2, so 

𝑥𝑘 ∈ (𝑥𝑗 )
𝛿2
𝐵,𝑖

, thus (𝑥𝑗 )
𝛿1
𝐵,𝑖

⊆ (𝑥𝑗 )
𝛿2
𝐵,𝑖

. □

On the 𝑈 , 𝐴𝐸𝑅𝛿
𝐵

is also a similarity relation.

Assume that (𝑈,𝐴⋃𝐷)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) is the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. For 𝐵 ⊆𝐴, (𝑥𝑗 )𝛿𝐵,𝑖 is the fuzzy 𝛿-similarity equivalence relation induced 
by 𝐵, and a given parameter value 𝛿 ∈ [0, 1]. Then the 𝛿-equivalence relation is considered as follows:

𝐸𝑅𝛿
𝐵,𝑖

= {(𝑥𝑗 , 𝑥𝑘) ∈𝑈 ×𝑈 ∶ (𝑥𝑗 )𝛿𝐵,𝑖 = (𝑥𝑘)𝛿𝐵,𝑖}. (12)

For any 𝑥𝑗 ∈𝑈 , the 𝛿− equivalence class can be defined as follows:

𝑋
𝐵,𝑖

𝑙
= {𝑥𝑘 ∈𝑈 ∶ (𝑥𝑗 )𝛿𝐵,𝑖 = (𝑥𝑘)𝛿𝐵,𝑖}, 𝑥𝑗 ∈𝑋

𝐵,𝑖

𝑙
, 𝑙 = 1,2,⋯ , 𝑟. (13)

Additionally, the partition induced by 𝐸𝑅𝛿
𝐵

is defined as 𝑈∕𝐸𝑅𝛿
𝐵
= {𝑋𝐵

1 , 𝑋
𝐵
2 , ⋯ , 𝑋𝐵

𝑟
}. Obviously, for any 𝑥𝑗 ∈𝑋𝐵

𝑙
(𝑙 = 1, 2, ⋯ , 𝑟), 

(𝑋𝐵
𝑙
)𝛿
𝐵
= (𝑥𝑗 )𝛿𝐵 and 𝑋𝐵

𝑙
⊆ (𝑥𝑗 )𝛿𝐵 .

Example 3 (Continued from Example 2). In this case, we set the value of parameter 𝛿 to 0.3. For space reasons, we take attribute 𝑎1
as an example. We have:

(𝑥1)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7}; (𝑥2)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8}; (𝑥3)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}; (𝑥4)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5,
𝑥6, 𝑥7}; (𝑥5)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}; (𝑥6)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8); (𝑥7)0.3𝑎1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}; (𝑥8)0.3𝑎1 = {𝑥2, 𝑥6, 𝑥8}.

3.2. Uncertainty measurement based on information granularity

In this subsection, we will use the information granular structure to study the uncertainty measurement for MsIIvDIS.

Definition 7. Given that (𝑈,𝐴⋃𝐷)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) is 𝑖-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. For 𝐵 ⊆𝐴 and a given parameter 𝛿 ∈ [0, 1], 𝐴𝐸𝐺𝑆𝛿
𝑖
(𝐵) represents 

the information structure caused by B in i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖, 𝐴𝐸𝐺𝑆𝛿
𝑖
(𝐵) = ((𝑥1)𝛿𝐵,𝑖, (𝑥2)

𝛿
𝐵,𝑖
, ..., (𝑥|𝑈 |)𝛿𝐵,𝑖). The lower approximation, upper 

approximation and boundary region of 𝑋 according to 𝐵 can be expressed as below:
8

𝑅𝛿
𝐵,𝑖

(𝑋) = {𝑥 ∈𝑈 ∶ (𝑥𝑗 )𝛿𝐵,𝑖 ⊆ 𝑋},
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𝑅𝛿
𝐵,𝑖

(𝑋) = {𝑥 ∈𝑈 ∶ (𝑥𝑗 )𝛿𝐵,𝑖
⋂

𝑋 ≠∅},

𝐵𝑅𝛿
𝐵,𝑖

(𝑋) =𝑅𝛿
𝐵,𝑖

(𝑋) −𝑅𝛿
𝐵,𝑖

(𝑋).

Suppose that 𝑈∕𝐷 = {𝑌1, 𝑌2, ⋯ , 𝑌𝑚} is decision partition of 𝑈 according to the decision attribute 𝐷. For decision information 
system, the 𝛿-approximation classified accuracy (𝐴𝑃 ) and 𝛿-approximation classified quality (𝐴𝑄) of 𝑈∕𝐷 in relation to 𝐴𝐸𝑅𝛿

𝐵
are 

expressed as below:

𝐴𝑃
𝐴𝐸𝑅𝛿

𝐵,𝑖
(𝑈∕𝐷) =

𝑚∑
𝑟=1

||||𝑅𝛿
𝐵,𝑖

(𝑌𝑟)
||||

𝑚∑
𝑟=1

||||𝑅𝛿
𝐵,𝑖

(𝑌𝑟)
||||
, (14)

𝐴𝑄
𝐴𝐸𝑅𝛿

𝐵,𝑖
(𝑈∕𝐷) =

𝑚∑
𝑟=1

||||𝑅𝛿
𝐵,𝑖

(𝑌𝑟)
|||||𝑈 | . (15)

Definition 8. Given that 𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆 is multi-source incomplete interval-valued decision information system. For 𝐵 ⊆𝐴, 𝑋 ⊆𝑈 and a 
given threshold 0 ≤ 𝛿 ≤ 1. Under the condition attribute set 𝐵, the measurement accuracy and roughness for the degree of knowledge 
uncertainty for a given set 𝑋 are expressed as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝛿
𝐵,𝑖

(𝑋) =
𝑅𝛼
𝐵,𝑖

(𝑋)

𝑅𝛿
𝐵,𝑖

(𝑋)
, (16)

𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠𝛿
𝐵,𝑖

(𝑋) = 1 −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝛿
𝐵,𝑖

(𝑋). (17)

Definition 9. Let (𝑈,𝐴)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) be the i-th 𝐼𝐼𝑣𝐼𝑆𝑖. For 𝐵 ⊆ 𝐴 and a given threshold 𝛿 ∈ [0, 1]. The partition induced 
by 𝐸𝑅𝛿

𝐵,𝑖
: 𝑈∕𝐸𝑅𝛿

𝐵,𝑖
= {𝑋𝐵,𝑖

1 , 𝑋𝐵,𝑖

2 , ⋯ , 𝑋𝐵,𝑖
𝑟 }. 𝐴𝐸𝐺𝑆𝛿

𝑖
(𝐵) is the information structure induced by B in i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖, 𝐴𝐸𝐺𝑆𝛿

𝑖
(𝐵) =

((𝑥1)𝛿𝐵,𝑖, (𝑥2)
𝛿
𝐵,𝑖
, ..., (𝑥|𝑈 |)𝛿𝐵,𝑖). The 𝛿-equivalence information entropy of i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖 can be defined as below:

𝐸𝐼𝐸𝛿
𝑖
(𝐵) = −

𝑟∑
𝑙=1

|||𝑋𝐵,𝑖

𝑙

||||𝑈 | log2

||||(𝑋𝐵,𝑖

𝑙

)𝛿
𝐵,𝑖

|||||𝑈 | . (18)

Proposition 3. Assume that (𝑈,𝐴)𝑖 (𝑖 = 1, 2, ⋯ 𝑁) is the i-th 𝐼𝐼𝑣𝐼𝑆𝑖. For given 𝛿 ∈ 𝐼 and 𝐵 ⊆ 𝐴. 𝐴𝐸𝐺𝑆𝛿
𝑖
(𝐵) is the information structure 

induced by B in i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖, 𝐴𝐸𝐺𝑆𝛿
𝑖
(𝐵) = ((𝑥1)𝛿𝐵,𝑖, (𝑥2)

𝛿
𝐵,𝑖
, ..., (𝑥|𝑈 |)𝛿𝐵,𝑖). The 𝛿-equivalence information entropy of i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖 also can 

be written as:

𝐸𝐼𝐸𝛿
𝑖
(𝐵) = −

|𝑈 |∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵,𝑖||||𝑈 | . (19)

Proof. 𝑈∕𝐸𝑅𝛿
𝐵,𝑖

= {𝑋𝐵,𝑖

1 , 𝑋𝐵,𝑖

2 , ⋯ , 𝑋𝐵,𝑖

𝑙
, ⋯ , 𝑋𝐵,𝑖

𝑟 }. Then 
𝑟∑
𝑙=1

|||𝑋𝐵,𝑖

𝑙

||| = 𝑛. So 
𝑟∑
𝑙=1

|||𝑋𝐵,𝑖

𝑙

||||𝑈 | log2

||||(𝑋𝐵,𝑖

𝑙

)𝛼
𝐵,𝑖

|||||𝑈 | = 𝑛|𝑈 | log2
||||(𝑋𝐵,𝑖

𝑙

)𝛼
𝐵,𝑖

|||||𝑈 | . Since (𝑋𝐵,𝑖

𝑙
)𝛼
𝐵,𝑖

=

(𝑥𝑗 )𝛿𝐵,𝑖, so 𝑛|𝑈 | log2
||||(𝑋𝐵,𝑖

𝑙

)𝛿
𝐵,𝑖

|||||𝑈 | = 𝑛|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵,𝑖||||𝑈 | , i.e. 

𝑟∑
𝑙=1

|||𝑋𝐵,𝑖

𝑙

||||𝑈 | log2

||||(𝑋𝐵,𝑖

𝑙

)𝛼
𝐵,𝑖

|||||𝑈 | = 𝑛|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵,𝑖||||𝑈 | =

𝑛∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵,𝑖||||𝑈 | . Thus 𝐸𝐼𝐸𝛿

𝑖
(𝐵) =

− 
𝑟∑

𝑙=1

|||𝑋𝐵,𝑖

𝑙

||||𝑈 | log2

||||(𝑋𝐵,𝑖

𝑙

)𝛿
𝐵,𝑖

|||||𝑈 | = − 
|𝑈 |∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵,𝑖||||𝑈 | . □

For convenience, the expression of information entropy in Proposition 3 is uniformly used in this paper.

(1) Let (𝑥𝑗 )𝛿𝐵,𝑖 = {𝑥𝑘} (𝑘 = 1, 2, ⋯ , 𝑛), then 𝐸𝐼𝐸𝛿
𝑖
(𝐵) of i-th 𝐼𝐼𝑣𝐼𝑆𝑖 reaches its maximum value: 𝐸𝐼𝐸𝛿

𝑖
(𝐵) = log2 |𝑈 |.

(2) Let (𝑥𝑗 )𝛿𝐵,𝑖 =𝑈 , then 𝐸𝐼𝐸𝛿
𝑖
(𝐵) of i-th 𝐼𝐼𝑣𝐼𝑆𝑖 reaches its minimum value: 𝐸𝐼𝐸𝛿

𝑖
(𝐵) = 0. Thus, 0 ≤𝐸𝐼𝐸𝛿

𝑖
(𝐵) ≤ log2 |𝑈 |.

Theorem 1. Suppose that (𝑈,𝐴)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) is the i-th 𝐼𝐼𝑣𝐼𝑆𝑖. Given 𝛿1, 𝛿2 ∈ [0, 1] and 𝐵, 𝐶 ⊆ 𝐴, the 𝛿-equivalence information entropy 
of 𝐵 and 𝐶 in i-th 𝐼𝐼𝑣𝐼𝑆𝑖 stratifies:

(1) If 𝐶 ⊆ 𝐵 ⊆𝐴, then for ∀𝛿 ∈ [0, 1], 𝐸𝐼𝐸𝛿
𝑖
(𝐶) ≤𝐸𝐼𝐸𝛿

𝑖
(𝐵),
9

(2) ∀𝐵 ⊆𝐴, 𝐸𝐼𝐸𝛿2
𝑖
(𝐵) ≤𝐸𝐼𝐸

𝛿1
𝑖
(𝐵), if 0 < 𝛿1 ≤ 𝛿2 ≤ 1.
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Proof. (1) For any (𝑥𝑗 ) ∈𝑈 and 𝛿 ∈ [0, 1], since 𝐶 ⊆ 𝐵 ⊆𝐴. According to the Proposition 2(2), we have (𝑥𝑗 )𝛿𝐵 ⊆ (𝑥𝑗 )𝛿𝐶 . Then |(𝑥𝑗 )𝛿𝐵| ≤|(𝑥𝑗 )𝛿𝐶 |, so 𝐸𝐼𝐸𝛿(𝐵) = − 
|𝑈 |∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵 ||||𝑈 | ≥ − 

|𝑈 |∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐶 ||||𝑈 | =𝐸𝐼𝐸𝛿(𝐶).

(2) For ∀𝐵 ⊆ 𝐴 and (𝑥𝑗 ) ∈ 𝑈 . Due to 0 ≤ 𝛿1 ≤ 𝛿2 ≤ 1, by Proposition 2(3), we have (𝑥𝑗 )
𝛿1
𝐵
⊆ (𝑥𝑗 )

𝛿2
𝐶

. Then |(𝑥𝑗 )𝛿1𝐵 | ≤ |(𝑥𝑗 )𝛿2𝐶 |, thus 

𝐸𝐼𝐸𝛿1 (𝐵) = − 
|𝑈 |∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵 ||||𝑈 | ≥ − 

|𝑈 |∑
𝑗=1

1|𝑈 | log2
|||(𝑥𝑗)𝛿𝐵 ||||𝑈 | =𝐸𝐼𝐸𝛿2 (𝐵). □

Definition 10. Assume that (𝑈,𝐴⋃𝐷)𝑖 (𝑖 = 1, 2, ⋯ , 𝑁) is the i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. For condition attribute subset 𝐵 ⊆𝐴 and a given parameter 
𝛿 ∈ [0, 1], 𝑈∕𝑅 = {𝑌1, 𝑌2, ⋯ , 𝑌𝑚} is the partition of 𝑈 on the decision attribute set. 𝐴𝐸𝐺𝑆𝛿

𝑖
(𝐵) is the information structure induced by 

B in i-th 𝐼𝐼𝑣𝐷𝐼𝑆𝑖, 𝐴𝐸𝐺𝑆𝛿
𝑖
(𝐵) = ((𝑥1)𝛿𝐵,𝑖, (𝑥2)

𝛿
𝐵,𝑖
, ..., (𝑥|𝑈 |)𝛿𝐵,𝑖). The i-th 𝛿-approximate conditional entropy of 𝐵 is expressed as below:

𝐶𝐼𝐸𝛿
𝑖
(𝐷|𝐵) = −

|𝑈 |∑
𝑗=1

𝑚∑
𝑘=1

|||(𝑥𝑗 )𝛼𝐵⋂𝑌𝑘
||||𝑈 | log

|||(𝑥𝑗 )𝛿𝐵⋂𝑌𝑘
||||||(𝑥𝑗 )𝛿𝐵||| . (20)

Additionally, the 𝛿-approximate conditional entropy 𝐶𝐼𝐸𝛿
𝑖
(𝐷|𝐵) has two propositions which can be expressed as follows:

(1) 0 ≤ 𝐶𝐼𝐸𝛿
𝑖
(𝐷|𝐵) ≤ |𝑈 | log |𝑈 |,

(2) If 𝐶 ⊆ 𝐵, 𝐶𝐼𝐸𝛿
𝑖
(𝐷|𝐵) ≤ 𝐶𝐼𝐸𝛿

𝑖
(𝐷|𝐶).

4. A novel information entropy fusion approach in 𝑴𝒔𝑰𝑰𝒗𝑫𝑰𝑺

According to the property of 𝛿-similarity conditional entropy, we can find the smaller the 𝐶𝐼𝐸𝛿
𝑖
(𝐷|𝑎) (𝑖 = 1, 2, ..., 𝑁) is, the more 

significant the information source is. Hence, we can obtain the following fusion function, which can be employed to fuse the MsIIvDIS.

4.1. Information fusion function in 𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆

Definition 11. Assume that 𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆 = {𝐼𝐼𝑣𝐼𝐼𝑆𝑖|𝐼𝐼𝑣𝐼 − 𝐼𝑆𝑖 = (𝑈, 𝐴, 𝑉𝑖, 𝑓𝑖), 𝑖 = 1, 2, ⋯ , 𝑁) is a multi-source incomplete interval-

valued decision information table, where 𝐴 = {𝑎1, 𝑎2, ⋯ 𝑎𝑝} (for convenience, 𝐼𝑖 can represent the i-th information source). Given 
parameter 𝛿 ∈ [0, 1], for all 𝑎𝑚 ∈ 𝐴 (𝑚 = {1, 2, ⋯ , 𝑝}), the m-th attribute of new information table after fusion w.r.t. 𝛿 is defined as 
below:

Inf ER𝛿(𝑎𝑚) = Inf𝑚∈{1,2,⋯,𝑝}(𝐹 (𝐼1(𝑎𝑚), 𝐹 (𝐼2(𝑎𝑚),⋯ , 𝐹 (𝐼𝑛(𝑎𝑚))), (21)

where 𝐹 = 𝐶𝐼𝐸𝛿
𝑖
(𝐷|{𝑎𝑚}) which can be regard as infimum-measure function.

For a 𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆 = {𝐼𝐼𝑣𝐼𝐼𝑆𝑖 ||𝐼𝐼𝑣𝐼𝐼𝑆𝑖 = (𝑈, 𝐴, 𝑉𝑖, 𝑓𝑖), 𝑖 = 1, 2, ⋯ , 𝑁), the result of fusion is still incomplete. In this paper, we can 
use following approach to complete the missing values in the information system.

𝑓
(
𝑥𝑗 , 𝑎

)
=
⎧⎪⎨⎪⎩
[
𝑚𝑖𝑛
𝑥𝑘∈𝑈

𝑓𝐿
(
𝑥𝑘, 𝑎

)
, 𝑚𝑎𝑥
𝑥𝑘∈𝑈

𝑓𝑈
(
𝑥𝑘, 𝑎

)]
𝑖𝑓𝑓

(
𝑥𝑗 , 𝑎

)
=∗

𝑓
(
𝑥𝑗 , 𝑎

)
𝑒𝑙𝑠𝑒.

(22)

In this paper, we use Fig. 2 to show the fusion process more intuitively. The different colors of lines indicate different information 
sources, and each square represents a corresponding attribute value, the solid squares are used to express the missing value. Then, 
according to the fusion function to select the value of attribute, and it is reconstituted a novel incomplete information system. Finally, 
the missing values are completed to obtain the final information system.

Example 4 (Continued from Example 3). For the sake of convenience, 𝐼𝑖 represent the i-th information system 𝐼𝐼𝑣𝐷𝐼𝑆𝑖. Then, the 
𝛿-approximate condition entropy of information sources for diverse attributes are calculated in Table 5.

Then, we can compute 𝛿-approximate conditional entropy as follows (𝛿 = 0.3).

𝐶𝐼𝐸0.3
1 (𝐷|𝑎1) = −(2 × 3

8 log
3
6 + 4 × 4

8 log
4
8 + 4 × 3

8 log
3
7 + 4 × 4

8 log
4
7 + 2 × 0) = 6.198298,

𝐶𝐼𝐸0.3
1 (𝐷|𝑎2) = −(0 + 3 × 3

8 log
3
5 +

3
8 log

3
4 +

1
8 log

1
2 + 2 × 2

8 log
2
4 +

3
8 log

3
7 + 0 + 3 × 2

8 log
2
5 +

1
8 log

1
4 +

1
8 log

1
2 +

4
8 log

4
7 ) = 3.711400,

𝐶𝐼𝐸0.3
1 (𝐷|𝑎3) = −(4 × 2

8 log
2
3 + 4 × 1

8 log
1
2 + 2 × 2

8 log
2
4 + 4 × 1

8 log
1
3 +

1
8 log

1
4 +

3
8 log

3
4 ) = 3.283083,

𝐶𝐼𝐸0.3
1 (𝐷|𝑎4) = −(12 × 4

8 log
4
8 + 2 × 4

8 log
4
7 + 2 × 3

8 log
3
7 ) = 8.075422,

𝐶𝐼𝐸0.3
1 (𝐷|𝑎5) = −(4 × 3

8 log
3
6 + 4 × 1

8 log
1
2 + 4 × 2

8 log
2
4 + 2 × 3

8 log
3
4 + 2 × 1

8 log
1
4 ) = 3.811278,
10

𝐶𝐼𝐸0.3
1 (𝐷|𝑎6) = −(10 × 4

8 log
4
8 + 3 × 2

8 log
2
3 + 3 × 1

8 log
1
3 ) = 5.937985.
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Fig. 2. The fusion process of multi-source incomplete interval-valued information system.

Table 5

The 𝛿-approximate conditional entropy of information sources 
for diverse attributes.

𝐴 𝐼1 𝐼2 𝐼3 𝐼4

𝑎1 6.198298 8.000000 7.785427 7.193068

𝑎2 3.711400 4.294170 3.283083 3.631810

𝑎3 3.283083 6.877444 3.449243 4.177376

𝑎4 8.075422 8.000000 7.412871 5.560376

𝑎5 3.811278 5.523684 5.000000 3.771737

𝑎6 5.937985 7.172488 8.000000 7.250000

Table 6

The final fusion results.

𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 [125.59, 136.29] [1.00, 5.00] [116.25, 125.97] [65.95, 119.58] [42.30, 187.96] [26.98, 96.73]

𝑥2 [124.58, 198.34] [4.00, 11.00] [114.96, 123.98] [85.65, 121.98] [82.65, 224.90] [26.98, 96.73]

𝑥3 [109.23, 120.02] [2.99, 10.00] [110.45, 296.98] [42.28, 163.98] [67.08, 85.97] [88.20, 96.73]

𝑥4 [125.19, 134.25] [3.00, 8.00] [110.98, 120.45] [42.28, 67.80] [101.98, 260.89] [26.98, 96.73]

𝑥5 [119.69, 133.97] [10.00, 20.00] [110.45, 314.98] [82.60, 121.90] [42.30, 260.59] [45.99, 75.98]

𝑥6 [126.34, 215.40] [8.40, 18.00] [110.45, 314.68] [83.00, 163.98] [68.29, 88.98] [28.65, 62.98]

𝑥7 [117.97, 129.40] [12.00, 21.00] [169.34, 269.98] [80.98, 156.99] [79.65, 95.28] [32.69, 68.80]

𝑥8 [159.58, 232.69] [1.00, 21.00] [219.65, 314.68] [42.28, 163.98] [109.26, 260.44] [26.98, 66.42]

Similarly, we can calculate the 𝛿-approximate conditional entropy of different attributes of other sources. The results are displayed 
in follows. According to infimum-measure function, then based Definition 11 and Formula (22), we can complete the missing values 
11

in the information system. The results are displayed in Table 6.
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Algorithm 1: The fusion algorithm of MsIIvDIS based on 𝛿-approximate conditional entropy.

Input : 𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆 = {(𝑈, 𝐴, 𝑉𝐴𝑖
, 𝑓𝐴𝑖

, 𝐷, 𝑉𝐷𝑖
, 𝑓𝐷𝑖

), 𝑖 = 1, 2, ⋯ , 𝑁}; the decision partition 𝑈∕𝐷 =
{
𝑌1 , 𝑌2, ..., 𝑌𝑚

}
, parameter 𝛿 ∈ [0, 1];

Output : A new fusion table

1 for k = 1 : s do

2 # s is the number of information sources.

3 for each 𝑎 ∈𝐴 and ∀𝑥𝑖 ∈𝑈 do

4 Calculate the distance and similarity degree 𝑆𝑖𝑚𝑘
𝑎
(𝑥𝑖);

5 Given 𝛿 ∈ [0, 1]; Compute (𝑥𝑖)𝛿𝑎,𝑘 ;

6 end

7 𝐶𝐼𝐸 ← 0
8 while

|||(𝑥𝑖)𝛿𝑎,𝑞 ∩ 𝑌𝑗 ||| > 0 do

9 for j=1:m do

10 # m is the cardinality of |𝑈∕𝐷|
11 𝐶𝐼𝐸 ← 𝐶𝐼𝐸 −

|||(𝑥𝑖 )𝛿𝑎,𝑞∩𝑌𝑗 ||||𝑈 | log
|||(𝑥𝑖 )𝛿𝑎,𝑞∩𝑌𝑗 ||||||(𝑥𝑖 )𝛿𝑎,𝑞 |||

12 end

13 end

14 end

15 for each 𝑎 ∈𝐴 do

16 𝑚𝑖𝑛𝐶𝐼𝐸 ←∞; for 𝑘 = 1 ∶ 𝑠 do

17 if 𝐶𝐼𝐸𝛿
𝑘
(𝐷|𝑎) <𝑚𝑖𝑛𝐶𝐼𝐸 then

18 𝑚𝑖𝑛𝐶𝐼𝐸 ← 𝐶𝐼𝐸𝛿
𝑘
(𝐷|𝑎)

19 𝑖𝑎 ← 𝑘

20 end

21 end

22 end

return :
(
𝑉

𝑖𝑎1
𝑎1

, 𝑉
𝑖𝑎2
𝑎2

, ..., 𝑉
𝑖𝑎|𝐴𝑇 |
𝑎|𝐴𝑇 |

)

Table 7

The description of experimental data sets.

No. Data set name Abbreviation Objects Attributes Decision classes

1 Wine Wine 178 13 3

2 Auto MPG AM 398 7 3

3 Breast Cancer Wisconsin BCW 569 32 2

4 Hill-Valley HV 606 100 2

5 South German Credit SGC 1000 21 3

6 Maternal Health Risk MHR 1014 7 3

7 Contraceptive Method Choice CMC 1473 9 3

8 Car Evaluation CE 1728 7 4

9 Wireless Indoor Localization WIL 2000 7 4

10 Letter Letter 3349 17 5

11 Abalone Abalone 4170 8 3

12 Electrical Grid Stability Simulated Data Ele 10000 14 2

4.2. Fusion algorithm based 𝛿-similarity equivalence relation

From the above, we can obtain fusion Algorithm 1 based on 𝛿-similarity equivalence relation. In Steps 3–6, the computation of 
the 𝛿-similarity equivalence class for conditional attribute set can be completed in 𝑂(|||𝑈2|||× |𝐴|× 𝑠). Steps 7–12 are to compute the 𝛿-

approximate condition entropy, and its the complexity is 𝑂(|𝑈 |×𝑚). The time complexity of Steps 1–14 are 𝑂(|𝑈 |× |𝐴|×𝑠 ×(|𝑈 |+𝑚)). 
The time complexity of Steps 15–23 are 𝑂(|𝐴|× 𝑠). Therefore, the total time complexity of Algorithm 1 is 𝑂(|𝑈 |× |𝐴|× 𝑠 × (|𝑈 |+𝑚) +|𝐴| × 𝑠).

5. Experiment and results

In this part, in the case of verifying the effectiveness and efficiency of the put forward approach, we conducted some comparative 
experiments based on twelve data sets from UCI database (https://archive .ics .uci .edu /ml /index .php). The details of these data sets 
are shown in the Table 7. All the experimental programs are run on personal computer. The hardware and software are depicted in 
Table 8.

As is known to all, the MsIIvDIS cannot be obtained directly from any common databases. So we can use the method in [43] to 
generate MsIIvDIS. The detailed steps are as below:

(1) Convert single-valued data in the original dataset to interval-valued data.

Let 𝑉 (𝑥, 𝑎) represent the value of 𝑥 under attribute 𝑎, ∀𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴, 𝑓−(𝑥, 𝑎) = 𝑉 (𝑥, 𝑎)-2𝜎𝑎, 𝑓−(𝑥, 𝑎) = 𝑉 (𝑥, 𝑎) + 2𝜎𝑎, where 𝜎𝑎
12

denotes the standard deviation of the attribute a in the same decision class.

https://archive.ics.uci.edu/ml/index.php
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Table 8

Description of the experimental environment.

Name Model Parameter

CPU AMD Ryzen 7 R7-5800H 3.2 GHz

System Windows11 64 bit

Platform Python 3.9

Memory DDR4 16 GB; 3200 MHz

Hard Disk SKHynix_HFS512GDE9X084N 512 G

(2) Generate 𝑀𝑠𝐼𝐼𝑣𝐷𝐼𝑆.

First of all, 𝑚 random numbers {𝑟1, 𝑟2, 𝑟3, ..., 𝑟𝑚} that obey Gaussian distribution 𝑁(0, 0.1) are generated randomly. If 𝑟𝑖 > 0, 
then 𝑓−

𝑖
(𝑥, 𝑎) = 𝑓−(𝑥, 𝑎)(1 − 𝑟) and 𝑓+

𝑖
(𝑥, 𝑎) = 𝑓+(𝑥, 𝑎)(1 + 𝑟), otherwise 𝑓−

𝑖
(𝑥, 𝑎) = 𝑓−(𝑥, 𝑎)(1 + 𝑟) and 𝑓+

𝑖
(𝑥, 𝑎) = 𝑓+(𝑥, 𝑎)(1 − 𝑟).

(3) Create the missing values.

Missing values are generated by randomly removing 10 percent of the data.

5.1. Analysis of fusion effectiveness (horizontal comparison)

In this subsection, we compare the put forward fusion model with other three relevant fusion approaches to confirm the effec-

tiveness.

We generate 𝑛 = 20 sources, then the other three fusion approaches are expressed as below:

(i) Max fusion approach can be written as MaxF: MaxF 𝑓−(𝑥, 𝑎) =𝑚𝑖𝑛 
{
𝑓−
1 (𝑥, 𝑎), 𝑓

−
2 (𝑥, 𝑎), ..., 𝑓

−
𝑛
(𝑥, 𝑎)

}
, MaxF 𝑓+(𝑥, 𝑎) =𝑚𝑎𝑥

{
𝑓+
1 (𝑥, 𝑎),

..., 𝑓+
𝑛
(𝑥, 𝑎)

}
, where 𝑓−(𝑥, 𝑎) and 𝑓+(𝑥, 𝑎) are the left and right endpoints of max fusion result, respectively.

(ii) Min fusion method can be written as MinF: MinF 𝑓−(𝑥, 𝑎) =𝑚𝑎𝑥 
{
𝑓−
1 (𝑥, 𝑎), 𝑓

−
2 (𝑥, 𝑎), ..., 𝑓

−
𝑛
(𝑥, 𝑎)

}
, MinF 𝑓+(𝑥, 𝑎) =𝑚𝑖𝑛

{
𝑓+
1 (𝑥, 𝑎), ...,

𝑓+
𝑛
(𝑥, 𝑎)

}
, where 𝑓−(𝑥, 𝑎) and 𝑓+(𝑥, 𝑎) are the left and right endpoints of min fusion result, respectively.

(iii) Mean fusion method can be written as MeanF: MeanF 𝑓−(𝑥, 𝑎) = 𝑚𝑒𝑎𝑛 
{
𝑓−
1 (𝑥, 𝑎), 𝑓

−
2 (𝑥, 𝑎), ..., 𝑓

−
𝑛
(𝑥, 𝑎)

}
, MeanF 𝑓+(𝑥, 𝑎) =

𝑚𝑒𝑎𝑛 
{
𝑓+
1 (𝑥, 𝑎), ..., 𝑓

+
𝑛
(𝑥, 𝑎)

}
, where 𝑓−(𝑥, 𝑎) and 𝑓+(𝑥, 𝑎) are the left and right endpoints of mean fusion result, respectively.

(iv) The fusion approach is introduced by Zhang et al. [50] (written as CF).

In this paper, we use the AP, AQ and classification accuracy to reflect the fusion effectiveness in this subsection.

We compared the newly proposed information entropy fusion method, based on information structure, with three other fusion 
approaches across twelve datasets. The Figs. 3 to 4 illustrate the variations in AP and AQ for fusion results under different 𝛿 intervals 
of 0.05. In the initial dataset, when the parameter 𝛿 ranges from 0.05 to 0.15, the AP and AQ values remain consistent across all 
four fusion methods. When the parameter value is 0.2, only the MinF is the same as the AP and AQ values of the proposed approach. 
However, for the remaining parameters, the AP and AQ values obtained by the fusion method in this paper are significantly superior 
to those of the other three models. For the data AM, the CieF method is significantly superior to other methods with thresholds 
between 0.05 and 0.25. “In the BCW dataset, our approach shows an advantage over MaxF and MeanF when the parameter is set to 
0.1. Similarly, for the HV dataset, CieF outperforms MaxF and MinF when the parameter is 0.35. In the CMC and MHR datasets, the 
values of AP and AQ from our approach are higher than those of MaxF and MeanF. Across all parameter values in the SGC, WIL, CE, 
and Ele datasets, the CieF method consistently outperforms all other centralized fusion methods. Observing the subplots in Figs. 3 and 
4, we can see that for the Letter dataset, the AP and AQ values of the proposed algorithm are the same as those of other methods in 
the parameter range of 0.25–0.35. In other parameter ranges, the AP and AQ values of the proposed method are significantly higher 
than those of MeanF and MaxF, and slightly higher than MinF’s AP and AQ. For the Abalone dataset, the fusion method proposed 
in this paper outperforms all other fusion methods when 𝛿 values range between 0.05 and 0.15. However, our approach surpasses 
MeanF when the parameter 𝛿 is set to 0.2. In summary, the experimental results demonstrate that our model is generally superior 
to other fusion methods across various parameter values of 𝛿. Furthermore, it can be seen from Fig. 3 and Fig. 4 that for the same 
data set, the values of AP and AQ consistently change with variations in the parameter 𝛿 and decrease as 𝛿 increases. This occurs 
due to the reduction of the parameter delta, which leads to a decrease in the similarity equivalent class of the object. Consequently, 
the upper approximation of the set of samples becomes smaller, and the lower approximation becomes more prominent. Therefore, 
as 𝛿 decreases, the values of AP and AQ enhance. However, when the threshold is too small and the approximate equivalent class 
of delta of the sample only contains the object itself, the values of AP and AQ will reach a maximum of 1. This also means that 
there is no connection between each object. On the contrary, the approximate equivalent class of each object will increase. When 
the approximate equivalent class of a sample contains all objects, there is no difference between each sample. Therefore, in practical 
applications, selecting the appropriate threshold is essential to enhance the efficiency of data mining tasks.

Additionally, we compare paper fusion approach with the CF which is proposed in [50], which are shown in Figs. 5 and 6. In 
light of the experimental results, the raised new fusion approach based on information structure surpasses the CF approach in most 
cases under the variation of 𝛿.

K-nearest neighbor (KNN) classifier and probabilistic neural network (PNN) classifier are used to verify the fusion effectiveness. 
Table 9, Table 10 and Table 11 show the mean of classification precision and standard deviation by ten-times ten-fold cross-validation. 
13

In these tables, thickened blackbody numbers represent the highest classification effectiveness among datasets. It is worth noting 
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Fig. 3. The comparison results between CieF and other three methods AP.

Table 9

Comparison of classification accuracy based on KNN.

DataSets
KNN

CieF MaxF MinF MeanF

Wine (k=3) 100.0±0.0 98.3±2.5 98.3±2.5 98.9±2.2

AM (k=14) 63.3±5.1 60.0±4.3 61.3±5.1 60.5±4.2

BCW (k=5) 62.2±5.3 60.5±4.1 58.4±4.2 59.9±3.3

HV (k=9) 51.7±6.0 50.2±6.1 49.2±6.7 51.5±6.3

SGC (k=9) 73.0±2.7 74.0±4.0 71.7±3.2 73.8±4.3

MHR (k=17) 41.5±3.2 40.8±3.6 39.4±3.5 38.3±2.9

CMC (k=12) 55.5±3.6 54.1±3.7 53.2±4.2 49.0±4.0

CE (k=16) 70.8±2.5 68.2±2.5 69.4±2.9 70.1±2.4

WIL (k=3) 55.3±3.7 53.2±1.6 51.5±4.2 49.6±3.9

Letter (k=6) 99.3± 0.6 98.8±0.6 98.5±0.5 98.9±0.6

Abalone (k=16) 35.1±1.7 33.7±2.7 34.8±1.5 34.8±1.5

Ele (k=4) 61.3±3.4 59.8±2.8 60.0±2.1 60.4±3.1

Avg. 64.1±3.2 62.6±3.2 62.1±3.2 62.2±3.2

that the parameters 𝑘 and 𝜎 can influent the classification capability of KNN and PNN classifiers. This flexibility is also an advan-

tage of these two classifiers. Therefore we can adjust the corresponding parameters to achieve the optimal result. The results in 
Tables 9, 10, 11 indicate clearly that in most situations, the classification accuracies computed by CieF have advantage over those 
calculated by other three fusion approaches like MaxF, MinF, MeanF and CF.

Furthermore, Wilcoxon signed-rank test in Python is employed to check whether the raised fusion approach (CieF) has an re-

markably advantage over other three fusion ways. At the 10% level of significance, assume that the null hypothesis be 𝐻0 ∶ 𝜇𝐶𝑒𝐹 ≤
𝜇𝑀𝑒𝑎𝑛𝐹 ∕𝜇𝑀𝑖𝑛𝐹 ∕𝜇𝑀𝑎𝑥𝐹 ∕𝜇𝐶𝐹 and the alternative hypothesis be 𝐻1 ∶ 𝜇𝐶𝑒𝐹 > 𝜇𝑀𝑒𝑎𝑛𝐹 ∕𝜇𝑀𝑖𝑛𝐹 ∕𝜇𝑀𝑎𝑥𝐹 ∕𝜇𝐶𝐹 , where 𝜇𝐶𝑒𝐹 , 𝜇𝑀𝑒𝑎𝑛𝐹 , 𝜇𝑀𝑖𝑛𝐹 , 
14

𝜇𝑀𝑎𝑥𝐹 and 𝜇𝐶𝐹 represent the average of classification accuracy w.r.t. the fusion approach CieF and other fusion approaches, respec-
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Fig. 4. The comparison results between CieF and other three methods AQ.

Table 10

Comparison of classification accuracy of based on PNN.

DataSets
PNN

CieF MaxF MinF MeanF

Wine (𝜎=0.68) 94.4±5.0 91.0±8.7 91.0±5.6 91.6±7.5

AM (𝜎=0.01) 50.7±9.8 49.0±8.9 53.5±8.0 46.5±7.5

BCW (𝜎=0.35) 62.2±4.8 61.1±5.1 62.9±4.4 61.9±4.7

HV (𝜎=0.54) 52.0±5.5 50.5±5.0 51.2±5.2 50.9±5.1

SGC (𝜎=0.31) 70.6±3.8 70.0±4.0 71.4±4.3 70.2±4.3

MHR (𝜎=0.39) 40.1±5.5 40.0±5.5 39.6±5.3 40.1±5.6

CMC (𝜎=0.35) 55.5±4.9 47.3±5.5 52.5±4.3 47.9±3.2

CE (𝜎=0.21) 70.4±1.9 70.2±2.1 70.1±2.0 70.2± 2.1

WIL (𝜎=0.3) 56.5±4.8 50.2±3.1 53.8±4.4 49.1±3.4

Letter (𝜎=0.3) 93.9±0.8 87.2±1.6 94.7±0.6 90.7±1.0

Abalone (𝜎=0.36) 36.9±2.4 36.8±2.5 36.6±2.2 36.8±2.4

Ele (𝜎=0.21) 62.7±3.3 53.9±3.7 62.5±2.5 54.9±4.0

Avg. 62.2±4.4 58.9±4.6 61.7± 4.1 59.2±4.2

tively. The P-values of the verification results are displayed in Table 12, Table 13 and Table 14. We can know that the classification 
accuracies of CieF on most datasets have an statistically advantage over other fusion methods.

The above Wilcoxon signed-rank test is employed solely to examine the effectiveness of the model within individual datasets. 
Moving forward, we will conduct a statistical significance analysis over the whole of the collection. In each dataset, we rank the 
classification results of different models, assigning a rank of 1 to the top performer, and so on. Subsequently, we calculate the average 
rank across all datasets. Refer to Table 10 for details. With a P-value significantly less than 0.1 according to the Friedman test, we can 
reject the null hypothesis, indicating that the fusion method proposed in this paper is significantly superior to other fusion algorithms
15

(Table 15).
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Fig. 5. The comparison results between CieF and CF AP.

Table 11

The classification accuracy of the fusion results of CF and CieF.

Datasets
KNN

Datasets
PNN

CF CieF CF CieF

Wine (k=3) 98.3±2.6 100.0±0.0 Wine (𝜎 =0.68) 89.9±6.5 94.4±5.0

AM (k=14) 62.0±5.6 63.3±5.1 AM (𝜎=0.01) 50.8±7.7 50.7±9.8

BCW (k=5) 58.7±4.5 62.2±5.3 BCW (𝜎=0.35) 61.7±2.8 62.4±4.8

HV (k=9) 48.9±6.7 51.7±6.0 HV (𝜎=0.54) 51.2±4.9 52.0±6.0

SGC (k=9) 71.4±4.5 73.0±2.7 SGC (𝜎=0.31) 70.8±4.3 70.6±3.8

MHR (k=17) 37.3±2.8 41.5±3.2 MHR (𝜎=0.39) 39.5±4.9 40.1±5.5

CMC (k=4) 44.9±3.2 55.5±3.6 CMC (𝜎=0.35) 47.5±2.7 55.5±4.9

CE (k=16) 69.0±2.8 70.8±2.5 CE (𝜎=0.21) 69.7±2.3 70.4±1.9

WIL (k=3) 42.8±3.3 55.3±3.7 WIL (𝜎=0.3) 47.3±3.0 56.5±4.8

Letter (k=6) 96.7±0.7 99.3±0.6 Letter (𝜎=0.3) 92.8±0.8 93.9±0.8

Abalone (k=16) 35.3±1.8 35.1±1.7 Abalone (𝜎=0.36) 36.6±2.4 36.9±2.4

Ele (k=4) 59.9±2.8 61.3±3.4 Ele (𝜎=0.02) 62.0± 2.8 62.7±3.4

Avg. 60.4±3.4 64.1±3.2 Avg. 60.0±3.8 62.2±4.4

Thus, compared with other four fusion ways, these verification outcomes indicate that the put forward fusion approach based on 
information structure is a better selection for the fusion of MsIIvDIS.

5.2. The analysis of fusion effectiveness (longitudinal comparison)

In order to verify the validity of the distance measurement used in the fusion method in this paper, we have employed various 
16

distance formulas for similarity calculation. And two classifiers are used to calculate the classification accuracy of the fusion results 



International Journal of Approximate Reasoning 164 (2024) 109081W. Xu, K. Cai and D.D. Wang

Table 12

P-value test of classification accuracy based on KNN.

DataSets
KNN

CieF>MaxF CieF>MinF CieF>MeanF

Wine (k=3) 0.074457337 0.074457337 0.172889293

AM (k=14) 0.061437694 0.020077856 0.048160338

BCW (k=5) 0.094156345 0.037523868 0.087761675

HV (k=9) 0.186076915 0.061602456 0.539062500

SGC (k=9) 0.061272843 0.883789063 0.735946937

MHR (k=17) 0.312500000 0.017143980 0.041992188

CMC (k=12) 0.037523868 0.004882813 0.000976562

CE (k=16) 0.007073702 0.014886438 0.102951605

WIL (k=3) 0.080078125 0.032265625 0.006835938

Letter (k=6) 0.061602246 0.052378746 0.069518469

Abalone (k=16) 0.096679688 0.296815296 0.361141481

Ele (k=4) 0.065429688 0.116210938 0.142312144

Table 13

P-value test of classification accuracy based on PNN.

DataSets
PNN

CieF>MaxF CieF>MinF CieF>MeanF

Wine (𝜎=0.68) 0.0462957978 0.028953633 0.100821461

AM (𝜎=0.01) 0.312512659 0.96089559618 0.042280712

BCW (𝜎=0.35) 0.023896270 0.900820236 0.425053370

HV (𝜎=0.39) 0.070558069 0.170592481 0.088764926

SGC (𝜎=0.31) 0.016007410 0.989931624 0.148347447

MHR (𝜎=0.31) 0.573038350 0.090724604 0.823419823

CMC (𝜎=0.29) 0.000976563 0.004519554 0.000976563

CE (𝜎=0.21) 0.13647068 0.067208287 0.13647068

WIL (𝜎=0.2) 0.007073702 0.000976563 0.000976563

Letter (𝜎=0.3) 0.004002155 0.983821723 0.036569900

Abalone (𝜎=0.2) 0.178636280 0.023742347 0.028953633

Ele (𝜎=0.02) 0.000976563 0.240570078 0.000976563

Table 14

P-value test of the comparison results in classification accuracy between CieF 
and CF.

Datasets
KNN

Datasets
PNN

𝐻1: CieF>CF 𝐻1: CieF>CF

Wine (k=3) 0.086784083 Wine (𝜎=0.68) 0.017003201

AM (k=14) 0.399215982 AM (𝜎=0.01) 0.593972318

BCW (k=5) 0.074662305 BCW (𝜎=0.35) 0.593809818

HV (k=9) 0.146588729 HV (𝜎=0.54) 0.044943261

SGC (k=9) 0.117037300 SGC (𝜎=0.31) 0.908788780

MHR (k=17) 0.018554688 MHR (𝜎=0.2) 0.111400496

CMC (k=12) 0.000976563 CMC (𝜎=0.35) 0.000976563

CE (k=16) 0.011247136 CE (𝜎=0.21) 0.020653615

WIL (k=3) 0.000976563 WIL (𝜎=0.3) 0.000976563

Letter (k=6) 0.032491572 Letter (𝜎=0.3) 0.052801743

Abalone (k=16) 0.903320313 Abalone (𝜎=0.36) 0.025121460

Ele (k=4) 0.008634689 ELe (𝜎=0.02) 0.141885979

Table 15

Friedman test.

Classifiers
Mean ranking

𝜒2
𝐹

𝐹𝐹 P-value

CieF MaxF MinF MeanF CF

KNN 1.250 3.208 3.583 2.875 4.084 32.7025 23.5155 1.00 × 10−3

PNN 1.500 4.125 2.333 3.292 3.75 31.6346 21.2632 2.81 × 10−4
17
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Fig. 6. The comparison results between CeF and CF AQ.

obtained by other distance measures. Obviously, we can find that the resulting fusion effect using other distance measurements is 
also different. Below, we present three typical distance metrics.

𝑑𝑖𝑠1 =

{
0√

(𝑥− − 𝑦−)2 + (𝑥+ − 𝑦+)2
𝑥 =∗ 𝑜𝑟 𝑦 =∗

𝑒𝑙𝑠𝑒,

𝑑𝑖𝑠2 =
{

0√|𝑥− − 𝑦−|+ |𝑥+ − 𝑦+| 𝑥 =∗ 𝑜𝑟 𝑦 =∗
𝑒𝑙𝑠𝑒,

𝑑𝑖𝑠3 =
⎧⎪⎨⎪⎩

0√|𝑥−−𝑦−|2+|||| 𝑥−+𝑥+
2 − 𝑦−+𝑦+

2
||||+|𝑥+−𝑦+|2

3

𝑥 =∗ 𝑜𝑟 𝑦 =∗
𝑒𝑙𝑠𝑒,

where 𝑑𝑖𝑠1 is the Euclid distance, 𝑑𝑖𝑠2 is the City-block distance and 𝑑𝑖𝑠3 provided in [42] which can be written as L-distance. And 
the distance measurement used in this paper can be recorded as KL-distance.

5.2.1. Comparison of classification results based on different distance measurements

In this subsection, we primarily focus on validating whether the distance measurement used in this paper can reduce the loss of 
effective information caused by neglecting the contribution of interval values, thereby improving fusion effectiveness. For generality, 
we set the parameter to 0.35. Then, using different distance metrics to calculate the similarity of various interval values, we proceed 
with fusion. The classification accuracy of the fusion results is depicted in Fig. 7.

Clearly, the fusion classification results vary with different distance metrics for different datasets. Under the K-nearest neighbor 
classifier, for six datasets (Wine, AM, BCW, HV, MHR, and Abalone), the highest fusion accuracy is achieved when using the KL 
distance metric. For the SGC and CMC datasets, the fusion performance with KL distance surpasses that achieved with Euclidean 
distance and City-block distance. Concerning the WIL dataset, although the classification accuracy using KL divergence is not as 
superior as the other two distance measures, it still outperforms that of the L distance. In Fig. 7(b), employing the PNN classifier, 
18

KL-distance achieves the best classification results for the Wine, AM, BCW, HV, and Abalone datasets. However, concerning the MHR 
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Fig. 7. The classification accuracy various with different distance measures in two classifiers.

Table 16

Friedman test.

Classifiers
Mean ranking

𝐹𝐹 P-value

KL-distance Euclid distance City-block distance L-distance

KNN 1.25 3.083 2.875 2.792 15.1842 0.0017

PNN 1.5 2.708 3.167 2.625 11.3947 0.0098

and CMC datasets, the fusion effect with KL-distance significantly outperforms that of Euclidean distance and City-block distance. 
For the SGC dataset, in comparison with the fusion effects of Euclidean distance and L distance, the fusion accuracy with KL distance 
is the highest. Overall, our model outperforms the other three distance measures in the fusion process.

5.2.2. Statistical analysis

In this subsection, we systematically explore the statistical performance of different distance measure fusion results in classifica-

tion accuracy, and carry out Friedman test and corresponding post hoc test. The Friedman statistic is described [52] as:

𝜒2
𝐹
= 12𝑁
𝑘(𝑘+ 1)

(
𝑘∑
𝑗=1

𝑅2
𝑗
− 𝑘(𝑘+ 1)2

4

)
,

𝐹𝐹 =
(𝑁 − 1)𝜒2

𝐹

𝑁(𝑘− 1) − 𝜒2
𝐹

.

Where 𝑁 represents the number of data sets, while 𝑘 represents the number of methods; 𝑅𝑗 (𝑗 = 1, 2, ..., 𝑘) represents the Average 
ranking of a certain approach on all data sets and 𝐹𝐹 represents an 𝐹 -distribution with (𝑘 −1) and (𝑘 −1)(𝑁 −1) degrees of freedom. 
Then the critical difference is expressed [53,54] as:

𝐶𝐷𝛼 = 𝑞𝛼

√
𝑘(𝑘+ 1)
6𝑁

,

here 𝛼 expresses the significance level and 𝑞𝛼 represents a critical value [53].

For all datasets, we conducted the following statistical test. We calculated the average ranking by taking the mean of the rankings 
based on classification accuracy. The top-performing result in terms of accuracy measurement was assigned a rank of 1, the second-

best received a rank of 2, and so forth. Fig. 7 shows the changes of fusion classification accuracy of nine data sets under four different 
distance measures, the Friedman tests are accomplished by the comparison of this paper’s distance with Euclid distance, City-block 
distance and L-distance. When all algorithms are equal in measures of classification accuracy, the null hypothesis of Friedman’s test 
can be established. Then, the rankings of the four models can be lightly computed and their average order is acquired under the 
KNN and PNN. Thus, the values of 𝜒2

𝐹
and 𝐹𝐹 can be calculated. Table 16 shows the average sort results of the four distance models 

and the values of 𝜒2
𝐹

and 𝐹𝐹 under the classifier KNN and PNN. When the significance level is equal 10%. It follows from [52], by 
calculation, one has the critical point of 𝐹 (4 − 1, (4 − 1) ∗ (12 − 1)) in the F-distribution calculated to be 2.2577, and the critical point 
𝑞0.1 in the Nemenyi test is 2.291, the critical difference is 1.2075, that is, 𝐶𝐷 = 1.2075. So, all null hypotheses are refused, and the 
19

four distance measures are various under KNN and PNN.
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Fig. 8. Accuracy comparison with four distance measures on classifiers KNN and PNN.

In order to compare the differences between the fusion results under different measures more intuitively, we use CD critical charts 
[53] to connect methods that do not differ significantly from each other, and then in these graphs the critical values between all 
models can be clearly illustrated. Fig. 8 is the CD critical diagram which shows the comparison of the fusion result under KL-distance 
with the other three distance measures. As can be seen from Fig. 8, we can know the significant differences in fusion results under 
four different distance measures are prominent. In Fig. 8(a), under the classifier KNN, the average ranking of fusion effects using 
KL distance is the lowest, and the fusion result using KL-distance is clearly better than the other three distance measures. Likewise, 
as shown in Fig. 8(b) on the PNN, the fusion result using KL-distance outperforms the fusion result using City-block distance, and 
is similar to L-distance and Euclid distance. In conclusion, the fusion effect using KL-distance really outperforms the other three 
compared approach under the outcomes of the Friedman statistic test.

6. Conclusion

In this paper, a novel information entropy fusion approach based on information structure was put forward to improve the 
capability of classification for incomplete interval-valued decision systems. The definition of similarity was investigated based on 
new distance measurement making use of KL divergence. Then some uncertainty measures by using similarity were explored in 
incomplete interval-valued decision table. After that, we establish an infimum-measure function based new information entropy to 
fusion the MsIIvDIS. We gave the fusion algorithm and analyzed its time complexity of it. All the designed experiments demonstrated 
that our fusion approach can improve the capability of classification for low-dimensional small-sample data sets. In the meantime, 
we compared the fusion results using other three distance measures and carried out the statistical analysis, the experiments exhibit 
that The distance metric used in this article can improve the fusion effect. Nevertheless, our fusion approach is time-consuming 
for numerous large-scale and high-dimensional data sets. Thus, in our future discussed, the more effective fusion approaches and 
uncertainty measurements for the MsIIvDIS will be further discussed to enhance the computing efficiency of our model on numerous 
large-sample and high-dimensional data sets.
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