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With the advancement of data technology and storage services, the scale and complexity of data 
are rapidly growing. Consequently, promptly analyzing data and deriving precise insights have 
become urgent. Nevertheless, traditional methods struggle to balance the speed and accuracy of 
data mining. This paper proposes a data analysis technique called the Division-Mining-Fusion 
(DMF) strategy to tackle this challenge. Specifically, we divide a large-scale and complex dataset 
into multiple small-scale and simple sub-datasets. Then, we extract the knowledge embedded 
within each sub-dataset. Finally, we combine the extracted knowledge from each sub-dataset to 
accomplish learning tasks. To demonstrate the superior performance of the DMF strategy, we 
apply it to two fields: rough set theory and feature selection. The DMF strategy can accelerate 
the speed of data mining, enhance the accuracy of data analysis, and reduce the dimensionality 
of data. These advantages suggest that the DMF strategy outperforms traditional methods in 
processing data more efficiently. In addition, the number of sub-datasets is a crucial parameter 
of the DMF strategy. As the number of sub-datasets increases, the ability of the DMF strategy to 
analyze data continuously improves.

1. Introduction

Data is a type of physical symbol that can be recognized, which reflects the essence, condition, and mutual connections of objective 
things. As internet technology, data storage services, and communication methods continue to develop, data is becoming increasingly 
extensive and complex. Data, like air, pervades every aspect of production and life. Extracting useful and reliable knowledge from 
vast and intricate datasets is a pivotal concern today. Numerous technologies and methods analyze data and acquire meaningful 
information or objective laws to accomplish learning tasks [1–5].

1.1. Overview of related works

Probability theory is a highly effective approach to data analysis. However, when employing the probabilistic method to process 
data, it must have the probability distribution and associated parameters in advance. Fuzzy set theory is a valuable tool for studying 
fuzzy data. Nevertheless, one should determine the membership degree of each datum or sample before utilizing fuzzy set theory 
for fuzzy analysis and inference. Rough set models (RSMs) perform well with data problems related to uncertainty reasoning and 
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uncertainty management. Unlike other theories, one of the advantages of RSM is that all parameters are available in the sample 
data [6]. Based on various learning tasks and data characteristics, two approximation operators are constructed in RSMs. These 
two operators can approximately describe any concept. Researchers have applied RSM to uncertainty analysis, granular computing, 
and machine learning [7–9]. So far, they have developed many RSMs. For instance, the local RSM, proposed by Y.H. Qian, can 
significantly boost the efficiency of data mining by focusing on the data related to the target concept. However, it cannot significantly 
enhance the accuracy of knowledge classification [10]. Q.Z. Kong introduces the variable universe RSM, which emphasizes data 
highly relevant to the learning tasks [11]. This model enables rapid analysis of data. Parallel computing utilizes many resources to 
solve large and complex computational problems, efficiently enhancing computing speed. Numerous scholars have adopted parallel 
computing to tackle the challenges of rough set theory. For example, based on parallel algorithms, indiscernible relation [12]

can rapidly compute the approximations of a rough set. The method of parallel matrix quickly obtains the approximations in the 
dominance-based rough set [13]. Under an incomplete information table, seeking approximations of rough sets through parallel 
computing algorithms is also actively explored [14]. These methods mentioned focus on the computational efficiency of mining data. 
In addition, inspired by the idea of dividing all samples into three disjoint sample subsets in rough set theory, Y. Y. Yao proposes 
an important data processing method called three-way decision [15]. The three-way decision idea involves artificial intelligence, 
network security, conflict analysis, and other fields [16,17]. A three-way decision acts as a transitional state of a two-way decision. 
In fact, we usually need to make a three-way decision multiple times to approximate the two-way decision. Therefore, three-way 
decisions can effectively improve decision-making accuracy but reduce decision-making efficiency.

Feature selection is also called attribute selection or attribute reduction. It aims to select representative attributes to optimize 
the data information system or select some crucial attributes to reduce the dimensionality of the data [18–21]. Feature selection 
significantly improves the efficiency of learning algorithms. It has vital and in-depth applications in many fields, such as pattern 
recognition, data mining, and machine learning [22–24]. Ignoring a dataset′s useless or unimportant attributes will not result in 
information loss. At this point, we only need to select those critical attributes. This process brings three benefits. The first advantage 
is that it will complete learning tasks more easily, simplify the model, and make it easier to understand. The second one is to 
save storage space and time consumption. The third one is to reduce the disaster of data dimension and the risk of overfitting. 
Scholars have defined and studied feature selection from many perspectives. There are many methods for selecting attributes or 
features. For example, researchers widely use concept-cognitive learning and information entropy for feature selection [25–28]. 
Parallel computing also commonly handles attribute reduction in rough set theory [29,30]. Chen et al. researched the attribute 
reduction of a dominance-based neighborhood rough set using parrel computation [31]. The parallel feature selection algorithms 
based on a rough hypercuboid approach address the rapidly expanding data [32]. The parallel multi-reduction algorithm exacts more 
knowledge from complex information systems [33]. These methods can significantly improve the accuracy of feature selection. In 
addition, researchers often employ rough set theory and granular ball theory for feature selection. The advantage of these methods 
is that they can quickly select features, while the disadvantage is that they do not significantly improve the accuracy [34,35].

1.2. Our work

There are many measures for evaluating the quality of a data mining method. Undoubtedly, efficiency and effectiveness are the 
two most important. The above analysis shows that some methods can significantly accelerate speed but cannot improve accuracy. 
Others are good at increasing accuracy but cannot quickly analyze data. Therefore, it is challenging for traditional methods to 
balance the efficiency and effectiveness of data mining. This study addresses this issue by proposing the Division-Mining-Fusion 
(DMF) strategy to analyze data and achieve the following three goals:

∙ Reduce consumption time and improve the efficiency of data mining;

∙ Reduce errors in data analysis and improve the effectiveness of data mining;

∙ Reduce the data dimension and relieve dimension disasters or over-fitting problems.

The DMF strategy involves three data processing steps. First, it divides a dataset (an information table) into multiple sub-datasets 
(information subtables). The first effect of splitting a dataset is that it significantly reduces the size of each sub-dataset, which helps 
to improve the speed of data analysis. The second effect is that the label in each sub-dataset is relatively simple, reducing the 
complexity of the data and improving the accuracy of data mining. This step provides the necessary preparation for quickly and 
accurately mining data. Second, it mines the knowledge hidden in each sub-dataset. Finally, it fuses all the knowledge inferred from 
each sub-dataset to complete learning tasks. This third step ensures that the process fully considers all information from the data and 
that the obtained knowledge is true and reliable.

The difference between the traditional method and the DMF strategy appears in Figs. 1 and 2 below.

The DMF strategy does not only fully consider all the data in the dataset but also effectively reduces the interference of the data 
size and complexity. The research framework or main content of this paper appears in Fig. 3.
2

Fig. 1. Traditional method for data analysis.
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Fig. 2. DMF strategy for data analysis.

Fig. 3. The research framework of this paper.

Next, we introduce the main contents of this study. Section 2 lists several concepts related to Pawlak RSM and attribute reduction 
are listed. Section 3 proposes the information subtable family of an information table and explains it with two examples. Finally, 
some properties of an information table and its information subtable family are studied. Section 4 develops the RSM based on the 
DMF strategy. RSM based on the DMF strategy has more advantages in knowledge discovery than Pawlak RSM. Section 5 defines 
and studies three types of attribute reductions related to DMF strategy. Section 6 designs four algorithms for computing RSM and 
attribute reductions based on the DMF strategy. Compared with the traditional algorithms, the time complexities of these algorithms 
based on DMF strategy are notably lower. Section 7, through the detailed numerical experiments, confirms that the DMF strategy can 
better complete learning tasks than traditional methods. Section 8 briefly summarizes the main contents of this paper and clarifies 
the works that need further study.

2. Preliminaries

The information table that displays the data visually is an important information system. Data mining often gathers the collected 
samples and their labels to form an information table and then analyzes the data in the information table. Therefore, this paper 
regards a dataset and an information table as equivalent, with no difference.

Usually, an information table can be marked by

𝐼 = (𝑂𝐵,𝐴𝑇 ,{𝑉𝑎|𝑎 ∈ 𝐴𝑇 },{𝑓𝑎|𝑎 ∈ 𝐴𝑇 }) (1)

where 𝑂𝐵, 𝐴𝑇 , 𝑉𝑎 and 𝑓𝑎 represent the universe, attribute set, attribute value of attribute 𝑎, and information function about attribute 
𝑎, respectively [36].

For each 𝐴 ⊆ 𝐴𝑇 and each 𝑥 ∈ 𝑂𝐵, the equivalence relation 𝐸𝐴, the equivalence class of 𝑥, and a partition of the universe 
induced from 𝐸𝐴 can be written as [37]:
3

𝑥𝐸𝐴𝑦 ⇔ ∀𝑎 ∈ 𝐴 (𝑓𝑎(𝑥) = 𝑓𝑎(𝑦));
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[𝑥]𝐴 = {𝑦 ∈ 𝑂𝐵|𝑥𝐸𝐴𝑦};

𝑂𝐵∕𝐸𝐴 = {[𝑥]𝐴|𝑥 ∈ 𝑂𝐵}.

2.1. Rough set theory

Z. Pawlak first proposed and deeply studied RSM using the partition of the universe. RSM is increasingly becoming a suitable 
method for intelligent data processing [38–42]. Based on Pawlak’s idea, any subset of the universe can be approximately described 
by two approximation sets as follows [6].

Definition 2.1. In the information table described by Eq. (1), for each 𝑋 ⊆ 𝑂𝐵, we call

𝑎𝑝𝑟
𝐴
(𝑋) = {𝑥 ∈ 𝑂𝐵 | [𝑥]𝐴 ⊆ 𝑋},

𝑎𝑝𝑟𝐴(𝑋) = {𝑥 ∈ 𝑂𝐵 | [𝑥]𝐴 ∩𝑋 ≠ ∅}

the lower and upper approximations of 𝑋, respectively.

Knowledge representation represents information as a pattern consistent with machine processing. Researchers solve complex 
tasks in artificial intelligence by using it to simulate human understanding and reasoning of the world. The essence of knowledge 
representation is a description of knowledge. Due to the complexity, multi-modality, and noise of data, the description of knowledge 
is often approximate. In rough set theory, any concept is approximately described by two approximation sets. From Definition 2.1, 
for each 𝑋 ⊆ 𝑂𝐵, the relation 𝑎𝑝𝑟

𝐴
(𝑋) ⊆ 𝑋 ⊆ 𝑎𝑝𝑟𝐴(𝑋) holds, that is, 𝑋 is approximately described by 𝑎𝑝𝑟

𝐴
(𝑋) and 𝑎𝑝𝑟𝐴(𝑋). The 

greater the difference between 𝑎𝑝𝑟𝐴(𝑋) and 𝑎𝑝𝑟
𝐴
(𝑋) is, the coarser the description is. Therefore, Z. Pawlak introduced the following 

definition to illustrate the accuracy of the description [6,37].

Definition 2.2. In the information table described by Eq. (1), for each 𝑋 ⊆ 𝑂𝐵, we call

𝛼𝐴(𝑋) =
|𝑎𝑝𝑟

𝐴
(𝑋)|

|𝑎𝑝𝑟𝐴(𝑋)| (2)

the accuracy of the approximate description of the concept 𝑋.

From Definition 2.1, for any concept 𝑋 ⊆ 𝑂𝐵, all samples fall into three disjoint subsets, namely positive, negative, and boundary 
regions.

𝑃𝑜𝑠𝐴(𝑋) = 𝑎𝑝𝑟
𝐴
(𝑋);

𝑁𝑒𝑔𝐴(𝑋) = 𝑂𝐵 − 𝑎𝑝𝑟𝐴(𝑋);

𝐵𝑜𝑢𝐴(𝑋) = 𝑎𝑝𝑟𝐴(𝑋) − 𝑎𝑝𝑟
𝐴
(𝑋).

According to Definition 2.1, there are three basic facts:

(1) For any 𝑥 ∈ 𝑃𝑜𝑠𝐴(𝑋), 𝑥 must be the sample in 𝑋,

(2) For any 𝑥 ∈ 𝑁𝑒𝑔𝐴(𝑋), 𝑥 must not belong to 𝑋,

(3) For any 𝑥 ∈ 𝐵𝑜𝑢𝐴(𝑋), it cannot be determined whether 𝑥 belongs to 𝑋.

Through the above analysis, for any sample 𝑥 ∈ 𝑂𝐵, if 𝑥 ∈ (𝑃𝑜𝑠𝐴(𝑋) ∪ 𝑁𝑒𝑔𝐴(𝑋)), then 𝑥 can be accurately classified; while if 
𝑥∈(𝑃𝑜𝑠𝐴(𝑋) ∪𝑁𝑒𝑔𝐴(𝑋)) or 𝑥 ∈ 𝐵𝑜𝑢𝐴(𝑋), then 𝑥 cannot be accurately classified. So, the following formula can measure the accuracy 
of knowledge classification [37].

Definition 2.3. In the information table described by Eq. (1), for each 𝑋 ⊆ 𝑂𝐵,

𝛽𝐴(𝑋) =
|𝑃𝑜𝑠𝐴(𝑋)|+ |𝑁𝑒𝑔𝐴(𝑋)|

|𝑂𝐵| (3)

is called the accuracy of knowledge classification with respect to 𝑋.

The core issue of many learning tasks is to make reasonable and scientific decisions or predictions based on the results of data 
analysis. A decision information table, which contains conditional attributes and decision attributes, is a specialized and critical 
information expression system. In many cases, we study various decision problems using decision information tables.

A decision information table is usually described by a quintuple [43]:
4

𝐷𝐼 = (𝑂𝐵,𝐴𝑇 ∪ {𝑑},{𝑉𝑎|𝑎 ∈ 𝐴𝑇 } ∪ {𝑉𝑑},{𝑓𝑎|𝑎 ∈ 𝐴𝑇 } ∪ {𝑓𝑑}) (4)
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where 𝐴𝑇 is the set of condition attributes, 𝑑 is a decision attribute, 𝑉𝑑 and 𝑓𝑑 represent the attribute value and information function 
about attribute 𝑑, respectively. Here, the meanings of 𝑂𝐵, 𝑉𝑎, 𝑓𝑎 are the same as those in the information table in Eq. (1). At the 
same time, according to 𝐸𝐴, 𝑂𝐵∕𝐸𝐴 in the information table in Eq. (1), 𝐸{𝑑}, 𝑂𝐵∕𝐸{𝑑} can also be similarly defined in the decision 
information table.

The focus is on whether the decision is correct when conducting decision analysis. Because RSMs have deep and extensive 
practical applications in decision reasoning, we must evaluate the decision accuracy based on the Pawlak model in the decision 
information table. Then, a specific formula for calculating the decision accuracy follows [43].

Definition 2.4. In the decision information table described by Eq. (4), let 𝑂𝐵∕𝐸{𝑑} = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠} be a partition on universe 
𝑂𝐵, then we call

𝛾𝐴(𝑑) =
| ∪𝑠

𝑗=1 𝑎𝑝𝑟𝐴(𝐷𝑗 )|
|𝑂𝐵| (5)

the decision accuracy with respect to the decision attribute 𝑑.

The decision accuracy 𝛾𝐴(𝑑) represents the ratio of the number of samples that can be accurately classified into the equivalent 
classes in 𝑂𝐵∕𝐸{𝑑} to the number of all samples in the universe. Then, decision accuracy describes the degree of dependence of 
decision attributes on conditional attributes. Meanwhile, we can regard every sample in the decision information table as a decision 
rule. The decision information table is actually a collection of many decision rules. Furthermore, 𝛾𝐴(𝑑) = 0 means that all the rules 
obtained from the decision table are uncertain. And 𝛾𝐴(𝑑) = 1 means all rules are completely reliable. Therefore, the accuracy of a 
decision rule can reflect the proportion of deterministic decisions, and the larger the value of 𝛾𝐴(𝑑) is, the more likely it is to obtain 
reliable rules.

2.2. Feature selection

Feature selection refers to choosing some crucial features from existing features. Its purpose is to reduce the dimension of 
the dataset, improve learning efficiency, and simplify or optimize specific tasks. RSM has a wide range of applications in feature 
selection. In rough set theory, feature selection is called attribute reduction. Attribute reduction is a core content in rough set theory 
and granular computing theory. Many scholars conduct long-term and extensive research on attribute reduction and obtain many 
meaningful conclusions [6,12,44–46].

Based on various learning tasks, researchers introduce many reductions and study them in depth. Generally, all reductions fall into 
two categories: one aims to maintain knowledge classification ability unchanged; another ensures that the knowledge representation 
ability does not decrease. Three common and important reductions follow:

Definition 2.5. In the information table described by Eq. (1), if 𝐴′ ⊆ 𝐴 satisfies:

(1) 𝑂𝐵∕𝐸𝐴′ = 𝑂𝐵∕𝐸𝐴,

(2) For any 𝑎 ∈ 𝐴′, 𝑂𝐵∕𝐸𝐴′−{𝑎} ≠ 𝑂𝐵∕𝐸𝐴,

then 𝐴′ is called the reduction of 𝐴. And we use 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅 to denote 𝐴′, i.e., 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅 = 𝐴′. Because the reduction of 𝐴 is often 
not unique, the set of all reductions is represented by 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑅.

Definition 2.6. In the information table described by Eq. (1), for any 𝑋 ⊆ 𝑈 , if 𝐴′ ⊆ 𝐴 satisfies:

(1) 𝑎𝑝𝑟
𝐴′ (𝑋) = 𝑎𝑝𝑟

𝐴
(𝑋),

(2) For any 𝑎 ∈ 𝐴′, 𝑎𝑝𝑟
𝐴′−{𝑎}

(𝑋) ≠ 𝑎𝑝𝑟
𝐴
(𝑋),

then 𝐴′ is called the reduction of 𝐴 with respect to lower approximation set 𝑎𝑝𝑟
𝐴
(𝑋). And we use 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿 to denote 𝐴′, i.e., 

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿 = 𝐴′. Similarly, the set of all reductions is marked by 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝐿 .

Definition 2.7. In the decision information table described by Eq. (4), 𝑂𝐵∕𝐸{𝑑} = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠} is a partition on universe 𝑂𝐵. If
𝐴′ ⊆ 𝐴 satisfies:

(1) 𝑃𝑜𝑠𝐴′ ({𝑑}) = 𝑃𝑜𝑠𝐴({𝑑}),
(2) For any 𝑎 ∈ 𝐴′, 𝑃𝑜𝑠𝐴′−{𝑎}({𝑑}) ≠ 𝑃𝑜𝑠𝐴({𝑑}),

then 𝐴′ is called the reduction of 𝐴 with respect to 𝑃𝑜𝑠𝐴({𝑑}). And we use 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 to denote 𝐴′, i.e., 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 = 𝐴′. And 
the set of all reductions is denoted by 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑃 .

3. A dataset (information table) and its sub-datasets (information subtables)

We describe the datasets conveniently and intuitively using information tables to represent the datasets. The first step of the DMF 
5

strategy is to divide the dataset into many sub-datasets, that is, to divide an information table into multiple information subtables.
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Table 1

An information table about 24 students.

𝑂𝐵 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 1 1 1 0 1 0
𝑥2 1 1 0 0 1 0
𝑥3 0 0 0 0 1 0
𝑥4 1 0 0 0 0 0
𝑥5 0 0 0 1 1 0
𝑥6 1 1 1 0 1 0
𝑥7 1 0 0 0 0 0
𝑥8 0 0 0 0 0 1
𝑥9 1 0 0 0 1 0
𝑥10 0 1 1 0 1 0
𝑥11 0 0 0 0 0 0
𝑥12 1 1 0 1 0 0
𝑥13 1 1 1 0 1 0
𝑥14 0 1 1 0 1 0
𝑥15 0 0 0 1 1 0
𝑥16 1 0 0 0 0 0
𝑥17 0 0 0 1 1 0
𝑥18 0 0 0 0 0 0
𝑥19 1 0 0 0 1 0
𝑥20 1 0 0 1 0 0
𝑥21 1 1 1 0 0 0
𝑥22 0 0 0 1 1 0
𝑥23 1 0 0 1 0 0
𝑥24 0 0 0 0 0 1

Based on the above analysis,

 = {𝐼ℎ = (𝑈ℎ,𝐴𝑇 ,{𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 },{𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 })|ℎ = 1,2,⋯ , 𝑘} (6)

is called the information subtable family of the information table described by Eq. (1), where  = {𝑈1, 𝑈2, ⋯ , 𝑈𝑘} is a partition on 
𝑂𝐵.

For any ℎ ∈ {1, 2, ⋯ , 𝑘}, we call

𝐼ℎ = (𝑈ℎ,𝐴𝑇 ,{𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 },{𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 })

the ℎth information subtable of the information table described by Eq. (1). Meanwhile, 𝑉𝑎,ℎ and 𝑓𝑎,ℎ respectively represent the 
attribute value and information function for attribute 𝑎 (where all objects are from 𝑈ℎ).

Similarly, in the ℎth information subtable 𝐼ℎ = (𝑈ℎ, 𝐴𝑇 , {𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 }, {𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 }), 𝐸𝐴,ℎ, [𝑥]𝐴,ℎ and 𝑈ℎ∕𝐸𝐴,ℎ can be respec-

tively induced as follows:

𝑥𝐸𝐴,ℎ𝑦 ⇔ ∀𝑎 ∈ 𝐴 (𝑓𝑎(𝑥) = 𝑓𝑎(𝑦));

[𝑥]𝐴,ℎ = {𝑦 ∈ 𝑈ℎ|𝑥𝐸𝐴,ℎ𝑦};

𝑈ℎ∕𝐸𝐴,ℎ = {[𝑥]𝐴,ℎ|𝑥 ∈ 𝑈ℎ}.

Next, two specific examples further explain the information subtable family of an information table.

Example 3.1. In the information table described by Eq. (1), where 𝑂𝐵 = {𝑥1, 𝑥2, ⋯ , 𝑥24} is a set of 24 students, 𝐴𝑇 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} is a set of 6 attributes. 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 and 𝑎6 respectively represent male, excellent results, volunteer expe-

rience, poor student, social practice, and cheating record. In addition, if 𝑥 has attribute 𝑎, it is represented by 𝑓𝑎(𝑥) = 1. Otherwise, 
write it as 𝑓𝑎(𝑥) = 0. More details are in Table 1.

Let 𝐴 = 𝐴𝑇 , one can find that

𝑂𝐵∕𝐸𝐴 = {{𝑥1, 𝑥6, 𝑥13},{𝑥2},{𝑥3},{𝑥4, 𝑥7, 𝑥16},{𝑥5, 𝑥15, 𝑥17, 𝑥22},{𝑥8,

𝑥24},{𝑥9, 𝑥19},{𝑥10, 𝑥14},{𝑥11, 𝑥18},{𝑥12},{𝑥20, 𝑥23},{𝑥21}}.

Suppose the 24 students in Table 1 are from three different grades. That is, the first eight students are from grade 1; the middle 
eight ones are from grade 2; the rest are from grade 3. And it is required to select several students from three grades as scholarship 
winners.

This method can obtain three information subtables. Thus,
6

 = {𝐼ℎ = (𝑈ℎ,𝐴𝑇 ,{𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 },{𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 })|ℎ = 1,2,3}
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Table 2

An information subtable about grade 1.

𝑈1 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 1 1 1 0 1 0
𝑥2 1 1 0 0 1 0
𝑥3 0 0 0 0 1 0
𝑥4 1 0 0 0 0 0
𝑥5 0 0 0 1 1 0
𝑥6 1 1 1 0 1 0
𝑥7 1 0 0 0 0 0
𝑥8 0 0 0 0 0 1

Table 3

An information subtable about grade 2.

𝑈2 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥9 1 0 0 0 1 0
𝑥10 0 1 1 0 1 0
𝑥11 0 0 0 0 0 0
𝑥12 1 1 0 1 0 0
𝑥13 1 1 1 0 1 0
𝑥14 0 1 1 0 1 0
𝑥15 0 0 0 1 1 0
𝑥16 1 0 0 0 0 0

Table 4

An information subtable about grade 3.

𝑈3 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥17 0 0 0 1 1 0
𝑥18 0 0 0 0 0 0
𝑥19 1 0 0 0 1 0
𝑥20 1 0 0 1 0 0
𝑥21 1 1 1 0 0 0
𝑥22 0 0 0 1 1 0
𝑥23 1 0 0 1 0 0
𝑥24 0 0 0 0 0 1

is the information subtable family, where 𝑈1 = {𝑥1, 𝑥2, ⋯ , 𝑥8}, 𝑈2 = {𝑥9, 𝑥10, ⋯ , 𝑥16}, 𝑈3 = {𝑥17, 𝑥18, ⋯ , 𝑥24}. And the three infor-

mation subtables 𝐼1, 𝐼2 and 𝐼3 are represented by Tables 2, 3, and 4, respectively.

According to Tables 2–4, we have

𝑈1∕𝐸𝐴,1 = {{𝑥1, 𝑥6},{𝑥2},{𝑥3},{𝑥4, 𝑥7},{𝑥5},{𝑥8}};

𝑈2∕𝐸𝐴,2 = {{𝑥9},{𝑥10, 𝑥14},{𝑥11},{𝑥12},{𝑥13},{𝑥15},{𝑥16}};

𝑈3∕𝐸𝐴,3 = {{𝑥17, 𝑥22},{𝑥18},{𝑥19},{𝑥20, 𝑥23},{𝑥21},{𝑥24}}.

Example 3.2 (Continued from Example 3.1). Here, we consider another question: for 24 students in Table 1, we need to select several 
students from boys and girls to participate in the men’s and women’s debate competitions, respectively. Based on gender, two 
information subtables can be obtained, that is,

 = {𝐼ℎ = (𝑈ℎ,𝐴𝑇 ,{𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 },{𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 })|ℎ = 1,2}

is the information subtable family of the information table described in Table 1. And the two information subtables 𝐼1 and 𝐼2 are in 
Tables 5 and 6, respectively.

From Examples 3.1 and 3.2, sometimes we need to divide an information table into multiple information subtables for data 
mining.

4. Rough set theory based on DMF strategy

Rough set is a granular computing model selected to address data problems in many fields, such as intelligent analysis, decision-

making, and prediction. However, it is simple to find that all existing rough set models are based on an information table. We must 
7

propose an appropriate RSM to extract useful information from multiple information tables.
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Table 5

An information subtable about male students.

𝑈1 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥1 1 1 1 0 1 0
𝑥2 1 1 0 0 1 0
𝑥4 1 0 0 0 0 0
𝑥6 1 1 1 0 1 0
𝑥7 1 0 0 0 0 0
𝑥9 1 0 0 0 1 0
𝑥12 1 1 0 1 0 0
𝑥13 1 1 1 0 1 0
𝑥16 1 0 0 0 0 0
𝑥19 1 0 0 0 1 0
𝑥20 1 0 0 1 0 0
𝑥21 1 1 1 0 0 0
𝑥23 1 0 0 1 0 0

Table 6

An information subtable about female stu-

dents.

𝑈2 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑥3 0 0 0 0 1 0
𝑥5 0 0 0 1 1 0
𝑥8 0 0 0 0 0 1
𝑥10 0 1 1 0 1 0
𝑥11 0 0 0 0 0 0
𝑥14 0 1 1 0 1 0
𝑥15 0 0 0 1 1 0
𝑥17 0 0 0 1 1 0
𝑥18 0 0 0 0 0 0
𝑥22 0 0 0 1 1 0
𝑥24 0 0 0 0 0 1

4.1. Rough set model based on the DMF strategy

Here, using the three steps of division, mining, and fusion, we introduce how to construct a novel RSM based on the DMF strategy.

Step 1 (Division): First, by the strategy in Section 3, we divide an information table into 𝑘 information subtables.

Step 2 (Mining): Second, suppose that  = {𝐼ℎ = (𝑈ℎ, 𝐴𝑇 , {𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 }, {𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 })|ℎ = 1, 2, ⋯ , 𝑘} is the information sub-

table family of the information table described by Eq. (1), 𝐴 ⊆ 𝐴𝑇 is a subset of attributes, 𝑋 ⊆ 𝑂𝐵 is a subset of the universe 𝑂𝐵. 
For the ℎth information subtable, according to Definition 2.1, a Pawlak RSM can be induced as follows:

𝑎𝑝𝑟
𝐴,ℎ

(𝑋 ∩𝑈ℎ) = {𝑥 ∈ 𝑈ℎ | [𝑥]𝐴,ℎ ⊆ (𝑋 ∩𝑈ℎ)};

𝑎𝑝𝑟𝐴,ℎ(𝑋 ∩𝑈ℎ) = {𝑥 ∈ 𝑈ℎ | [𝑥]𝐴,ℎ ∩ (𝑋 ∩𝑈
ℎ
) ≠ ∅}.

In this way, based on 𝑘 information subtables, we can obtain 𝑘 RSMs.

Step 3 (Fusion): Third, the 𝑘 RSMs are fused employing the union of sets, and we develop a new rough set model as follows.

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = ∪𝑘
ℎ=1𝑎𝑝𝑟

𝐴,ℎ
(𝑋 ∩𝑈ℎ);

𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = ∪𝑘
ℎ=1𝑎𝑝𝑟𝐴,ℎ(𝑋 ∩𝑈ℎ).

Therefore, after the three steps of division, mining, and fusion, we propose a novel RSM based on multiple information tables as 
follows.

Definition 4.1. In the information subtable family described by Eq. (6), for each 𝑋 ⊆ 𝑂𝐵, we call

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = ∪𝑘
ℎ=1𝑎𝑝𝑟

𝐴,ℎ
(𝑋 ∩𝑈ℎ)

= ∪𝑘
ℎ=1{𝑥 ∈ 𝑈ℎ | [𝑥]𝐴,ℎ ⊆ (𝑋 ∩𝑈ℎ)};

𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = ∪𝑘
ℎ=1𝑎𝑝𝑟𝐴,ℎ(𝑋 ∩𝑈ℎ)
𝑘

8

= ∪
ℎ=1{𝑥 ∈ 𝑈ℎ | [𝑥]𝐴,ℎ ∩ (𝑋 ∩𝑈ℎ) ≠ ∅}
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the lower and upper approximations of 𝑋, respectively.

By Definitions 2.1 and 4.1, we know that if 𝑘 = 1, the model proposed in Definition 4.1 degenerates into the Pawlak model, that 
is, if 𝑘 = 1, the following two equations hold.

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = 𝑎𝑝𝑟
𝐴
(𝑋), 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = 𝑎𝑝𝑟𝐴(𝑋).

Example 4.1 (Continued from Example 3.1). Suppose 𝑋 = {𝑥1, 𝑥4, 𝑥5, 𝑥11, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 𝑥19}, based on Definition 4.1, we have

𝑎𝑝𝑟
𝐴,1

(𝑋 ∩𝑈1) = {𝑥5}, 𝑎𝑝𝑟𝐴,1(𝑋 ∩𝑈1) = {𝑥1, 𝑥4, 𝑥5, 𝑥6, 𝑥7};

𝑎𝑝𝑟
𝐴,2

(𝑋 ∩𝑈2) = {𝑥11, 𝑥13, 𝑥15}, 𝑎𝑝𝑟𝐴,2(𝑋 ∩𝑈2) = {𝑥11, 𝑥13, 𝑥15};

𝑎𝑝𝑟
𝐴,3

(𝑋 ∩𝑈3) = {𝑥18, 𝑥19}, 𝑎𝑝𝑟𝐴,3(𝑋 ∩𝑈3) = {𝑥17, 𝑥18, 𝑥19, 𝑥22}.

Hence, one can find that

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = {𝑥5, 𝑥11, 𝑥13, 𝑥15, 𝑥18, 𝑥19};

𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = {𝑥1, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥11, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 𝑥19, 𝑥22}.

4.2. The properties of rough set model based on the DMF strategy

In this part, we discuss the properties of an RSM based on the DMF strategy. To better understand this new RSM, we give an 
equivalent description of Definition 4.1 as follows.

Proposition 4.1. In the information subtable family described by Eq. (6), for each 𝑋 ⊆ 𝑂𝐵,

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = ∪𝑘
ℎ=1𝑎𝑝𝑟

𝐴,ℎ
(𝑋)

= ∪𝑘
ℎ=1{𝑥 ∈ 𝑈ℎ | [𝑥]𝐴,ℎ ⊆ 𝑋};

𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = ∪𝑘
ℎ=1𝑎𝑝𝑟𝐴,ℎ(𝑋)

= ∪𝑘
ℎ=1{𝑥 ∈ 𝑈ℎ | [𝑥]𝐴,ℎ ∩𝑋 ≠ ∅}.

Many factors affect the quality of the collected data. For example, the accuracy of the instrument will limit it. Transmission delay, 
smoothness, and other factors in the network transmission process will also affect quality. Sometimes, data will be missing or have 
considerable noise. These facts indicate that the data to be analyzed is complex and multi-modal. The knowledge obtained will have 
errors to some extent. We must evaluate the reliability or accuracy of the acquired knowledge. Therefore, it is necessary to design 
reasonable measures to solve this problem. This section will propose three measures related to RSM based on DMF strategy from the 
perspectives of knowledge representation, knowledge classification, and decision rules.

For the RSM based on the DMF strategy, any sample subset is between its lower and upper approximation sets. Thus, it is 
approximately represented by these two approximation sets. Then, the accuracy of knowledge representation can be estimated as 
follows.

Definition 4.2. In the information subtable family described by Eq. (6), for each 𝑋 ⊆ 𝑂𝐵, we call

𝛼𝐴,𝐷𝑀𝐹 (𝑋) =
|𝑎𝑝𝑟

𝐴,𝐷𝑀𝐹
(𝑋)|

|𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋)| (7)

the accuracy of approximation description of 𝑋.

Example 4.2 (Continued from Examples 3.1 and 4.1). For 𝑋 = {𝑥1, 𝑥4, 𝑥5, 𝑥11, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 𝑥19}, we can get

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = {𝑥5, 𝑥11, 𝑥13, 𝑥15, 𝑥18, 𝑥19};

𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = {𝑥1, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥11, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 𝑥19, 𝑥22}.

Then
9

𝛼𝐴,𝐷𝑀𝐹 (𝑋) = 0.5
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Meanwhile, we can list the two approximation sets of the Pawlak model as follows.

𝑎𝑝𝑟
𝐴
(𝑋) = {𝑥11, 𝑥18};

𝑎𝑝𝑟𝐴(𝑋) = {𝑥1, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥9, 𝑥11, 𝑥13, 𝑥15, 𝑥16, 𝑥17, 𝑥18, 𝑥19, 𝑥22}.

Then we have

𝛼𝐴(𝑋) = 0.14.

Proposition 4.2. In the information subtable family described by Eq. (6), for any 𝑋 ⊆ 𝑂𝐵, we have

𝛼𝐴(𝑋) ≤ 𝛼𝐴,𝐷𝑀𝐹 (𝑋).

Proposition 4.2 and Example 4.2 show that an RSM based on the DMF strategy has a stronger knowledge description ability than 
the Pawlak model.

Like the Pawlak model, for any subset 𝑋 ⊆ 𝑂𝐵, the RSM based on the DMF strategy can divide all samples into three disjoint 
sample subsets as follows.

𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑋) = 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋);

𝑁𝑒𝑔𝐴,𝐷𝑀𝐹 (𝑋) = 𝑂𝐵 − 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋);

𝐵𝑜𝑢𝐴,𝐷𝑀𝐹 (𝑋) = 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) − 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋).

For any sample 𝑥 ∈ (𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑋) ∪𝑁𝑒𝑔𝐴,𝐷𝑀𝐹 (𝑋)), we can clearly infer that 𝑥 belongs to 𝑋 or does not belong to 𝑋. But for any 
sample 𝑥 ∈ 𝐵𝑜𝑢𝐴,𝐷𝑀𝐹 (𝑋), we cannot determine whether 𝑥 belongs to 𝑋. Therefore, we define the accuracy of sample classification 
based on the DMF strategy as follows.

Definition 4.3. In the information subtable family described by Eq. (6), 𝐴 ⊆ 𝐴𝑇 is a subset of attributes. For each 𝑋 ⊆ 𝑂𝐵,

𝛽𝐴,𝐷𝑀𝐹 (𝑋) =
|𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑋)|+ |𝑁𝑒𝑔𝐴,𝐷𝑀𝐹 (𝑋)|

|𝑂𝐵| (8)

is called the accuracy of knowledge classification related to concept 𝑋.

Proposition 4.3. In the information subtable family described by Eq. (6), 𝐴 ⊆ 𝐴𝑇 is a subset of attributes. For each 𝑋 ⊆ 𝑂𝐵, we have

𝛽𝐴,𝐷𝑀𝐹 (𝑋) = 1 −
|𝐵𝑜𝑢𝐴,𝐷𝑀𝐹 (𝑋)|

|𝑂𝐵| .

Example 4.3 (Continued from Example 4.1). For 𝑋 = {𝑥1, 𝑥4, 𝑥5, 𝑥11, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 𝑥19}, we have

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) = {𝑥5, 𝑥11, 𝑥13, 𝑥15, 𝑥18, 𝑥19},

𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) = {𝑥1, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥11, 𝑥13, 𝑥15, 𝑥17, 𝑥18, 𝑥19, 𝑥22}.

Then

𝛽𝐴,𝐷𝑀𝐹 (𝑋) = 0.75.

In addition, one can find that

𝑎𝑝𝑟
𝐴
(𝑋) = {𝑥11, 𝑥18},

𝑎𝑝𝑟
𝐴
(𝑋) = {𝑥1, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥9, 𝑥11, 𝑥13, 𝑥15, 𝑥16, 𝑥17, 𝑥18, 𝑥19, 𝑥22}.

Then

𝛽𝐴(𝑋) = 0.5.

Proposition 4.4. In the information subtable family described by Eq. (6), 𝐴 ⊆ 𝐴𝑇 is a subset of attributes. For each 𝑋 ⊆ 𝑂𝐵,

𝛽𝐴(𝑋) ≤ 𝛽𝐴,𝐷𝑀𝐹 (𝑋).
10

Proposition 4.4 and Example 4.3 show that more samples can be accurately classified based on the DMF strategy.
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Table 7

An decision information table about 24 students.

𝑂𝐵 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑑

𝑥1 1 1 1 0 1 0 1
𝑥2 1 1 0 0 1 0 2
𝑥3 0 0 0 0 1 0 3
𝑥4 1 0 0 0 0 0 4
𝑥5 0 0 0 1 1 0 2
𝑥6 1 1 1 0 1 0 1
𝑥7 1 0 0 0 0 0 4
𝑥8 0 0 0 0 0 1 4
𝑥9 1 0 0 0 1 0 3
𝑥10 0 1 1 0 1 0 3
𝑥11 0 0 0 0 0 0 4
𝑥12 1 1 0 1 0 0 3
𝑥13 1 1 1 0 1 0 1
𝑥14 0 1 1 0 1 0 2
𝑥15 0 0 0 1 1 0 3
𝑥16 1 0 0 0 0 0 4
𝑥17 0 0 0 1 1 0 3
𝑥18 0 0 0 0 0 0 4
𝑥19 1 0 0 0 1 0 2
𝑥20 1 0 0 1 0 0 4
𝑥21 1 1 1 0 0 0 2
𝑥22 0 0 0 1 1 0 3
𝑥23 1 0 0 1 0 0 4
𝑥24 0 0 0 0 0 1 4

Table 8

An decision information subtable about grade 1.

𝑈 1 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑑

𝑥1 1 1 1 0 1 0 1
𝑥2 1 1 0 0 1 0 2
𝑥3 0 0 0 0 1 0 3
𝑥4 1 0 0 0 0 0 4
𝑥5 0 0 0 1 1 0 2
𝑥6 1 1 1 0 1 0 1
𝑥7 1 0 0 0 0 0 4
𝑥8 0 0 0 0 0 1 4

For the decision information table described by Eq. (4),

 = {𝐷𝐼ℎ = (𝑈ℎ,𝐴𝑇 ∪ {𝑑},{𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 } ∪ {𝑉𝑑,ℎ},{𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 } ∪ {𝑓𝑑,ℎ})|ℎ = 1,2,⋯ , 𝑘} (9)

is called the decision information subtable family of the decision information table, where  = {𝑈1, 𝑈2, ⋯ , 𝑈𝑘} is a partition on 𝑂𝐵.

Definition 4.4. In the decision information subtable family described by Eq. (9), 𝑂𝐵∕𝐸{𝑑} = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠} is a partition on 
universe 𝑂𝐵. Then

𝛾𝐴,𝐷𝑀𝐹 (𝑑) =
| ∪𝑠

𝑗=1 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝐷𝑗 )|
|𝑂𝐵| (10)

is called the accuracy of the decision rule related to the decision attribute 𝑑.

Next, we will explain the accuracy of the decision rule proposed in Definition 4.4 through a specific example.

Example 4.4 (Continued from Example 3.1). By adding a decision attribute 𝑑 to Tables 1–4, we can obtain four decision information 
tables, shown in Tables 7–10. Here, attribute 𝑑 represents “scholarship level”. And 𝑉𝑑 = {1, 2, 3, 4}, where 𝑓𝑑 (𝑥) = 𝑖 indicates that 
student 𝑥 has won the i-class scholarship, 𝑖 = 1, 2, 3. 𝑓𝑑 (𝑥) = 4 means student 𝑥 did not receive any scholarships.

Let 𝐷𝑗 = {𝑥 ∈ 𝑂𝐵|𝑓𝑑 (𝑥) = 𝑗}, 𝑗 = 1, 2, 3, 4. Then we have

𝐷1 = {𝑥1, 𝑥6, 𝑥13},
11

𝐷2 = {𝑥2, 𝑥5, 𝑥14, 𝑥19, 𝑥21},
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Table 9

An decision information subtable about grade 2.

𝑈 2 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑑

𝑥9 1 0 0 0 1 0 3
𝑥10 0 1 1 0 1 0 3
𝑥11 0 0 0 0 0 0 4
𝑥12 1 1 0 1 0 0 3
𝑥13 1 1 1 0 1 0 1
𝑥14 0 1 1 0 1 0 2
𝑥15 0 0 0 1 1 0 3
𝑥16 1 0 0 0 0 0 4

Table 10

An decision information subtable about grade 3.

𝑈 3 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑑

𝑥17 0 0 0 1 1 0 3
𝑥18 0 0 0 0 0 0 4
𝑥19 1 0 0 0 1 0 2
𝑥20 1 0 0 1 0 0 4
𝑥21 1 1 1 0 0 0 2
𝑥22 0 0 0 1 1 0 3
𝑥23 1 0 0 1 0 0 4
𝑥24 0 0 0 0 0 1 4

𝐷3 = {𝑥3, 𝑥9, 𝑥10, 𝑥12, 𝑥15, 𝑥17, 𝑥22},

𝐷4 = {𝑥4, 𝑥7, 𝑥8, 𝑥11, 𝑥16, 𝑥18, 𝑥20, 𝑥23, 𝑥24}.

Suppose that 𝐴 = {𝑎2, 𝑎3, 𝑎4, 𝑎5}, We can obtain the deterministic decision rules based on the decision information Table 7 as 
follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑟1 ∶ (𝑎2,1) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,1)⇒ (𝑑,2) related to 𝑥2,

𝑟2 ∶ (𝑎2,1) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,0)⇒ (𝑑,3) related to 𝑥12,

𝑟3 ∶ (𝑎2,1) ∧ (𝑎3,1) ∧ (𝑎4,0) ∧ (𝑎5,0)⇒ (𝑑,2) related to 𝑥21,

𝑟4 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,0)⇒ (𝑑,4) related to 𝑥20, 𝑥23,

𝑟5 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,0)⇒ (𝑑,2) related to 𝑥4, 𝑥7, 𝑥8, 𝑥11, 𝑥16, 𝑥18, 𝑥24.

Then, according to Definition 2.3, we have

𝛾𝐴(𝑑) =
| ∪4

𝑖=1 𝑎𝑝𝑟𝐴(𝐷𝑖)|
|𝑂𝐵| = 0.5.

Next, we can get three groups of deterministic decision rules {𝑟11, 𝑟
1
2, 𝑟

1
3, 𝑟

1
4, 𝑟

1
5}, {𝑟21, 𝑟

2
2, 𝑟

2
3, 𝑟

2
4} and {𝑟31, 𝑟

3
2, 𝑟

3
3, 𝑟

3
4, 𝑟

3
5}, which are 

induced from Tables 8–10, respectively.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑟11 ∶ (𝑎2,1) ∧ (𝑎3,1) ∧ (𝑎4,0) ∧ (𝑎5,1)⇒ (𝑑,1) related to 𝑥1, 𝑥6,

𝑟12 ∶ (𝑎2,1) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,1)⇒ (𝑑,2) related to 𝑥2,

𝑟13 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,1)⇒ (𝑑,3) related to 𝑥3,

𝑟14 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,0)⇒ (𝑑,4) related to 𝑥4, 𝑥7, 𝑥8,

𝑟15 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,1)⇒ (𝑑,2) related to 𝑥5.

⎧⎪⎪⎪⎨⎪⎪

𝑟21 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,1)⇒ (𝑑,3) related to 𝑥9,

𝑟22 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,0)⇒ (𝑑,4) related to 𝑥11, 𝑥16,

𝑟23 ∶ (𝑎2,1) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,0)⇒ (𝑑,3) related to 𝑥12,

2

12

⎪⎩𝑟4 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,1)⇒ (𝑑,3) related to 𝑥15.



Information Sciences 666 (2024) 120450Q. Kong, W. Wang, W. Xu et al.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑟31 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,1)⇒ (𝑑,3) related to 𝑥17, 𝑥22,

𝑟32 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,0)⇒ (𝑑,4) related to 𝑥18, 𝑥24,

𝑟33 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,0) ∧ (𝑎5,1)⇒ (𝑑,2) related to 𝑥19,

𝑟34 ∶ (𝑎2,0) ∧ (𝑎3,0) ∧ (𝑎4,1) ∧ (𝑎5,0)⇒ (𝑑,4) related to 𝑥20, 𝑥23,

𝑟35 ∶ (𝑎2,1) ∧ (𝑎3,1) ∧ (𝑎4,0) ∧ (𝑎5,0)⇒ (𝑑,2) related to 𝑥21.

Based on Definition 4.4, one can find

𝛾𝐴,𝐷𝑀𝐹 (𝑑) =
| ∪4

𝑗=1 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝐷𝑗 )|
|𝑂𝐵| = 0.875.

For the accuracy of decision-making, the following important conclusion results from Definitions 2.5, 4.4 and Example 4.4.

Proposition 4.5. In the decision information subtable family described by Eq. (9), 𝐴 ⊆ 𝐴𝑇 is a subset of attributes. Then we have

𝛾𝐴(𝑑) ≤ 𝛾𝐴,𝐷𝑀𝐹 (𝑑).

Proposition 4.5 and Example 4.4 show that we can significantly improve the reliability of decisions using the DMF strategy.

5. Feature selection based on DMF strategy

Feature selection is widely studied and applied in machine learning, data mining, decision analysis, and other fields. It reduces 
the dimension and complexity of data and avoids over-fitting. In an information table, we can regard the attributes of sample data 
as the features. So, feature selection is often called attribute reduction.

5.1. Attribute reduction based on DMF strategy

This part, based on the DMF strategy, develops three types of attribute reductions. Here, we only explain how to use the DMF 
strategy to construct attribute reduction concerning the information subtable family. The other two reductions will appear directly.

Step 1 (Division): First, an information table described by Eq. (1) contains multiple information subtables and provides the 
information subtable family shown by Eq. (6).

Step 2 (Mining): Second, in the ℎth information subtable 𝐼ℎ = (𝑈ℎ, 𝐴𝑇 , {𝑉𝑎,ℎ|𝑎 ∈ 𝐴𝑇 }, {𝑓𝑎,ℎ|𝑎 ∈ 𝐴𝑇 }), 𝐴′
ℎ

⊆ 𝐴 must satisfy:

(1) 𝑈ℎ∕𝐸𝐴′
ℎ
= 𝑈ℎ∕𝐸𝐴;

(2) For any 𝑎 ∈ 𝐴′
ℎ
, 𝑈ℎ∕𝐸𝐴′

ℎ
−{𝑎} ≠ 𝑈ℎ∕𝐸𝐴.

Then, 𝐴′
ℎ

is a reduction of 𝐴 with respect to subtable 𝐼ℎ. Based on the 𝑘 subtables, we can get 𝑘 reductions of the attribute set 𝐴.

Step 3 (Fusion): Third, we fuse the 𝑘 reductions obtained in Step 2. That is, we need to find an attribute subset 𝐴′ ⊆ 𝐴 that 
satisfies:

(1) For any 𝑈 ∈  , 𝑈∕𝐸𝐴′ = 𝑈∕𝐸𝐴;

(2) For any 𝑎 ∈ 𝐴′ and at least one subtable 𝐼ℎ such that 𝑈ℎ∕𝐸𝐴′−{𝑎} ≠ 𝑈ℎ∕𝐸𝐴.

Then, based on the DMF strategy, the reduction concerning the information subtable family will be defined as follows.

Definition 5.1. In the information subtable family described by Eq. (6), if 𝐴′ ⊆ 𝐴 satisfies:

(1) For any 𝑈 ∈  , 𝑈∕𝐸𝐴′ = 𝑈∕𝐸𝐴,

(2) For any 𝐴′′ ⊂ 𝐴′, there exists 𝑈 ∈  , such that 𝑈∕𝐸𝐴′′ ≠ 𝑈∕𝐸𝐴,

then 𝐴′ is called the reduction of 𝐴 with respect to the information subtable family. And we use 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 to denote 𝐴′, i.e., 
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 = 𝐴′. Meanwhile, the set of all the reductions of 𝐴 with respect to the information subtable family is denoted by 
𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑅,𝐷𝑀𝐹 .

Definition 5.2. In the information subtable family described by Eq. (6), 𝑋 is a subset of the universe 𝑂𝐵. If 𝐴′ ⊆ 𝐴 satisfies:

(1) 𝑎𝑝𝑟
𝐴′ ,𝐷𝑀𝐹

(𝑋) = 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋),
13

(2) For any 𝐴′′ ⊂ 𝐴′, 𝑎𝑝𝑟
𝐴′′ ,𝐷𝑀𝐹

(𝑋) ≠ 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋),
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then 𝐴′ is called the reduction of 𝐴 with respect to lower approximation set 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋). We use 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 to denote 
𝐴′, i.e., 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 = 𝐴′. And the set of all the reductions of 𝐴 with respect to the lower approximation set 𝑎𝑝𝑟

𝐴,𝐷𝑀𝐹
(𝑋) is 

denoted by 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝐿,𝐷𝑀𝐹 .

Definition 5.3. In the decision information subtable family described by Eq. (9), 𝑂𝐵∕𝐸{𝑑} = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠} is a partition on 
universe 𝑂𝐵. If 𝐴′ ⊆ 𝐴 satisfies:

(1) 𝑃𝑜𝑠𝐴′ ,𝐷𝑀𝐹 (𝑑) = 𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑑),
(2) For any 𝐴′′ ⊂ 𝐴′, 𝑃𝑜𝑠𝐴′′,𝐷𝑀𝐹 (𝑑) ≠ 𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑑),

then 𝐴′ is called the reduction of 𝐴 with respect to 𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑑). We use 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 to denote 𝐴′, i.e., 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 = 𝐴′. 
In addition, the set of all the reductions of 𝐴 with respect to 𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑑) is denoted by 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑃 ,𝐷𝑀𝐹 , where 𝑃𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑑) =
∪𝑠

𝑗=1𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝐷𝑗 ).

5.2. The properties of attribute reduction based on DMF strategy

Here, by employing a few examples, we will deeply explore the attribute reductions based on DMF strategy and obtain some 
important results.

Example 5.1 (Continued from Example 3.1). Suppose that 𝐴 = 𝐴𝑇 , based on Definition 5.1,

𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑅,𝐷𝑀𝐹 = {{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6},{𝑎1, 𝑎3, 𝑎4, 𝑎5, 𝑎6}}.

In addition, from Definition 2.5, we have

𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑅 = {𝐴𝑇 }.

Proposition 5.1. In the information subtable family described by Eq. (6), 𝐴 ⊆ 𝐴𝑇 is an attribute subset. Then we have 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝐹 ∈
𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑅,𝐷𝐹 and 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅 ∈ 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑅 such that

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ⊆ 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅.

Example 5.2 (Continued from Example 3.1). Let 𝑋 = {𝑥1, 𝑥4, 𝑥6, 𝑥7, 𝑥9, 𝑥10}, then

𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

= {𝑥4, 𝑥6, 𝑥7, 𝑥9, 𝑥10}.

Based on Definition 5.2,

𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝐿,𝐷𝑀𝐹 = {{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6},{𝑎1, 𝑎3, 𝑎4, 𝑎5, 𝑎6}}.

In addition, according to Definition 2.6, we have

𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝐿 = {𝐴𝑇 }.

Proposition 5.2. In the information subtable family described by Eq. (6), 𝐴 ⊆ 𝐴𝑇 is an attribute subset, and 𝑋 ⊆ 𝑂𝐵 is an object subset. 
Then, there exist 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ∈ 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝐿,𝐷𝑀𝐹 and 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿 ∈ 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝐿 such that

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ⊆ 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿.

Example 5.3 (Continued from Example 4.4). Let 𝐴 = 𝐴𝑇 , based on Definition 5.3,

𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑃 ,𝐷𝑀𝐹 = {{𝑎1, 𝑎3, 𝑎4, 𝑎5, 𝑎6}}.

In addition, according to Definition 2.7, we have

𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑃 = {𝐴𝑇 }.

Proposition 5.3. In the decision information subtable family described by Eq. (9), 𝐴 ⊆ 𝐴𝑇 is an attribute subset. Then, there exist 
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ∈ 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑃 ,𝐷𝑀𝐹 and 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ∈ 𝑅𝐸𝐷𝑈𝐶𝑇 (𝐴)𝑃 such that
14

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ⊆ 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 .
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6. Algorithms

We have proven that the DMF strategy has more advantages than traditional methods. Next, we design four algorithms to calculate 
RSM and attribute reduction based on the DMF strategy. Then, we will compare the time complexities of these algorithms with those 
of the corresponding traditional algorithms.

Definition 2.1 details the Pawlak RSM. Once proposed, this model has attracted considerable attention. In Section 4, we design 
an RSM based on the DMF strategy. Here, we develop Algorithm 1 to calculate the approximations of this RSM.

Algorithm 1: An algorithm for computing 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) and 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋).

Input : An information table described by Eq. (1), a partition  = {𝑈1, 𝑈2, ⋯ , 𝑈𝑘}, an attribute subset 𝐴, and an object subset 𝑋 ⊆ 𝑂𝐵;

Output : Two approximation sets 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) and 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋).

1 begin

2 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) ← ∅, 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) ← ∅;

3 for ℎ = 1 ∶ 𝑘; ℎ <= 𝑘; ℎ ++ do

4 Computing 𝑈ℎ∕𝐸𝐴,ℎ = {[𝑥]𝐴,ℎ|𝑥 ∈ 𝑈ℎ}; //where [𝑥]𝐴,ℎ = [𝑥]𝐴 ∩𝑈ℎ

5 Computing 𝑎𝑝𝑟
𝐴,ℎ

(𝑋), 𝑎𝑝𝑟𝐴,ℎ(𝑋);

6 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) ← 𝑎𝑝𝑟
𝐴,𝐷𝑀𝐹

(𝑋) ∪ 𝑎𝑝𝑟
𝐴,ℎ

(𝑋), 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) ← 𝑎𝑝𝑟𝐴,𝐷𝑀𝐹 (𝑋) ∪ 𝑎𝑝𝑟𝐴,ℎ(𝑋);

7 end

8 end

Section 2 reviews three attribute reductions in Pawlak’s rough set theory. Researchers have deeply studied these three attribute 
reductions and have widely applied them to various data problems. Section 5 generalizes these classical attribute reductions and 
obtains three new ones based on the DMF strategy. Next, we will develop three algorithms to calculate these reductions based on the 
DMF strategy.

Algorithm 2: An algorithm for computing 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 .

Input : An information table described by Eq. (1), a partition  = {𝑈1, 𝑈2, ⋯ , 𝑈𝑘} and an attribute subset 𝐴 = {𝑎1 , 𝑎2, ⋯ , 𝑎𝑙} ⊆ 𝐴𝑇 ;

Output : The reduction 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 .

1 begin

2 𝐴 ← 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ;

3 for 𝑖 = 1 ∶ 𝑙; 𝑖 <= 𝑙; 𝑖 ++ do

4 If (𝑈1∕𝐸𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹
= 𝑈1∕𝐸𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ∕{𝑎𝑖}) ∧ (𝑈2∕𝐸𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹

= 𝑈2∕𝐸𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ∕{𝑎𝑖}) ∧⋯ ∧ (𝑈𝑘∕𝐸𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹
= 𝑈𝑘∕𝐸𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ∕{𝑎𝑖}),

5 then 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ← 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ∕{𝑎𝑖};

6 Otherwise 𝑖 ← 𝑖 + 1;

7 end

8 end

Algorithm 3: An algorithm for computing 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 .

Input : An information table  = (𝑂𝐵, 𝐴𝑇 ∪ {𝑑}, {𝑉𝑎|𝑎 ∈ 𝐴𝑇 } ∪ {𝑉𝑑,ℎ}, {𝑓𝑎|𝑎 ∈ 𝐴𝑇 } ∪ {𝑓𝑑,ℎ}), a partition  = {𝑈1, 𝑈2, ⋯ , 𝑈𝑘}, an attribute subset 
𝐴 = {𝑎1 , 𝑎2, ⋯ , 𝑎𝑙} ⊆ 𝐴𝑇 and an object subset 𝑋;

Output : The reduction 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 .

1 begin

2 𝐴 ← 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ;

3 for 𝑖 = 1 ∶ 𝑙; 𝑖 <= 𝑙; 𝑖 ++ do

4 If 𝑎𝑝𝑟
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ∕{𝑎𝑖}

(𝑋) = 𝑎𝑝𝑟
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹

(𝑋)

5 then 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ← 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ∕{𝑎𝑖};

6 Otherwise 𝑖 ← 𝑖 + 1;

7 end

8 end

Algorithm 4: An algorithm for computing 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 .

Input : An information table 𝐼 = (𝑂𝐵, 𝐴𝑇 , {𝑉𝑎|𝑎 ∈ 𝐴𝑇 }, {𝑓𝑎|𝑎 ∈ 𝐴𝑇 }), a partition  = {𝑈1, 𝑈2, ⋯ , 𝑈𝑘}, an attribute subset 𝐴 = {𝑎1 , 𝑎2, ⋯ , 𝑎𝑙} ⊆ 𝐴𝑇 , a 
decision attribute 𝑑;

Output : The reduction 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 .

1 begin

2 𝐴 ← 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ;

3 for 𝑖 = 1 ∶ 𝑙; 𝑖 <= 𝑙; 𝑖 ++ do

4 Computing 𝑂𝐵∕𝐸{𝑑} = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠}
5 Computing 𝑝𝑜𝑠𝐴,𝐷𝑀𝐹 (𝑑)
6 If 𝑝𝑜𝑠𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ∕{𝑎𝑖}(𝑑) = 𝑝𝑜𝑠𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹

(𝑑)
7 then 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ← 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ∕{𝑎𝑖};

8 Otherwise 𝑖 ← 𝑖 + 1;

9 end
15

10 end
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Table 11

The time complexity of Algorithms.

Algorithms Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

DMF strategy 𝑂
(|𝑂𝐵|2∕𝑘

)
+𝑂 (|𝑋||𝑂𝐵|) 𝑂

(
𝑙 × |𝑂𝐵|2∕𝑘

)
+𝑂 (𝑙 × |𝑂𝐵|) 𝑂

(
𝑙 × |𝑂𝐵|2∕𝑘

)
+𝑂 (𝑙 × |𝑋||𝑂𝐵|) 𝑂

(
𝑙 × |𝑂𝐵|2∕𝑘

)
+𝑂

(
𝑙 × |𝑂𝐵|2)

Traditional methods 𝑂
(|𝑂𝐵|2)+𝑂 (|𝑋||𝑂𝐵|) 𝑂

(
𝑙 × |𝑂𝐵|2)+𝑂 (𝑙 × |𝑂𝐵|) 𝑂

(
𝑙 × |𝑂𝐵|2)+𝑂 (𝑙 × |𝑋||𝑂𝐵|) 𝑂

(
𝑙 × |𝑂𝐵|2)+𝑂

(
𝑙 × |𝑂𝐵|2)

Table 12

Specific information about the data sets.

No.s Datasets Objects Attributes Classes

1 Molecular Biology (Promoter Gene Sequences) 106 57 2

2 Autism Screening Adult 704 21 4

3 Statlog (German Credit Data) 1000 24 2

4 Semeion Handwritten Digit 1593 256 2

5 OPPORTUNITY Activity Recognition 2511 242 7

6 TTC-3600 3600 3209 6

7 Turkiye-student-evaluation-generic 5820 33 2

8 Gisette 6000 5000 2

9 Mushroom 8124 23 4

Table 13

Specific information about the operating environment.

Name Model Parameter

CPU AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz

Platform Python 3.9

System Windows10 64 bit

Memory SAMSUNG DDR4 16 GB; 2666 MHz

Hard Disk Intel SSDPEKNW 512 GB

We now analyze the time complexity of these four algorithms designed based on the DMF strategy and compare it with the 
traditional algorithms in Pawlak rough set theory. See Table 11 for details.

Here, the letter 𝑘 represents the number of information subtables. It is a crucial parameter in DMF strategy. Table 11 shows that 
the time complexity of algorithms related to the DMF strategy is significantly lower than that of traditional algorithms. Moreover, 
the complexity of Algorithms 1-4 decreases with the increase of parameter 𝑘.

7. Experimental analysis

The previous sections proved that the DMF strategy can analyze data better than traditional methods in RSM and feature selection.

Here, numerical experiments verify the excellent data processing ability of the DMF strategy. We use nine data sets on UCI (http://

archive .ics .uci .edu /ml /datasets .html). The details of these datasets are in Table 12. A private computer completed the experimental 
processes and results. Table 13 shows the experimental operating environment, including relevant parameters. As we all know, the 
datasets of the information subtable family are difficult to find on the Internet, so we randomly divide the information table into 
multiple subtables to obtain the information subtable family.

In this section, from the experimental perspective, we attempt to validate the advantages of the DMF strategy from three aspects: 
efficiency, accuracy, and dimensionality.

The number of information subtables has a crucial impact on the effectiveness of the DMF strategy. Therefore, we will conduct an 
experimental comparison under five cases: 𝑘 = 1, 𝑘 = 5, 𝑘 = 10, 𝑘 = 15, and 𝑘 = 20. Here, 𝑘 = 1 indicates that numerical experiments 
are conducted based on one information table. Thus, 𝑘 = 1 means all experimental results are obtained using traditional methods.

In addition, we select two statistical tests, namely the Wilcoxon and Friedman tests, to detect the performance of the DMF strategy. 
First, we use the Wilcoxon test for significance analysis and choose the significance level as 0.05. Then, compared with the traditional 
methods at 𝑘 = 1, we analyze the experimental results of the DMF strategy at 𝑘 = 5, 10, 15 and 20. Second, using the Friedman test 
with a significance level of 0.05, we study the significance of the experimental results at 𝑘 = 1, 5, 10, 15 and 20.

7.1. Efficiency of DMF strategy in analyzing data

In this part, we will test that the DMF strategy can rapidly analyze data. We will conduct numerical experiments to verify the 
higher efficiency of the DMF strategy from the perspective of calculating approximations, 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 , 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 , 
and 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 of RSM. The time consumptions of computing approximations, 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 , 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 , 
16

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 of RSM are denoted as TC AP, TC 𝑅𝑅 , TC 𝑅𝐿, and TC 𝑅𝑃 , respectively.

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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Table 14

Time consumption changes as parameter 𝑘 increases.

TC 𝑘 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 TC 𝑘 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

AP 1 0.1368 0.1845 0.1707 1.0220 1.5993 26.3656 0.5280 337.2549 0.9542 𝑅𝐿 1 0.2297 0.6938 0.9824 3.1541 4.4392 365.6978 1.0757 3015.0409 1.9033
5 0.1179 0.1650 0.1552 0.9035 1.3707 22.1383 0.5032 252.9411 0.9025 5 0.1663 0.6334 0.9209 2.6632 3.9625 272.6095 0.8822 1934.1578 1.5171
10 0.1104 0.1586 0.1535 0.8731 1.2828 19.1383 0.4966 198.0275 0.8537 10 0.1554 0.5979 0.7533 2.3227 3.6246 213.6243 0.8335 1135.6826 1.3342
15 0.1082 0.1543 0.1506 0.8409 1.1352 14.7706 0.4837 151.3023 0.7794 15 0.1226 0.5433 0.6216 2.1272 3.3358 158.9261 0.7797 651.5687 1.1370
20 0.1057 0.1492 0.1495 0.8326 1.0471 11.7385 0.4785 113.4188 0.7438 20 0.1082 0.5184 0.5683 1.9669 3.1244 115.7070 0.7062 392.5054 1.0036

𝑅𝑅 1 0.2126 0.6772 0.9824 3.0604 4.2563 419.6223 0.9117 4362.5567 1.6958 𝑅𝑃 1 0.2353 0.6816 1.0035 3.2277 4.4548 387.5186 0.9256 3618.8491 1.9047
5 0.1615 0.6146 0.9209 2.4227 3.8571 336.6789 0.8540 2763.0856 1.4861 5 0.1741 0.6299 0.9623 2.7705 3.9222 289.1821 0.8623 2259.5736 1.5214
10 0.1486 0.5695 0.7533 2.1092 3.5126 273.8774 0.8067 1654.4826 1.3015 10 0.1599 0.5774 0.8455 2.4695 3.6558 225.0465 0.8233 1249.2508 1.3670
15 0.1145 0.5131 0.6216 1.9852 3.2288 208.7672 0.7349 837.2549 0.9964 15 0.1370 0.5351 0.6454 2.2463 3.3343 165.4994 0.7558 709.304 1.0394
20 0.1033 0.4958 0.5683 1.8377 3.0844 144.6338 0.6771 576.0784 0.9276 20 0.1158 0.5078 0.5227 2.0018 3.1269 101.7679 0.6801 471.0065 0.9342

Table I

P value of the Wilcoxon test.

Data (𝑘 = 1, 𝑘 = 5) (𝑘 = 1, 𝑘 = 10) (𝑘 = 1, 𝑘 = 15) (𝑘 = 1, 𝑘 = 20)

TC AP < 0.01 < 0.01 < 0.01 < 0.01
TC 𝑅𝑅 < 0.01 < 0.01 < 0.01 < 0.01
TC 𝑅𝐿 < 0.01 < 0.01 < 0.01 < 0.01
TC 𝑅𝑃 < 0.01 < 0.01 < 0.01 < 0.01

Table II

Result of the Friedman test.

Data Friedman value 𝜒2
𝐹

P value

TC AP 18.06 28.89 8.23 × 10−6
TC 𝑅𝑅 22.5 36 2.89 × 10−7
TC 𝑅𝐿 22.5 36 2.89 × 10−7
TC 𝑅𝑃 22.5 36 2.89 × 10−7

All data of time consumption for computing TC AP, TC 𝑅𝑅 , TC 𝑅𝐿, and TC 𝑅𝑃 are in Table 14. From Table 14, the time 
consumptions of the Algorithms 1-4 at 𝑘 = 5,10,15, and 20 are much lower than those of these algorithms at 𝑘 = 1. As the parameter 
𝑘 continues to increase, the time consumption of these algorithms monotonically decreases.

To distinguish the time consumption, we divide each of the nine datasets into ten equally sized parts, denoted as 𝑈 ′
1, 𝑈

′
2, … , 𝑈 ′

10. 
And 𝑈1, 𝑈2, … , 𝑈10 satisfy the following equations:

𝑈𝑖 = 𝑈 ′
1 ∪𝑈 ′

2 ∪⋯ ∪𝑈 ′
𝑖
, 𝑖 = 1,2,… ,10.

Without loss of generality, we randomly selected three of the nine datasets for experimental analysis. Fig. 4 shows that as the size of 
the datasets increases, all the time consumptions related to a different parameter 𝑘 increase. But when 𝑘 = 1, the consumption time 
is always the longest. As the parameter 𝑘 increases, the time consumption gradually decreases.

Next, we perform the Wilcoxon and Friedman tests for statistical significance analysis to confirm the higher efficiency of the DMF 
strategy. First, we conduct the Wilcoxon test on the data from Table 14. All P values shown in Table I are less than 0.01, far below the 
significance level of 0.05. It indicates that the efficiency of the DMF strategy in processing data is significantly higher than traditional 
methods. Second, using the Friedman test, we conduct a significance analysis of the data in Table 14. One can find that all P values 
in Table II are also lower than the significance level of 0.05. This result means there is a significant difference in the efficiency of the 
DMF strategy under different parameter values. That is, as the parameter 𝑘 increases, the efficiency of the DMF strategy significantly 
improves.

7.2. Accuracy of DMF strategy in analyzing data

This section analyzes the accuracy of the DMF strategy in mining data. We will consider two important facts. First, the RSM based 
on the DMF strategy (𝑘 > 1) has higher accuracy of knowledge mining than the classic Pawlak RSM (𝑘 = 1). Second, the classification 
accuracies of classifiers induced by attribute reductions of algorithms for the DMF strategy are higher than those of classifiers of 
traditional algorithms.

(1) Accuracy of three measures based on the DMF strategy in RSM

Many fields, such as data mining and knowledge representation, require measures to objectively and scientifically evaluate the 
accuracy of acquired knowledge or decisions. In rough set theory, approximate description accuracy (𝛼𝐴(𝑋)), knowledge classi-

fication accuracy (𝛽𝐴(𝑋)), and decision accuracy (𝛾𝐴(𝑋)), shown in Definitions 2.5, 2.6, and 2.7, are three traditional measures, 
which characterize the performance of an RSM in knowledge representation, knowledge classification, and knowledge decision-
17

making, respectively. This paper generalizes these traditional measures using the DMF strategy, and we propose three new measures 
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Fig. 4. Time consumption changes with the increase of the size of dataset.

(𝛼𝐴,𝐷𝑀𝐹 (𝑋), 𝛽𝐴,𝐷𝑀𝐹 (𝑋), 𝛾𝐴,𝐷𝑀𝐹 (𝑋)). We will compare these new measures with the traditional measures. The DMF strategy leads 
to more accurate results in knowledge mining.

Table 15 shows that three accuracies based on the DMF strategy are much higher than traditional accuracies. Moreover, with 
the increase of parameter 𝑘 (the number of information subtables is increasing), these accuracies based on the DMF strategy rapidly 
increase.

Fig. 5 indicates that, as the number of attributes continues to increase, both accuracies based on the DMF strategy and traditional 
accuracies increase, but the ones based on the DMF strategy increase faster than traditional accuracies.

In addition, to detect the higher knowledge discovery ability of the DMF strategy, we select the Wilcoxon and Friedman tests for 
statistical significance analysis. First, the Wilcoxon test compares the data from Table 15. All P values shown in Table III are less 
than the significance level of 0.05. We infer that the knowledge discovery ability of the DMF strategy is significantly higher than 
that of traditional methods. Second, significance analysis is conducted on the data in Table 15 by employing the Friedman test. One 
18

can find that all P values in Table IV are also lower than the significance level of 0.05. This result shows a significant difference 
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Table 15

Accuracy changes as parameter 𝑘 increases.

Accuracy 𝑘 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

𝛼𝐴,𝐷𝑀𝐹 (𝑋) 1 0.3586 0.5478 0.8242 0.2859 0.3248 0.1748 0.2449 0.1684 0.2657

5 0.7000 0.8141 0.9287 0.5979 0.4438 0.2874 0.2640 0.2451 0.3938

10 0.8181 0.8637 0.9607 0.7366 0.5274 0.3756 0.2782 0.2997 0.5382

15 0.8750 0.9354 0.9742 0.8610 0.6146 0.4197 0.2909 0.4071 0.6168

20 0.9354 0.9377 0.9867 0.9147 0.6967 0.4739 0.3272 0.5844 0.7178

𝛽𝐴,𝐷𝑀𝐹 (𝑋) 1 0.4433 0.7585 0.8330 0.3716 0.6022 0.1758 0.6711 0.1698 0.6363

5 0.8000 0.9171 0.9340 0.6522 0.7141 0.3103 0.6810 0.2126 0.7327

10 0.8800 0.9414 0.9640 0.8049 0.7893 0.3772 0.7049 0.2674 0.8172

15 0.9238 0.9739 0.9767 0.8820 0.8207 0.4258 0.7123 0.4659 0.8573

20 0.9600 0.9742 0.9880 0.9303 0.8948 0.4783 0.7463 0.6455 0.9014

𝛾𝐴,𝐷𝑀𝐹 (𝑋) 1 0.2735 0.5994 0.3250 0.4564 0.5069 0.1033 0.7855 0.2535 0.4830

5 0.8000 0.8285 0.5990 0.6911 0.6559 0.5417 0.8097 0.3367 0.7018

10 0.9200 0.9042 0.7090 0.7916 0.7284 0.7181 0.8408 0.4636 0.7241

15 0.9248 0.9405 0.8010 0.8864 0.7682 0.8569 0.8544 0.5728 0.7449

20 0.9800 0.9571 0.8240 0.9366 0.8439 0.8614 0.8771 0.7351 0.7545
19

Fig. 5. Accuracies change as the number of attribute increases.
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Table III

P value of the Wilcoxon test.

Data (𝑘 = 1, 𝑘 = 5) (𝑘 = 1, 𝑘 = 10) (𝑘 = 1, 𝑘 = 15) (𝑘 = 1, 𝑘 = 20)

𝛼𝐴,𝐷𝑀𝐹 (𝑋) < 0.01 < 0.01 < 0.01 < 0.01
𝛽𝐴,𝐷𝑀𝐹 (𝑋) < 0.01 < 0.01 < 0.01 < 0.01
𝛾𝐴,𝐷𝑀𝐹 (𝑋) < 0.01 < 0.01 < 0.01 < 0.01

Table IV

Result of the Friedman test.

Data Friedman value 𝜒2
𝐹

P value

𝛼𝐴,𝐷𝑀𝐹 (𝑋) 22.06 35.29 4.05 × 10−7
𝛽𝐴,𝐷𝑀𝐹 (𝑋) 22.06 35.29 4.05 × 10−7
𝛾𝐴,𝐷𝑀𝐹 (𝑋) 22.26 35.82 3.15 × 10−7

Table 16

Classification accuracy of three classifiers.

Reductions Classifiers 𝑘 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 SVM 1 0.5893 ± 0.1275 0.7228 ± 0.0637 0.6667 ± 0.0571 0.8025 ± 0.1764 0.7809 ± 0.1405 0.5847 ± 0.1792 0.7944 ± 0.2367 0.6383 ± 0.1356 0.5125 ± 0.1767
5 0.7371 ± 0.2358 0.7985 ± 0.0743 0.6952 ± 0.1224 0.8563 ± 0.0987 0.8240 ± 0.2563 0.6433 ± 0.0879 0.8286 ± 0.2109 0.7196 ± 0.1752 0.6346 ± 0.0835
10 0.8002 ± 0.2164 0.8247 ± 0.0982 0.7538 ± 0.1868 0.9183 ± 0.2638 0.8639 ± 0.2444 0.7081 ± 0.1138 0.8524 ± 0.2774 0.7932 ± 0.1437 0.6595 ± 0.1322
15 0.8456 ± 0.2367 0.8576 ± 0.0774 0.7689 ± 0.1536 0.9607 ± 0.2249 0.9201 ± 0.1912 0.7861 ± 0.0643 0.8964 ± 0.1755 0.8559 ± 0.1005 0.7069 ± 0.0910
20 0.9012 ± 0.2081 0.8714 ± 0.0546 0.8269 ± 0.1125 0.9881 ± 0.2708 0.9675 ± 0.1387 0.8787 ± 0.1322 0.9347 ± 0.1469 0.9145 ± 0.1178 0.8034 ± 0.1271

KNN 1 0.6187 ± 0.1562 0.8088 ± 0.2318 0.7471 ± 0.1923 0.8088 ± 0.2318 0.7471 ± 0.1923 0.5571 ± 0.1241 0.8099 ± 0.0844 0.6185 ± 0.1292 0.5599 ± 0.2769
5 0.7421 ± 0.1790 0.8382 ± 0.1535 0.7970 ± 0.2212 0.8382 ± 0.1535 0.7970 ± 0.2212 0.6239 ± 0.1087 0.8407 ± 0.1121 0.6981 ± 0.1608 0.6494 ± 0.1876
10 0.7917 ± 0.1107 0.9030 ± 0.1444 0.8758 ± 0.2575 0.9030 ± 0.1444 0.8758 ± 0.2575 0.6825 ± 0.1381 0.8700 ± 0.1678 0.7677 ± 0.1199 0.6829 ± 0.2442
15 0.8337 ± 0.0941 0.9334 ± 0.2118 0.9132 ± 0.1636 0.9334 ± 0.2118 0.9132 ± 0.1636 0.7628 ± 0.1169 0.9013 ± 0.1533 0.8351 ± 0.0911 0.7347 ± 0.3318
20 0.8798 ± 0.1495 0.9684 ± 0.1712 0.9581 ± 0.1522 0.9684 ± 0.1712 0.9581 ± 0.1522 0.8651 ± 0.1437 0.9417 ± 0.1248 0.9064 ± 0.1285 0.8349 ± 0.1931

C4.5 1 0.6165 ± 0.1462 0.6723 ± 0.1851 0.6752 ± 0.2076 0.7918 ± 0.2944 0.8249 ± 0.0739 0.5766 ± 0.1274 0.8236 ± 0.2696 0.6030 ± 0.1327 0.5975 ± 0.3273
5 0.7405 ± 0.0979 0.8113 ± 0.2154 0.6911 ± 0.2387 0.8205 ± 0.2583 0.8577 ± 0.1226 0.6846 ± 0.1448 0.8595 ± 0.1779 0.6973 ± 0.1213 0.6639 ± 0.1688
10 0.7815 ± 0.1570 0.8623 ± 0.1626 0.7453 ± 0.1823 0.8976 ± 0.2021 0.9173 ± 0.1417 0.7335 ± 0.1013 0.8743 ± 0.0988 0.7654 ± 0.1627 0.6944 ± 0.2294
15 0.8431 ± 0.1062 0.8767 ± 0.2011 0.7785 ± 0.1930 0.9405 ± 0.1623 0.9411 ± 0.0695 0.7913 ± 0.1269 0.9059 ± 0.1167 0.8332 ± 0.1104 0.7466 ± 0.0752
20 0.8796 ± 0.1425 0.9022 ± 0.1327 0.8259 ± 0.0923 0.9704 ± 0.1855 0.9761 ± 0.0531 0.9087 ± 0.1161 0.9480 ± 0.0822 0.8926 ± 0.1219 0.8365 ± 0.1365

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 SVM 1 0.6323 ± 0.1739 0.6763 ± 0.2141 0.6651 ± 0.1159 0.7939 ± 0.0982 0.8144 ± 0.1574 0.6138 ± 0.1423 0.8258 ± 0.2096 0.6485 ± 0.1327 0.5873 ± 0.2573
5 0.7593 ± 0.2688 0.8061 ± 0.1336 0.6862 ± 0.2071 0.8318 ± 0.1677 0.8445 ± 0.2458 0.6979 ± 0.1448 0.8633 ± 0.1368 0.7231 ± 0.1608 0.6688 ± 0.1615
10 0.7972 ± 0.1466 0.8578 ± 0.1579 0.7624 ± 0.1255 0.9021 ± 0.1394 0.9126 ± 0.1531 0.7615 ± 0.1089 0.8839 ± 0.1005 0.7973 ± 0.1910 0.6895 ± 0.0828
15 0.8322 ± 0.1542 0.8939 ± 0.0755 0.7911 ± 0.1430 0.9439 ± 0.0587 0.9388 ± 0.0826 0.8153 ± 0.1305 0.9117 ± 0.0658 0.8505 ± 0.1724 0.7529 ± 0.1366
20 0.8562 ± 0.0912 0.9255 ± 0.1076 0.8313 ± 0.1947 0.9667 ± 0.0631 0.9732 ± 0.1275 0.9018 ± 0.0827 0.9466 ± 0.0527 0.9389 ± 0.1285 0.8453 ± 0.0632

KNN 1 0.6652 ± 0.2279 0.6537 ± 0.0967 0.6845 ± 0.2433 0.8018 ± 0.2326 0.7496 ± 0.1452 0.6289 ± 0.1174 0.8430 ± 0.1956 0.6421 ± 0.1357 0.6395 ± 0.3755
5 0.7661 ± 0.1965 0.8031 ± 0.1582 0.7138 ± 0.2562 0.8370 ± 0.1654 0.7899 ± 0.0528 0.7055 ± 0.1436 0.8315 ± 0.0871 0.7123 ± 0.1263 0.7130 ± 0.2533
10 0.7940 ± 0.0899 0.8678 ± 0.2239 0.7639 ± 0.1567 0.9010 ± 0.1661 0.8825 ± 0.0390 0.7628 ± 0.1092 0.8794 ± 0.1363 0.8066 ± 0.1575 0.7461 ± 0.2235
15 0.8256 ± 0.1556 0.8950 ± 0.1167 0.7968 ± 0.0916 0.9362 ± 0.1734 0.9222 ± 0.0853 0.8349 ± 0.1247 0.9088 ± 0.0289 0.8747 ± 0.1006 0.7822 ± 0.1674
20 0.8899 ± 0.0939 0.9165 ± 0.1604 0.8297 ± 0.1222 0.9658 ± 0.0889 0.9604 ± 0.0465 0.9189 ± 0.1375 0.9396 ± 0.0322 0.9516 ± 0.1493 0.8507 ± 0.1285

C4.5 1 0.6475 ± 0.1536 0.6601 ± 0.1897 0.6871 ± 0.1359 0.8018 ± 0.2344 0.7500 ± 0.1704 0.6485 ± 0.1327 0.8448 ± 0.0868 0.6562 ± 0.1546 0.6573 ± 0.3422
5 0.7658 ± 0.0879 0.8113 ± 0.0512 0.7174 ± 0.1783 0.8370 ± 0.1687 0.7937 ± 0.0824 0.7231 ± 0.1608 0.8295 ± 0.0752 0.7483 ± 0.1305 0.7261 ± 0.2681
10 0.7964 ± 0.1059 0.8738 ± 0.1567 0.7655 ± 0.0736 0.9010 ± 0.1158 0.8966 ± 0.1273 0.7973 ± 0.1910 0.8802 ± 0.1344 0.8152 ± 0.1349 0.7545 ± 0.1838
15 0.8167 ± 0.1211 0.8904 ± 0.1346 0.7882 ± 0.1488 0.9362 ± 0.1703 0.9278 ± 0.0977 0.8505 ± 0.1724 0.9065 ± 0.1179 0.8849 ± 0.1372 0.7918 ± 0.0835
20 0.8881 ± 0.0533 0.9195 ± 0.0912 0.8311 ± 0.1141 0.9658 ± 0.0897 0.9677 ± 0.0764 0.9146 ± 0.1083 0.9359 ± 0.0471 0.9453 ± 0.1051 0.8543 ± 0.1396

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 SVM 1 0.6316 ± 0.1043 0.6568 ± 0.1315 0.6771 ± 0.1680 0.8037 ± 0.2072 0.7544 ± 0.1481 0.6443 ± 0.1878 0.8456 ± 0.0949 0.6692 ± 0.1675 0.6597 ± 0.1725
5 0.7532 ± 0.1888 0.8138 ± 0.0966 0.7165 ± 0.1349 0.8398 ± 0.0695 0.7980 ± 0.1891 0.7169 ± 0.1513 0.8260 ± 0.1588 0.7486 ± 0.1358 0.7341 ± 0.2184
10 0.7624 ± 0.0912 0.8746 ± 0.1001 0.7678 ± 0.1511 0.9077 ± 0.1370 0.9005 ± 0.0673 0.7966 ± 0.1046 0.8833 ± 0.1122 0.8273 ± 0.0934 0.7692 ± 0.1687
15 0.8054 ± 0.1424 0.8957 ± 0.0379 0.7897 ± 0.0204 0.9394 ± 0.1484 0.9311 ± 0.1774 0.8447 ± 0.1362 0.9052 ± 0.0976 0.8823 ± 0.1411 0.8066 ± 0.1290
20 0.8705 ± 0.0695 0.9140 ± 0.1067 0.8585 ± 0.0885 0.9642 ± 0.1282 0.9688 ± 0.1256 0.9393 ± 0.1178 0.9423 ± 0.0624 0.9657 ± 0.1096 0.8596 ± 0.0842

KNN 1 0.6287 ± 0.0687 0.6690 ± 0.0937 0.6813 ± 0.1390 0.8061 ± 0.1255 0.7634 ± 0.0736 0.6389 ± 0.1391 0.8437 ± 0.1231 0.6517 ± 0.1872 0.6546 ± 0.1474
5 0.7476 ± 0.1226 0.8173 ± 0.1106 0.7220 ± 0.0924 0.8383 ± 0.1620 0.8012 ± 0.0983 0.7037 ± 0.1164 0.8295 ± 0.1501 0.7368 ± 0.1676 0.7352 ± 0.1300
10 0.7831 ± 0.1831 0.8804 ± 0.1338 0.7649 ± 0.0554 0.9111 ± 0.0997 0.8983 ± 0.1164 0.7948 ± 0.1533 0.8859 ± 0.0776 0.8127 ± 0.0894 0.7677 ± 0.1584
15 0.8121 ± 0.1618 0.8988 ± 0.1036 0.7972 ± 0.1146 0.9369 ± 0.1250 0.9294 ± 0.1425 0.8228 ± 0.1653 0.9043 ± 0.1362 0.8656 ± 0.1378 0.8109 ± 0.0805
20 0.8675 ± 0.0967 0.9195 ± 0.1240 0.8522 ± 0.1472 0.9601 ± 0.0535 0.9437 ± 0.0802 0.9234 ± 0.1438 0.9442 ± 0.1187 0.9591 ± 0.1353 0.8553 ± 0.1057

C4.5 1 0.6334 ± 0.1216 0.6599 ± 0.0709 0.6762 ± 0.0976 0.8115 ± 0.1376 0.7589 ± 0.1060 0.6408 ± 0.1274 0.8524 ± 0.1613 0.6621 ± 0.1547 0.6483 ± 0.1198
5 0.7488 ± 0.0532 0.8224 ± 0.1938 0.7179 ± 0.1124 0.8349 ± 0.1087 0.7954 ± 0.0971 0.7056 ± 0.1639 0.8277 ± 0.1367 0.7464 ± 0.1826 0.7273 ± 0.1597
10 0.7772 ± 0.0824 0.8879 ± 0.1500 0.7611 ± 0.1363 0.9151 ± 0.0942 0.8936 ± 0.0630 0.8064 ± 0.1165 0.8873 ± 0.0231 0.8391 ± 0.1114 0.7581 ± 0.0952
15 0.8124 ± 0.0254 0.9001 ± 0.1236 0.7904 ± 0.0597 0.9331 ± 0.0795 0.9305 ± 0.1870 0.8476 ± 0.1258 0.9107 ± 0.0708 0.8923 ± 0.1315 0.8075 ± 0.0390
20 0.8705 ± 0.1166 0.9241 ± 0.1440 0.8467 ± 0.0623 0.9582 ± 0.1385 0.9414 ± 0.1559 0.9425 ± 0.1487 0.9485 ± 0.1293 0.9783 ± 0.1604 0.8489 ± 0.0989

in the knowledge discovery ability of the DMF strategy under different parameter values. Thus, as the parameter 𝑘 increases, the 
knowledge discovery ability of the DMF strategy significantly improves.

(2) Classification accuracy of classifiers induced from feature selection based on DMF strategy

This paper explores three types of feature selections based on the DMF strategy. It studies the classification accuracies of three 
classifiers, namely support vector machine (SVM), K-Nearest Neighbor (KNN, K = 3), and decision tree (C4.5). Traditionally, all 
samples are considered an information table, and the classification accuracy of the classifier is obtained based on a single information 
table. However, according to the DMF strategy, the information table contains multiple information subtables. Each information 
subtable can provide a classification accuracy. Therefore, the average of the classification accuracies for all information subtables 
defines the classification accuracy of the classifier induced by the DMF strategy. As shown in Table 16, we obtain each data using 
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the 10-fold cross-validation method.
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Table V

P value of the Wilcoxon test.

Data (𝑘 = 1, 𝑘 = 5) (𝑘 = 1, 𝑘 = 10) (𝑘 = 1, 𝑘 = 15) (𝑘 = 1, 𝑘 = 20)

(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ,𝑆𝑉 𝑀) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ,𝐾𝑁𝑁) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ,𝐶4.5) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ,𝑆𝑉 𝑀) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ,𝐾𝑁𝑁) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ,𝐶4.5) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ,𝑆𝑉 𝑀) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ,𝐾𝑁𝑁) < 0.01 < 0.01 < 0.01 < 0.01
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ,𝐶4.5) < 0.01 < 0.01 < 0.01 < 0.01

Table VI

Result of the Friedman test.

Data Friedman value 𝜒2
𝐹

P value

(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ,𝑆𝑉 𝑀) 22.5 36 2.89 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ,𝐾𝑁𝑁) 22.06 35.29 4.05 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 ,𝐶4.5) 22.26 35.82 3.15 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ,𝑆𝑉 𝑀) 22.5 36 2.89 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ,𝐾𝑁𝑁) 22.5 36 2.89 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 ,𝐶4.5) 22.06 35.29 4.05 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ,𝑆𝑉 𝑀) 22.26 35.82 3.15 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ,𝐾𝑁𝑁) 22.5 36 2.89 × 10−7
(𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 ,𝐶4.5) 22.5 36 2.89 × 10−7

Table 17

The number of attributes.

Accuracy 𝑘 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 1 39 15 16 72 81 1279 28 2309 21

5 32 13 14 50 75 820 24 1547 18

10 25 12 13 44 61 532 21 1034 16

15 22 12 13 39 57 488 19 765 15

20 19 11 13 37 55 363 16 528 14

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 1 36 14 15 68 77 1053 25 1751 19

5 29 13 13 46 68 685 20 1160 15

10 22 11 11 38 54 464 17 753 13

15 20 10 11 36 49 341 15 536 12

20 17 10 10 33 46 282 13 422 12

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 1 33 16 17 65 72 1156 28 1978 20

5 26 14 14 44 63 722 22 1276 17

10 20 12 10 42 58 485 19 827 14

15 18 11 10 38 54 389 17 593 13

20 15 10 9 35 51 314 14 479 13

According to Table 16, all classification accuracies of the three classifiers under the DMF strategy are significantly higher than 
those of the classifiers under traditional methods. As the number of information subtables continues to increase, the classification 
accuracies of the three classifiers are also constantly improving.

Here, we select the Wilcoxon and Friedman tests for statistical significance analysis to prove the higher classification accuracy 
of the DMF strategy. First, we conduct the Wilcoxon test on the results from Table 16. All P values shown in Table V are less than 
the significance level of 0.05. Thus, the classification accuracy of the DMF strategy is significantly higher than that of traditional 
methods. Second, we analyze the results in Table 16 for significance through the Friedman test. It shows that all P values in Table VI

are lower than the significance level of 0.05. Therefore, it confirms a significant difference in the classification accuracy of the DMF 
strategy under different parameter values. As the parameter 𝑘 increases, the classification accuracy of the DMF strategy significantly 
improves.

7.3. Dimension of data based on DMF strategy

Here, we will analyze the dimension of samples in three types of attribute reduction based on the DMF strategy. Table 17

shows that, as the number of information subtables increases, the numbers of attributes in 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 , 𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 and 
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𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 fluctuates, but in general, there is a downward trend. We can derive the following two facts:
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Table VII

P value of the Wilcoxon test.

Data (𝑘 = 1, 𝑘 = 5) (𝑘 = 1, 𝑘 = 10) (𝑘 = 1, 𝑘 = 15) (𝑘 = 1, 𝑘 = 20)

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 < 0.01 < 0.01 < 0.01 < 0.01
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 < 0.01 < 0.01 < 0.01 < 0.01
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 < 0.01 < 0.01 < 0.01 < 0.01

Table VIII

Result of the Friedman test.

Data Friedman value 𝜒2
𝐹

P value

𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑅,𝐷𝑀𝐹 20.85 34.71 5.34 × 10−7
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝐿,𝐷𝑀𝐹 21.53 35.23 4.17 × 10−7
𝑅𝑒𝑑𝑢𝑐𝑡(𝐴)𝑃 ,𝐷𝑀𝐹 22.01 35.62 3.47 × 10−7

Table 18

Conclusion on DMF strategy.

Experimental analysis Conclusion

Efficiency DMF strategy has higher efficiency in analyzing data than traditional 
methods.

Effectiveness The accuracy of data analysis based on DMF strategy is higher than 
that of data analysis based on traditional methods.

Dimensions In feature selection, DMF strategy can reduce the dimension of sample 
data more effectively than traditional methods.

Efficiency When the parameter 𝑘 increases, the efficiency of using DMF strategy 
to analyze data increases.

Effectiveness When the parameter 𝑘 increases, the accuracy of using DMF strategy 
to analyze data continuously improves.

Dimensions As the parameter 𝑘 increases, the dimension of the sample data in 
attribute reduction based on DMF strategy gradually decreases.

(1) Compared with traditional reduction methods, the DMF strategy can effectively delete redundant attributes and reduce the 
dimension and complexity of data.

(2) As the number of information subtables (data subsets) increases, the number of deleted attributes increases, and the dimension 
of the data decreases. Thus, the DMF strategy performs excellently in reducing data complexity and avoiding over-fitting problems.

Next, statistical significance analysis uses the Wilcoxon and Friedman tests to detect the lower data dimension. First, we conduct 
the Wilcoxon test on the results from Table 17 in sequence. All P values shown in Table VII are less than the significance level of 
0.05. Thus, the data dimension based on the DMF strategy is significantly lower than that of traditional methods.

Second, we conduct a significance analysis of the results in Table 17 employing the Friedman test. All P values recorded in 
Table VIII are also lower than the significance level of 0.05. We conclude that there is a significant difference in the data dimension 
based on the DMF strategy under different parameter values. Thus, the data dimension based on the DMF strategy will significantly 
decrease with the increase of parameter 𝑘.

8. Conclusion and future work

Data has gradually replaced technology, capital, and manpower as a crucial factor of production. People increasingly rely on data 
for life, production, and decision-making. Due to the constraints of data sources, collection technologies, human cognition, and other 
factors, the forms of data are often complex and diverse. How to mine massive complex data to obtain useful knowledge to complete 
the established learning task is a research hot spot.

8.1. Conclusion

This article proposes a data analysis method called DMF strategy to reduce data complexity and improve data processing speed. It 
first develops an RSM based on the DMF strategy to verify the advantages of the DMF strategy. The RSM based on the DMF strategy 
performs better in efficiency and effectiveness than traditional RSMs. In addition, the DMF strategy is applied to feature selection 
theory. Compared with traditional methods, the DMF strategy has at least three advantages: First, one can select suitable attributes 
more quickly. Second, the classification accuracy of the classifiers will be higher. And third, the dimensionality of the data will be 
lower. Table 18 summarizes the results of all experimental analyses to understand the performance of the DMF strategy in processing 
22

data.
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Of course, any data mining method has limitations and cannot effectively solve all data problems. The most critical technique of 
the DMF strategy is to divide a large-scale complex dataset into multiple small-scale and simpler sub-datasets. If the amount of data 
in a dataset is relatively small or the form of data labels is relatively simple, the performance of the DMF strategy will be severely 
compromised. Additionally, it may be impossible to divide a dataset into multiple sub-datasets for data mining. In this case, the DMF 
strategy becomes ineffective.

8.2. Future work

This paper develops an RSM from the DMF strategy for the first time. It fully confirms the advantages of this model from theoretical 
and experimental perspectives. Therefore, we can develop other RSMs based on the DMF strategy. For example, concerning the DMF 
strategy, we can construct and study probabilistic RSMs, multi-granulation RSMs, and covering RSMs. Furthermore, we can combine 
the DMF strategy with fuzzy set theory, three-way decision, and formal concept analysis to deal with complex data problems. We 
showed that the larger the parameter 𝑘, the better the performance of the DMF strategy in analyzing data. However, in practical 
circumstances, we cannot infinitely increase the parameter 𝑘. Therefore, when using the DMF strategy to handle practical data 
problems, it is necessary to study the optimal value of parameter 𝑘.
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