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Incremental feature selection methods have gained increasing research attention as they improve 
the efficiency of feature selection for dynamic datasets. Multigranulation rough set, as an extension 
of rough set theory, allows for a comprehensive and rational analysis of problems from multiple 
hierarchical and granular perspectives. However, existing research on granularity partitioning 
relies on the decision maker’s subjective experience, which lacks convincing power. In this paper, 
we propose a generalized multigranulation neighborhood rough set based on weight partition 
model, using a matrix form. We discuss several properties and define a new entropy measure to 
evaluate feature importance. A heuristic feature selection algorithm is developed based on this 
entropy to search for the optimal subset. Furthermore, we discuss dynamic updating mechanism 
and design two incremental feature selection algorithms. Finally, we conduct experiments on 
12 public datasets to evaluate the performance of the proposed algorithms and validate their 
effectiveness and efficiency in feature selection for both static and dynamic datasets.

1. Introduction

Feature selection has played a pivotal and increasingly prominent role in the data preprocessing stage, witnessing widespread 
adoption across various domains such as data mining, image processing, and natural language processing. Its significance has grown 
significantly, enabling the transformation of raw data into distinct and meaningful features that capture essential information and 
facilitate the identification of different categories or the extraction of highly informative characteristics. By enhancing model perfor-

mance and improving generalization capabilities, effective feature selection not only reduces data dimensionality but also mitigates 
redundancy, addresses overfitting, and enhances the accuracy of classification or regression tasks. Moreover, it facilitates the dis-

covery of latent patterns and structures hidden within the data, thereby contributing to reducing model complexity and improving 
interpretability [1–3].

In feature selection, information entropy (IE) is used to measure the information content and uncertainty of features, playing 
an important role. The notion of IE, originally introduced by C.E. Shannon, serves as a measure of uncertainty in information and 
finds extensive applications in domains such as information theory, machine learning, and data compression. Xu et al. formulated 
the fuzzy dominance conditional entropy within the context of multi-source interval-valued systems, establishing a corresponding 
fusion model [4]. They devised a dynamic incremental heuristic algorithm to experimentally validate the efficacy and efficiency of 
the proposed model. Furthermore, Deng et al. devised a novel approach termed Label Learning Method (LDL), which incorporates 
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bilateral similarity and constructs a novel form of fuzzy entropy [5]. They employed NRS to handle LDL and substantiated its feasibility 
through subsequent experimental assessments. Jiang et al. introduced a novel technique based on IE within the framework of NRS 
to tackle the issue of outlier detection in the field of data mining [6]. This approach offers a solution for identifying and handling 
abnormal data instances. In a similar vein, Wang et al. put forward a distance-based fuzzy rough entropy and utilized this entropy to 
construct a model for anomaly detection [7]. Additionally, they devised specific algorithms tailored to support the execution of the 
anomaly detection process.

Granular computing (GrC) [8,9] is an approach that addresses problems from multiple perspectives and multiple levels, and it has 
become a rapidly developing discipline widely applied in fields such as intelligent computing and machine learning. As a new concept 
and computational paradigm in information processing, it integrates theories and methods from various domains, such as rough set 
theory and concept cognitive learning (CCL), forming a vast knowledge system and coherent methodology. Zhang et al. introduced 
bidirectional concept cognitive learning in multi-granular decision tables based on granular computing, utilizing entropy to fuse 
information from different sources and designing three concept learning algorithms to apply the theory to practical problems [10]. 
Xu et al. established a new cognitive mechanism by analyzing the relationship of bidirectional concepts (2WL) and introduced the 
motion three-way decision into 2WL, constructing an enhanced version of 2WL called TCCL [11]. They validated the effectiveness 
and generalization ability of TCCL through experiments. Guo et al. combined the memory concept cognitive learning with CCL by 
introducing a recall-forgetting mechanism to discover knowledge. Experimental verification demonstrated that this method enhances 
the effectiveness of concept learning and reduces cognitive complexity [12]. Wang et al. fused multiple types of kernel functions, 
constructed the Variable Precision Multigranulation Kernel Rough Set, and proposed a new three-way decision method. Finally, the 
applicability of the model was validated through simulation analysis [13].

Rough set theory (RST), initially proposed by Pawlak, is a mathematical tool used to handle uncertain, incomplete, and fuzzy 
data. In recent years, with the advancement of RST, it has been employed to address various problems. Due to its ability to process 
data without relying on any prior knowledge, RST has been widely applied in feature selection. In situations where the relationships 
between attributes are unknown, RST can partition objects in the data into different equivalence classes using equivalence relations, 
enabling effective analysis and processing of data validity in such scenarios. However, real-life data is diverse, and the classical RST 
approach often leads to information loss, increased computational complexity, and limited efficacy. To overcome these limitations, 
scholars have delved into researching RST, introducing neighborhood relations, dominance relations, and other alternatives to equiv-

alence relations. This has led to the development of numerous enhanced models, such as neighborhood rough set (NRS), variable 
precision rough set (VPRS), and multigranulation rough set (MGRS) [14–16]. These models address the shortcomings of classical 
RST and often exhibit higher efficiency and simplicity in data processing. This paper primarily focuses on an in-depth investiga-

tion of the neighborhood rough set and multigranulation rough set models. Classical RST models and their extensions are built on 
the foundation of single-granularity models. However, in real-life scenarios, single-granularity models exhibit significant limitations 
when addressing certain problems. Dividing data into the smallest units fails to capture relationships between data, lacking flexi-

bility and generality. For instance, performing intersection operations on two mutually independent decisions is clearly impractical. 
Consequently, scholars have begun researching Multigranulation rough set models. Qian et al. first proposed the Multigranulation 
Rough Set model (MGRS) [17] and provided new metrics based on this model, such as approximate precision and approximate qual-

ity. They also applied the theory to practical problems through algorithm designs. To enhance the efficiency and problem-solving 
capabilities of MGRS, scholars have proposed various extensions of MGRS through extensive research. Traditional MGRS imposes 
either too strict or too loose requirements when approximating, lacking restrictive conditions. Therefore, Xu et al. introduced the 
Generalized Multigranulation Rough Set model (GMGRS) [18], defined the supporting feature function, introduced the parameter 
𝛽 for examination, and discussed new properties. Zhang et al. employed a multigranulation fusion strategy to acquire information 
from multiple source systems, constructed a dynamic updating mechanism, and verified the effectiveness of fusion operators through 
algorithm comparisons [19].

In real life, data frequently undergoes dynamic alterations. Data systems consistently adjust data to maintain information accu-

racy. Classical RST assumes dataset static during feature selection. However, when data changes, recalculating the entire dataset 
substantially prolongs runtime. To address these issues, Scholars have introduced extended models to efficiently manage dynamic 
datasets. Sang et al. addressed dynamic data by proposing the fuzzy dominance neighborhood rough set model, defining a new en-

tropy as an evaluation criterion, and designing two heuristic algorithms for feature subset selection [20]. Yang et al. used sample 
selection to eliminate useless samples from the newly added data and designed a feature-based accelerator to incrementally select 
the best features, achieving feature selection [21]. Pan et al., based on the dominance neighborhood rough set, considered the im-

portance of each feature and assigned corresponding weights to each feature. They proposed a matrix-based entropy and designed 
algorithms to select excellent features [22]. Sang et al. explored the matrix-based dominance conditional entropy and the updating 
rules for the dominance relation matrix and dominance diagonal matrix when objects vary, and developed two incremental feature 
selection algorithms [23]. Huang et al. proposed an incremental feature selection method using fuzzy rough set theory in hierarchical 
classification. They analyzed the incremental updates when new samples are added and designed two incremental algorithms based 
on existing non-incremental methods [24].

When addressing problems, it is usually necessary to think and solve them from multiple angles. Since classical RST can only 
consider problems from a single perspective, it has significant limitations in problem-solving. While GMGRS can overcome the afore-

mentioned issues, it necessitates recalculating the dataset whenever the sample size changes, leading to significant time consumption. 
Inspired by the GMGRS, this study aims to investigate the updating issue when samples change and to use a novel model for feature 
2

selection. The key innovations and contributions of our research are as follows:
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Fig. 1. The framework of this paper.

1. A generalized multi-granulation neighborhood rough set model based on weighted partitioning is proposed (W-GMNRS). This 
model assigns corresponding weights to each knowledge granule (feature). By considering the differences in weight values, it 
groups knowledge granules within the same weight threshold into a single granulation. This makes the granulation allocation 
more reasonable and provides a foundation for subsequent feature selection.

2. Within the W-GMNRS framework, a matrix-based conditional entropy (W-MGME) is introduced, its properties are outlined, and 
a feature selection algorithm leveraging W-MGME is developed.

3. We analyzed the dynamic updating mechanisms when objects change and designed two incremental feature selection algorithms 
to accelerate computation speed when dataset objects are altered.

4. Experimental evaluations conducted on a set of 12 publicly available datasets substantiate the effectiveness and classification effi-

ciency of W-GMNRS. Additionally, the proposed incremental algorithm demonstrates significant reductions in time and resource 
consumption as the number of objects increases, while simultaneously achieving enhanced classification accuracy.

The remaining chapters of this paper are structured as follows: Chapter 2 provides an introduction to pertinent concepts and 
prior works. Building upon this foundation, Chapter 3 presents a methodology for computing the weights of knowledge granules and 
establishes the W-GMNRS model, while also discussing its associated properties. Subsequently, we design the conditional entropy 
based on this model, which employs matrix computations. Chapter 4 demonstrates the dynamic updating mechanism in response to 
variations in the number of objects, accompanied by a comprehensive analysis of the update process. Then, we devise two dynamic 
updating algorithms and apply them to feature selection. In Chapter 5, experimental results conducted on 12 publicly available 
datasets illustrate the efficacy and robustness of the proposed approach for feature selection. Finally, conclusions are drawn, and 
future research prospects are discussed in Chapter 6. The flowchart of this article is shown in Fig. 1.

2. Preliminaries

This Chapter provides an overview of some fundamental concepts related to classical RST, NRS, classical MGRS, and generalized 
multigranulation rough set (GMGRS) [25,26,17,18].

2.1. Rough set

Let  = (𝑈, 𝑁) be an information system, where 𝑈 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} signifies a set of objects, and 𝑁 = 𝐴 ∪ 𝐷 denotes the 
attribute set, in which 𝐴 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑠} is the conditional attribute set and 𝐷 = {𝑑} is the decision attribute set, and additionally, 
𝐴 ∩𝐷 = ∅. It is worth emphasizing that 𝑈 and 𝑁 both consist of finite non-empty sets. The equivalence relation is called 𝑅, and 
[𝑥]𝑅 is the equivalence classes of object 𝑥 with respect to 𝑅. For any target concept 𝑋 ⊆𝑈 , the upper approximation and the lower 
approximation are defined by

𝑅(𝑋) =
{
𝑥 ∈𝑈

||| [𝑥]𝑅 ⊆𝑋
}
,

𝑅(𝑋) =
{
𝑥 ∈𝑈

||| [𝑥]𝑅 ∩𝑋 ≠ ∅
}
.

(1)
3

Among them, 𝑋 is a definable set when 𝑅(𝑋) =𝑅(𝑋). On the contrary, 𝑋 is called a rough set.
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2.2. Neighborhood rough set

In an  = (𝑈, 𝐴 ∪ {𝑑}), for ∀𝑥 ∈𝑈 , ∀𝑏 ∈𝐴, the 𝑓 (𝑥, 𝑏) denotes the attribute value of 𝑥 on attribute 𝑏. Then  is designated as 
a neighborhood information system (NIS) if and only if the values of 𝐴 are numerical, and we called  in this paper. In  , 
we opt to utilize the following distance function to characterize the distance between 𝑥𝑖 and 𝑥𝑗 within 𝐵 ⊆𝐴:

Δ𝐵(𝑥𝑖, 𝑥𝑗 ) =

(∑
𝑏∈𝐵

|||𝑓 (𝑥𝑖, 𝑏) − 𝑓 (𝑥𝑗 , 𝑏)
|||𝑠
) 1

𝑠

. (2)

In this paper, we opt for the Euclidean distance for distance computation.

Given a neighborhood radius, 𝛿, the neighborhood classes of 𝑥 ∈ 𝑈 under neighborhood relation 𝑅𝐵
𝛿

is defined by

[𝑥]𝑅𝐵
𝛿
=
{
𝑥𝑘

||| Δ𝐵(𝑥,𝑥𝑘) ≤ 𝛿, 𝑥𝑘 ∈𝑈
}
. (3)

Given a  = (𝑈, 𝐴 ∪{𝑑}), the neighborhood classes [𝑥]𝑅𝐵
𝛿

, for ∀𝑋 ⊆𝑈 , ∀𝐵 ⊆𝐴, the definitions of upper approximation 𝑅𝐵
𝛿
(𝑋)

and lower approximation 𝑅𝐵
𝛿
(𝑋) are

𝑅𝐵
𝛿
(𝑋) =

{
𝑥 ∈𝑈

||| [𝑥]𝑅𝐵
𝛿
⊆ 𝑋

}
,

𝑅𝐵
𝛿
(𝑋) =

{
𝑥 ∈𝑈

||| [𝑥]𝑅𝐵
𝛿
∩𝑋 ≠ ∅

}
.

(4)

In the realm of feature selection, NRS offers the capability to directly select attributes from numerical decision tables, obviating 
the necessity for the discretization process of numerical data while ensuring classification performance. Consequently, the utilization 
of neighborhood NRS is employed for data processing in this study.

2.3. Multigranulation rough set

In practical scenarios, domains are often partitioned by multiple relationships rather than a single one. The classical RST is 
insufficient to address such situations. To capture problem descriptions from multiple perspectives, Xu et al. introduced optimistic 
and pessimistic multigranulation rough sets [27].

Given a  = (𝑈, 𝐴 ∪ {𝑑}), neighborhood class [𝑥]𝑅𝐵
𝛿

, for ∀𝑋 ⊆𝑈 , ∀𝑁𝑖 ⊆ 𝐴(𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝐴|), the definitions of the upper 
approximation and lower approximation of 𝑋 under relation 𝑅𝐵

𝛿
in optimistic multigranulation are as following:



∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋) =

{
𝑥 ∈𝑈

||| 𝑚⋁
𝑖=1

(
[𝑥]𝑅𝐵

𝛿
⊆ 𝑋

)}
,



∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋) =

{
𝑥 ∈𝑈

||| 𝑚⋀
𝑖=1

(
[𝑥]𝑅𝐵

𝛿
∩𝑋 ≠ ∅

)}
,

(5)

and the upper approximation and lower approximation in pessimistic multigranulation are defined as



∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋) =

{
𝑥 ∈𝑈

||| 𝑚⋀
𝑖=1

(
[𝑥]𝑅𝐵

𝛿
⊆ 𝑋

)}
,



∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋) =

{
𝑥 ∈𝑈

||| 𝑚⋁
𝑖=1

(
[𝑥]𝑅𝐵

𝛿
∩𝑋 ≠ ∅

)}
.

(6)

In these definitions, the symbols “
⋀

” and “
⋁

” are used to represent “𝑎𝑛𝑑” and “𝑜𝑟” respectively. Furthermore, when 



∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋) = 

∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋), 𝑋 is considered optimistic and precise, the same applies to pessimistic multigranulation when 



∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋) = 

∑𝑚
𝑖=1 𝑁𝑖

𝛿
(𝑋). On the contrary, 𝑋 is rough.

2.4. Generalized multigranulation rough set

Among the aforementioned two types of MGRS, the optimistic MGRS is overly lenient in depict approximations, while the pes-

simistic MGRS is excessively stringent. Both approaches overlook the commonly encountered principle of minority following the 
majority in real-life situations. To overcome these limitations, Xu et al. proposed the generalized multigranulation rough set (GM-

GRS) [18]. In this paper, we extend the existing model by incorporating neighborhood relation, leading to the development of 
generalized multigranulation neighborhood rough set (GMNRS). To expound upon this model, a feature support function is initially 
4

defined.
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Given a  = (𝑈, 𝐴 ∪ {𝑑}), for ∀𝑋 ⊆ 𝑈 , ∀𝑁𝑖 ⊆ 𝐴(𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝐴|), the feature support function 𝑆𝛿,𝑁𝑖

𝑋
(𝑥) is defined to 

describe the relationship of inclusion regarding the [𝑥]
𝑅

𝑁𝑖
𝛿

and 𝑋 as:

𝑆
𝛿,𝑁𝑖

𝑋
(𝑥) =

{
1, [𝑥]

𝑅
𝑁𝑖
𝛿

⊆ 𝑋

0, 𝑜𝑡ℎ𝑒𝑟𝑠
. (7)

Through the scrutiny of the provided feature support function, it is discerned that in the case of optimistic MGRS, an approximation 
can solely be achieved when 𝑆𝛿,𝑁𝑖

𝑋
(𝑥) = 1. This criterion is excessively rigorous and may introduce superfluous information. Likewise, 

the conditions of pessimistic MGRS are too lenient to accurately characterize concepts. Consequently, GMGRS employs the parameter 
𝛽 to govern the approximation conditions. A smaller value of 𝛽 signifies a more relaxed requirement, whereas a larger value of 𝛽
implies a more stringent condition.

Given a  = (𝑈, 𝐴 ∪ {𝑑}), for the feature support function 𝑆𝛿,𝑁𝑖

𝑋
(𝑥), ∀𝑋 ⊆ 𝑈 , ∀𝑁𝑖 ⊆ 𝐴(𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝐴|), 𝛽 ∈ (0.5, 1], the 

definitions of upper approximation and lower approximation in GMGRS are as follows:

𝛿(𝑋) =

⎧⎪⎪⎨⎪⎪⎩
𝑥 ∈𝑈

|||||
𝑚∑
𝑖=1

𝑆
𝛿,𝑁𝑖

𝑋
(𝑥)

𝑚
≥ 𝛽

⎫⎪⎪⎬⎪⎪⎭
,

𝛿(𝑋) =

⎧⎪⎪⎨⎪⎪⎩
𝑥 ∈𝑈

|||||
𝑚∑
𝑖=1

(
1 −𝑆

𝛿,𝑁𝑖

𝑋
(𝑥)

)
𝑚

> 1 − 𝛽

⎫⎪⎪⎬⎪⎪⎭
.

(8)

< 𝛿(𝑋), 𝛿(𝑋) > is called GMGRS, 𝛽 is referred to as the information level. When 𝛿(𝑋) ≠ 𝛿(𝑋), 𝑋 is a rough set. It 

is worth noting that there is no explicitly fixed inclusion relationship between 𝛿 (𝑋) and 𝑅𝐵
𝛿
(𝑋), and the same applies to 𝛿(𝑋)

and 𝑅𝐵
𝛿
(𝑋) as well.

3. Matrix-based generalized multigranulation neighborhood rough set based on weighted partition

In this chapter, we will initially outline the methodology of assign weights to knowledge granules and assembling them into 
diverse granularities. Subsequently, we will proceed with the expansion of this representation using a matrix-based approach.

3.1. Generation of weights and knowledge granule partitioning

In real-world scenarios, each knowledge granule possesses a distinct level of importance. Existing MGRS approaches solely rely on 
granule quantity to determine granularity, disregarding the quality of knowledge granules. Knowledge granules of varying importance 
correspond to distinct weight values. It is erroneous to equate the impact of multiple low-weight knowledge granules with that of 
a single high-weight knowledge granule in decision-making. Consequently, based on the assigned weights of individual knowledge 
granules, we cluster them into diverse granularities, ensuring a more reasonable and practical granularity allocation process that 
enhances the applicability of the decision-making process.

Definition 1. Given a  = (𝑈, 𝐴 ∪ {𝑑}), where 𝐴 = (𝑏1, 𝑏2, ⋯ , 𝑏𝑠). For ∀𝑏 ∈𝐴, ∀𝑥 ∈𝑈 , 𝑔(𝑥, 𝑏) signifies the value of 𝑥 pertaining 
to 𝑏. Let the coefficient matrix of 𝐴 be

 =
⎛⎜⎜⎜⎝
𝑔(𝑥1, 𝑏1) 𝑔(𝑥1, 𝑏2) ⋯ 𝑔(𝑥1, 𝑏𝑠)
𝑔(𝑥2, 𝑏1) 𝑔(𝑥2, 𝑏2) ⋯ 𝑔(𝑥2, 𝑏𝑠)

⋮ ⋮ ⋮ ⋮
𝑔(𝑥𝑛, 𝑏1) 𝑔(𝑥𝑛, 𝑏2) ⋯ 𝑔(𝑥𝑛, 𝑏𝑠)

⎞⎟⎟⎟⎠ , (9)

the weight-vector of 𝐴 be

𝜔 =
(
𝜔𝑏1

,𝜔𝑏2
,⋯ ,𝜔𝑏𝑠

)𝑇
, (10)

the vector of 𝐷 be

𝜉 =
(
𝑔(𝑥1, 𝑑), 𝑔(𝑥2, 𝑑),⋯ , 𝑔(𝑥𝑛, 𝑑)

)𝑇
. (11)

In situations where the number of attributes surpasses the number of objects, the feature matrix may become non-invertible. To 
address this issue, we introduce a regularization parameter 𝜆 (set to 0.1 in this paper) and an identity matrix 𝐸. This enables us to 
5

obtain the closed-form solution for the weight-vector, which is given by:
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𝜔 = (𝑇+ 𝜆𝐸)−1𝑇 𝜉. (12)

Subsequently, the optimal weight-vector is sought by minimizing the loss function, which is defined as follows:

 = ‖𝜉 −𝜔‖2 + 𝜆‖𝜔‖2. (13)

By employing this method, we can derive the weight-vector for all knowledge granules and acquire the weight values corresponding 
to each knowledge granule, defined as follows:

𝜔(𝑏𝑖) = 𝜔𝑏𝑖
, 𝑖 ∈ {1,2,⋯ , 𝑠}. (14)

Given a  = (𝑈, 𝐴 ∪ {𝑑}), weight-vector for knowledge granules 𝜔. For ∀𝑏 ∈ 𝐴, the mapping function ℎ form the weight of 
knowledge granule to its corresponding granule, is defined as follows:

ℎ(𝜔(𝑏𝑖)) = 𝑏𝑖, 𝑖 ∈ {1,2,⋯ , 𝑠}. (15)

From equation (12), we can deduce that as the weight value increases, the correlation with the decision attribute also increases.

Once the weights of knowledge granules are computed, we employ the Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) algorithm [28] from machine learning to perform granularity partitioning. This algorithm utilizes grid search to 
discover the optimal neighborhood radius and density threshold. It organizes data points into high-density regions while considering 
low-density regions as noise points. Consequently, based on the weight values of different knowledge granules, they are clustered 
into distinct granularities denoted as 𝑃𝑖(𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝐴|), and meet the following relationships:

1. ∀𝑃𝑖 ⊆ 𝐴, where 𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝐴|;
2. 1 ≤ |𝑃𝑖| ≤ |𝐴|, where 𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝐴| and “| ⋅ |” represents the number of knowledge granules.

We apply the aforementioned approach to GMNRS and construct generalized multigranulation neighborhood rough set based 
on weight partition (W-GMNRS), which considers weight distributions. Next, we delve into the study of its characteristic support 
function and relationships from a matrix form.

3.2. Matrix form in generalized multigranulation neighborhood rough set based on weight partition (W-MGMNRS)

Definition 2. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), let 𝑅𝑃𝑖

𝛿
denote neighbor-

hood relation of granularity 𝑃𝑖, the definition of the neighborhood relation matrix 𝑃𝑖

𝛿
= [m𝛿𝑃𝑖

𝑗𝑘
]𝑛×𝑛 for 𝑃𝑖 is as follows:


𝑃𝑖

𝛿
=

⎛⎜⎜⎜⎜⎝
m

𝛿𝑃𝑖

11 m
𝛿𝑃𝑖

12 ⋯ m
𝛿𝑃𝑖

1𝑛
m

𝛿𝑃𝑖

21 m
𝛿𝑃𝑖

22 ⋯ m
𝛿𝑃𝑖

2𝑛
⋮ ⋮ ⋱ ⋮

m
𝛿𝑃𝑖

𝑛1 m
𝛿𝑃𝑖

𝑛2 ⋯ m
𝛿𝑃𝑖
𝑛𝑛

⎞⎟⎟⎟⎟⎠
,

where

m
𝛿𝑃𝑖

𝑗𝑘
=
{

1, Δ𝑃𝑖
(𝑥𝑗 , 𝑥𝑘) ≤ 𝛿

0, others
(16)

signifies the fundamental element of 𝑃𝑖

𝛿
, 𝛿 is the neighborhood radius, Δ𝑃𝑖

(𝑥𝑗 , 𝑥𝑘) is the distance function under 𝑃𝑖.

Given a  = (𝑈, 𝐴 ∪ {𝑑}), for ∀𝑥𝑡 ∈ 𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), let 𝑓 (𝑥, 𝑑) denote the attribute value of 𝑥 on 𝑑, the definition of the 
decision matrix 𝑑 = [D𝑑

𝑗𝑘
]𝑛×𝑛 for 𝑑 is as follows:

𝑑 =
⎛⎜⎜⎜⎝
D𝑑

11 D𝑑
12 ⋯ D𝑑

1𝑛
D𝑑

21 D𝑑
22 ⋯ D𝑑

2𝑛
⋮ ⋮ ⋱ ⋮

D𝑑
𝑛1 D𝑑

𝑛2 ⋯ D𝑑
𝑛𝑛

⎞⎟⎟⎟⎠ ,
where

D
𝑑
𝑗𝑘

=
{

1, 𝑓 (𝑥𝑗 , 𝑑) = 𝑓 (𝑥𝑘, 𝑑)
0, others

(17)

signifies the fundamental element of 𝑑 . In this paper, we solely focus on the consideration of a single decision.

Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), ∀𝑥𝑡 ∈ 𝑈 , [𝑥𝑡]𝑅𝑃𝑖
𝛿

denotes the neighborhood class of 𝑥

under 𝑃𝑖, let feature column vector 𝐻𝑥𝑡
(𝑃𝑖) = (ℎ𝐺1

(𝑥𝑡), ℎ𝐺2
(𝑥𝑡),⋯ , ℎ𝐺𝑠

(𝑥𝑡))𝑇 and feature column vector 𝐿𝑥𝑡
(𝑃𝑖) = (𝑙𝐺1

(𝑥𝑡), 𝑙𝐺2
(𝑥𝑡), ⋯ ,
6

𝑙𝐺𝑠
(𝑥𝑡))𝑇 , where the feature elements are:
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Table 1

An Information System.

𝑈 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8 𝑑

𝑥1 0.40 0.92 0.61 0.73 0.84 0.55 0.33 0.72 1

𝑥2 0.72 0.53 0.82 0.42 0.64 0.97 0.85 0.47 1

𝑥3 0.63 0.46 0.45 0.87 0.76 0.57 0.38 0.95 1

𝑥4 0.81 0.75 0.96 0.38 0.51 0.68 0.49 0.87 2

𝑥5 0.93 0.64 0.54 0.76 0.47 0.89 0.79 0.58 2

𝑥6 0.52 0.87 0.76 0.65 0.91 0.34 0.45 0.76 2

𝑥7 0.76 0.37 0.48 0.92 0.69 0.74 0.86 0.59 2

𝑥8 0.47 0.61 0.83 0.54 0.35 0.96 0.67 0.78 3

𝑥9 0.67 0.73 0.57 0.39 0.89 0.43 0.98 0.67 3

𝑥10 0.92 0.56 0.68 0.78 0.41 0.62 0.73 0.85 3

ℎ∼𝑋
𝑃𝑖

(𝑥𝑡) =
⎧⎪⎨⎪⎩
1, [𝑥𝑡]𝑅𝑃𝑖

𝛿

∩𝑋 = ∅

0, [𝑥𝑡]𝑅𝑃𝑖
𝛿

∩𝑋 ≠ ∅
,

𝑙𝑋
𝑃𝑖
(𝑥𝑡) =

{
1, [𝑥𝑡]𝑅𝑃𝑖

𝛿

⊆ 𝑋

0, others
.

(18)

Given a  = (𝑈, 𝐴 ∪ {𝑑}). For 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), ∀𝑥𝑡 ∈𝑈 , let feature support function 𝐻∼𝑋
𝑥𝑡

(𝑃 ) denotes the 
average level of inclusion of 𝑥𝑡 relative to 𝑋 across all attributes 𝐴, feature support function 𝐿𝑋

𝑥𝑡
(𝑃 ) denotes the average level of 

inclusion of 𝑥𝑡 relative to the complement of 𝑋 across all attributes 𝐴. The following is the delineation of their definition:

𝐻∼𝑋
𝑥𝑡

(𝑃 ) =

𝑚∑
𝑖=1

(1 − ℎ∼𝑋
𝑃𝑖

(𝑥𝑡))

𝑚
,

𝐿𝑋
𝑥𝑡
(𝑃 ) =

𝑚∑
𝑖=1

𝑙𝑋
𝑃𝑖
(𝑥𝑡)

𝑚
.

(19)

Given a  = (𝑈, 𝐴 ∪ {𝑑}). For 𝑃 ⊆ 𝐴, ∀𝑥𝑡 ∈ 𝑈 , let 𝛽 ∈ (0.5, 1], 𝐺𝑂
𝑃
(𝑋) = (𝑔𝑂

𝑃
(𝑥𝑡))𝑛×1 and 𝐺𝑁

𝑃
(𝑋) = (𝑔𝑁

𝑃
(𝑥𝑡))𝑛×1 denote the 

positive and negative domain vectors respectively. Their definitions are as follows:

𝑔𝑂
𝑃
(𝑥𝑡) =

{
1, If 𝐿𝑋

𝑥𝑡
(𝑃 ) ≥ 𝛽

0, others
,

𝑔𝑁
𝑃
(𝑥𝑡) =

{
1, If 𝐻∼𝑋

𝑥𝑡
(𝑃 ) > 1 − 𝛽

0, others
.

(20)

Example 1. Table 1 is a NIS, where 𝑈 = {𝑥1, 𝑥2, ⋯ , 𝑥10} is the object set, 𝐴 = {𝑏1, 𝑏2, ⋯ , 𝑏8} is the condition attribute set and 𝑑
is the decision attribute set. Assuming target set is 𝑋 = {𝑥1, 𝑥3, 𝑥5, 𝑥6, 𝑥8}, neighborhood radius 𝛿 is 0.2, and the parameter 𝛽 is 
0.6. By employing Definition 1, we can derive the weight vector to be: 𝜔 = (0.22, 0.05, 0.01, −0.08, −0.10, 0.21, 0.31, 0.07)𝑇 . Then, by 
utilizing DBSCAN algorithm, we can utilize the weights of each knowledge granule to classify them into the following granularities: 
𝑃1 = {𝑏1, 𝑏6, 𝑏7}, 𝑃2 = {𝑏4, 𝑏5}, and 𝑃3 = {𝑏2, 𝑏3, 𝑏8}.

Based on Definition 2, we can derive the decision matrix and the neighborhood relationship matrices corresponding to the gran-

ularities 𝑃1, 𝑃2, and 𝑃3 as follows:

𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
,

𝑃1
𝛿

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
,

7

⎜⎝0 0 0 0 0 0 0 1 1 1
⎟⎠ ⎜⎝0 0 0 0 0 0 1 0 0 1

⎟⎠
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Fig. 2. Heatmap of Relationships Among Condition Attributes.


𝑃2
𝛿

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
𝑃3
𝛿

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The feature column vector of 𝑥𝑖 is as follows:

𝐻𝑥1
(𝑃 ) = (0,0,0)𝑇 ,𝐻𝑥2

(𝑃 ) = (1,1,0)𝑇 ,𝐻𝑥3
(𝑃 ) = (0,0,0)𝑇 ,𝐻𝑥4

(𝑃 ) = (0,0,0)𝑇 ,𝐻𝑥5
(𝑃 ) = (0,0,0)𝑇 ,

𝐻𝑥6
(𝑃 ) = (0,0,0)𝑇 ,𝐻𝑥7

(𝑃 ) = (1,0,0)𝑇 ,𝐻𝑥8
(𝑃 ) = (0,0,0)𝑇 ,𝐻𝑥9

(𝑃 ) = (0,1,1)𝑇 ,𝐻𝑥10
(𝑃 ) = (0,0,1)𝑇 ;

𝐿𝑥1
(𝑃 ) = (0,1,1)𝑇 ,𝐿𝑥2

(𝑃 ) = (0,0,0)𝑇 ,𝐿𝑥3
(𝑃 ) = (1,0,0)𝑇 ,𝐿𝑥4

(𝑃 ) = (0,0,0)𝑇 ,𝐿𝑥5
(𝑃 ) = (0,0,0)𝑇 ,

𝐿𝑥6
(𝑃 ) = (1,1,1)𝑇 ,𝐿𝑥7

(𝑃 ) = (0,0,0)𝑇 ,𝐿𝑥8
(𝑃 ) = (0,0,1)𝑇 ,𝐿𝑥9

(𝑃 ) = (0,0,0)𝑇 ,𝐿𝑥10
(𝑃 ) = (0,0,0)𝑇 .

Based on the above, we can derive the two feature support functions for 𝑥𝑖 as follows:

𝐻∼𝑋
𝑥1

(𝑃 ) = 1,𝐻∼𝑋
𝑥2

(𝑃 ) = 1
3 ,𝐻

∼𝑋
𝑥3

(𝑃 ) = 1,𝐻∼𝑋
𝑥4

(𝑃 ) = 1,𝐻∼𝑋
𝑥5

(𝑃 ) = 1,

𝐻∼𝑋
𝑥6

(𝑃 ) = 1,𝐻∼𝑋
𝑥7

(𝑃 ) = 2
3 ,𝐻

∼𝑋
𝑥8

(𝑃 ) = 1,𝐻∼𝑋
𝑥9

(𝑃 ) = 1
3 ,𝐻

∼𝑋
𝑥10

(𝑃 ) = 2
3 ;

𝐿𝑋
𝑥1
(𝑃 ) = 2

3 ,𝐿
𝑋
𝑥2
(𝑃 ) = 0,𝐿𝑋

𝑥3
(𝑃 ) = 1

3 ,𝐿
𝑋
𝑥4
(𝑃 ) = 0,𝐿𝑋

𝑥5
(𝑃 ) = 0,

𝐿𝑋
𝑥6
(𝑃 ) = 1,𝐿𝑋

𝑥7
(𝑃 ) = 0,𝐿𝑋

𝑥8
(𝑃 ) = 1

3 ,𝐿
𝑋
𝑥9
(𝑃 ) = 0,𝐿𝑋

𝑥10
(𝑃 ) = 0.

Then, the positive and negative domain vectors can be derived as follows:

𝐺𝑂
𝑃
(𝑋) = (1,0,0,0,0,1,0,0,0,0),

𝐺𝑁
𝑃
(𝑋) = (1,0,1,1,1,1,1,1,0,1).

Fig. 2 illustrates a heatmap showcasing the interrelationships among the condition attributes. We utilized the Pearson correlation 
8

coefficient method for assessing the correlation among conditional attributes, employing the following calculation formula:
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𝑟 =
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)√∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̄)2

,

where 𝑥𝑖 and 𝑦𝑖 represent the values of two attributes within the same sample, 𝑥̄ and 𝑦̄ denote their respective means, 𝑛 indicates the 
number of samples. The positive or negative values indicate the presence of positive or negative associations between the condition 
attributes, with higher values indicating stronger associations. Among 𝑏1 , 𝑏6 and 𝑏7, they exhibit positive correlations with each other 
and are the top three attributes with the highest values. Similarly, the remaining attributes demonstrate similar relationships. Hence, 
when partitioning the granularities based on the weights, we consider not only the relationships between the condition attributes 
and the decision attribute but also the relationships among the condition attributes themselves. Therefore, this partitioning approach 
exhibits strong interpretability and rationality.

3.3. Conditional entropy of W-MGMNRS

The notion of information entropy serves as a measure to evaluate the level of uncertainty in a discrete sample space. Consequently, 
entropy and its extensions have seen extensive applications across diverse domains. Within the context of feature selection, entropy 
plays a pivotal role. In this paper, we introduce a novel entropy measure named W-MGME, built upon the W-MGMNRS.

Definition 3. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), 𝑈∕𝑑 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑙}, the W-MGME is defined 
as

(𝑃 ,𝑑) = −
𝑚∑
𝑖=1

|||||
𝑙⋃

𝑘=1
𝐺𝑂

𝑃𝑖
(𝑑𝑘)

||||||𝑈 | log2

|||𝑃𝑖

𝛿
∩𝑑 ||||||𝑃𝑖

𝛿

||| . (21)

In equation (21), 

|||||
𝑙⋃

𝑘=1
𝐺𝑂

𝑃𝑖
(𝑑𝑘)

||||||𝑈 | denotes the degree of dependence of 𝑑 with respect to 𝑃𝑖. 
|||𝑃𝑖

𝛿
∩𝑑 ||||||𝑃𝑖
𝛿
||| can be regarded as a variable 

that reflects the extent of consistency in sample ranking based on 𝑑 and all the condition attributes contained in granularity 𝑃𝑖 . It is 
apparent that this variable is inversely related to W-MGME. As the value of  (𝑃 , 𝑑) decreases, the significance of 𝑃𝑖 increases.

3.4. Feature selection in matrix representation

When facing with high-dimensional data in feature selection, employing matrices can significantly reduce computation time and 
enhance algorithm efficiency. In this study, we employ interior significance measure and exterior significance measure to assess the 
importance of attributes. In the following, we will provide their respective definitions.

Definition 4. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ′ ⊆ 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 ′(𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 ′|), 𝑈∕𝑑 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑙}, the interior signif-

icance measure of 𝑃𝑖 is defined as

𝑖𝑛𝑡(𝑃𝑖,𝑃 , 𝑑) = (𝑃 − 𝑃𝑖, 𝑑) − (𝑃 ,𝑑). (22)

A higher value of 𝑖𝑛𝑡(𝑃𝑖, 𝑃 , 𝑑) indicates the relatively greater importance of the condition attribute subset 𝑃𝑖 with respect to 𝑃 .

Given a  = (𝑈, 𝐴 ∪{𝑑}), for 𝑃 ′ ⊆ 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 −𝑃 ′(𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃−𝑃 ′|), 𝑈∕𝑑 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑙}, the exterior significance 
measure of 𝑃𝑖 is defined as

𝑜𝑢𝑡(𝑃𝑖,𝑃 , 𝑑) = (𝑃 ,𝑑) − (𝑃 ∪ 𝑃𝑖, 𝑑). (23)

The exterior significance measure plays a vital role in the selection of feature subsets by identifying the critical features that have 
an impact on the decision outcome.

We propose the non-incremental heuristic feature selection algorithm, which called W-MGMN, aiming to select significant feature 
subsets using the interior and exterior significance measures defined in Definition 4. The selection process is outlined in Algorithm 1.

In algorithm W-MGMN, the time complexity of Step 2 is 𝑂(𝑚𝑛), where 𝑚 represents the number of features and 𝑛 denotes the 
number of objects. Steps 3 and 4 have a time complexity of 𝑂(𝑚2𝑛2). In Steps 5 −10, the selection of the core feature subset based on 
interior significance measure has a time complexity of 𝑂(𝑚3𝑛2). In Steps 12 − 18, sequentially adding the features with the highest 
exterior significance measure to the feature subset has a time complexity of 𝑂(𝑚3𝑛2). Finally, in Steps 19 − 23, redundant features 
are eliminated to obtain the optimal feature subset with a time complexity of 𝑂(𝑚3𝑛2).

4. Matrix update approximation multigranulation neighborhood rough set based on weight partition

In the era of big data, where information is constantly evolving, new information is being incorporated, and outdated information 
9

is being discarded. When dealing with such dynamic data, employing static methods for analysis would require a significant amount 
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Algorithm 1: W-MGMN algorithm.

Input: A  = (𝑈, 𝐴 ∪ {𝑑}), 𝛿, 𝛽 ∈ (0.5, 1].
Output: An optimal feature subset 𝐵.

1 Initialize 𝐵 ← ∅, 𝐶 ← ∅;

2 Calculate the weights of each attributes and partition them;

3 Calculate the (𝑃 , 𝑑) for feature set 𝐴;

4 Calculate the (𝑃 − 𝑃𝑖, 𝑑) for 𝑃𝑖 ⊆ 𝐴;

5 for 𝑖 = 1 to |𝐴| do

6 Calculate 𝑖𝑛𝑡(𝑃𝑖, 𝑃 , 𝑑) by Equation (22);

7 if 𝑖𝑛𝑡(𝑃𝑖, 𝑃 , 𝑑) > 0 then

8 𝐶 ← 𝐶 ∪ 𝑃𝑖 ;

9 end

10 end

11 Let 𝐵 ← 𝐶 ;

12 while (𝐵, 𝑑) > (𝐴, 𝑑) do

13 for 𝑗 = 1 to |𝐴 −𝐵| do

14 Calculate 𝑜𝑢𝑡(𝑃𝑗 , 𝐵, 𝑑) by Equation (23);

15 end

16 Select 𝑃𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑗⊆𝐴−𝐵 𝑜𝑢𝑡(𝑃𝑗 , 𝐵, 𝑑);
17 𝐵 ←𝐵 ∪ 𝑃𝑗 ;

18 end

19 for 𝑘 = 1 to |𝐵| do

20 if (𝐵 − 𝑃𝑘, 𝑑) ≤ (𝐵, 𝑑) then

21 𝐵 ←𝐵 − 𝑃𝑘 ;

22 end

23 end

24 return: The optimal feature subset 𝐵.

of time. Hence, in this paper, we utilize matrix form to update the approximations when changes in data structure occur. Our primary 
focus lies in understanding the changes that occur when objects are added or removed.

4.1. Updating mechanism of W-MGME when adding objects

As the quantity of objects in the data increases, the neighborhood relation matrix of each granularity undergoes alterations and 
necessitates prompt updates. This subsection will explore the subject from this viewpoint.

Proposition 1. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), the neighborhood relation 
matrix 𝑃𝑖

𝛿
= [m𝛿𝑃𝑖

𝑗,𝑘
]𝑛×𝑛 for 𝑃𝑖. Following the addition of 𝑛′ objects, the updated neighborhood relation matrix ′𝑃𝑖

𝛿
is as follows:

′𝑃𝑖

𝛿
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
𝛿𝑃𝑖

11 ⋯ m
𝛿𝑃𝑖

1,𝑛 m
′ 𝛿𝑃𝑖

1,𝑛+1 ⋯ m
′ 𝛿𝑃𝑖

1,𝑛+𝑛′

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
m

𝛿𝑃𝑖

𝑛,1 ⋯ m
𝛿𝑃𝑖
𝑛,𝑛 m

′ 𝛿𝑃𝑖

𝑛,𝑛+1 ⋯ m
′ 𝛿𝑃𝑖

𝑛,𝑛+𝑛′

m
𝛿𝑃𝑖

𝑛+1,1 ⋯ m
𝛿𝑃𝑖

𝑛+1,𝑛 m
′ 𝛿𝑃𝑖

𝑛+1,𝑛+1 ⋯ m
′ 𝛿𝑃𝑖

𝑛+1,𝑛+𝑛′

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
m
′ 𝛿𝑃𝑖

𝑛+𝑛′ ,1 ⋯ m
′ 𝛿𝑃𝑖

𝑛+𝑛′,𝑛
m
′ 𝛿𝑃𝑖

𝑛+𝑛′ ,𝑛+1 ⋯ m
′ 𝛿𝑃𝑖

𝑛+𝑛′ ,𝑛+𝑛′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

m
′ 𝛿𝑃𝑖

𝑗,𝑛+𝑘
=

{
1, If 𝑥𝑛+𝑘 ∈ [𝑥𝑗 ]𝑅𝑃𝑖

𝛿

0, others
, (𝑗 ∈ {1,2,⋯ , 𝑛}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

m
′ 𝛿𝑃𝑖

𝑛+𝑗,𝑘
=

{
1, If 𝑥𝑘 ∈ [𝑥𝑛+𝑗 ]𝑅𝑃𝑖

𝛿

0, others
, (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛}) (24)

m
′ 𝛿𝑃𝑖

𝑛+𝑗,𝑛+𝑘
=

{
1, If 𝑥𝑛+𝑘 ∈ [𝑥𝑛+𝑗 ]𝑅𝑃𝑖

𝛿

0, others
. (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

Proposition 2. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), the decision matrix 𝑑 = [D𝑑
𝑗,𝑘
]𝑛×𝑛 for 𝑑, let 𝑓 (𝑥, 𝑑) denote the
10

attribute value of 𝑥 on 𝑑. Following the addition of 𝑛′ objects, the updated decision matrix ′𝑑 is as follows:
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′𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

D𝑑
11 ⋯ D𝑑

1,𝑛 D′𝑑
1,𝑛+1 ⋯ D′𝑑

1,𝑛+𝑛′

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
D𝑑

𝑛,1 ⋯ D𝑑
𝑛,𝑛 D′𝑑

𝑛,𝑛+1 ⋯ D′𝑑
𝑛,𝑛+𝑛′

D′𝑑
𝑛+1,1 ⋯ D′𝑑

𝑛+1,𝑛 D′𝑑
𝑛+1,𝑛+1 ⋯ D′𝑑

𝑛+1,𝑛+𝑛′

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
D′𝑑

𝑛+𝑛′ ,1 ⋯ D′𝑑
𝑛+𝑛′ ,𝑛

D′𝑑
𝑛+𝑛′ ,𝑛+1 ⋯ D′𝑑

𝑛+𝑛′ ,𝑛+𝑛′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

D
′𝑑
𝑗,𝑛+𝑘

=
{

1, 𝑓 (𝑥𝑗 , 𝑑) = 𝑓 (𝑥𝑛+𝑘, 𝑑)
0, others

, (𝑗 ∈ {1,2,⋯ , 𝑛}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

D
′𝑑
𝑛+𝑗,𝑘

=
{

1, 𝑓 (𝑥𝑛+𝑗 , 𝑑) = 𝑓 (𝑥𝑘, 𝑑)
0, others

, (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛}) (25)

D
′𝑑
𝑛+𝑗,𝑛+𝑘

=
{

1, 𝑓 (𝑥𝑛+𝑗 , 𝑑) = 𝑓 (𝑥𝑛+𝑘, 𝑑)
0, others

. (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

Once the neighborhood relation matrix is updated, we will proceed to explore the inclusion relationship between the updated 
neighborhood class and the target set. We will begin by examining the dynamic updating mechanism of t he feature matrix, as outlined 
below.

Proposition 3. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑈 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), following the addition of 𝑛′
objects, the domain is transformed into 𝑈 ′. Subsequently, the feature matrix of 𝑈 ′ is updated as:

𝐻∼𝑋
𝑈 ′ (𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ∼𝑋
𝑃1

(𝑥1) ℎ∼𝑋
𝑃2

(𝑥1) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥1)

ℎ∼𝑋
𝑃1

(𝑥2) ℎ∼𝑋
𝑃2

(𝑥2) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥2)

⋮ ⋮ ⋮ ⋮

ℎ∼𝑋
𝑃1

(𝑥𝑛) ℎ∼𝑋
𝑃2

(𝑥𝑛) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥𝑛)

ℎ∼𝑋
𝑃1

(𝑥𝑛+1) ℎ∼𝑋
𝑃2

(𝑥𝑛+1) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥𝑛+1)

⋮ ⋮ ⋮ ⋮

ℎ∼𝑋
𝑃1

(𝑥𝑛+𝑛′ ) ℎ∼𝑋
𝑃2

(𝑥𝑛+𝑛′ ) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥𝑛+𝑛′ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,𝐿𝑋
𝑈 ′ (𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑙𝑋
𝑃1
(𝑥1) 𝑙𝑋

𝑃2
(𝑥1) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥1)

𝑙𝑋
𝑃1
(𝑥2) 𝑙𝑋

𝑃2
(𝑥2) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥2)

⋮ ⋮ ⋮ ⋮

𝑙𝑋
𝑃1
(𝑥𝑛) 𝑙𝑋

𝑃2
(𝑥𝑛) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥𝑛)

𝑙𝑋
𝑃1
(𝑥𝑛+1) 𝑙𝑋

𝑃2
(𝑥𝑛+1) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥𝑛+1)

⋮ ⋮ ⋮ ⋮

𝑙𝑋
𝑃1
(𝑥𝑛+𝑛′ ) 𝑙𝑋

𝑃2
(𝑥𝑛+𝑛′ ) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥𝑛+𝑛′ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, for ∀𝑡 ∈ {1, 2, ⋯ , 𝑛′}, ∀𝑖 ∈ {1, 2, ⋯ , 𝑠}, we can derive:

ℎ∼𝑋
𝑃𝑖

(𝑥𝑛+𝑡) =
⎧⎪⎨⎪⎩
1, [𝑥𝑛+𝑡]𝑅𝑃𝑖

𝛿

∩𝑋 = ∅

0, [𝑥𝑛+𝑡]𝑅𝑃𝑖
𝛿

∩𝑋 ≠ ∅
,

𝑙𝑋
𝑃𝑖
(𝑥𝑛+𝑡) =

{
1, [𝑥𝑛+𝑡]𝑅𝑃𝑖

𝛿

⊆ 𝑋

0, others
.

(26)

Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), 𝛽 ∈ (0.5, 1], following the addition of 𝑛′ objects, the updated positive 
and negative domain vectors are as follows:

𝐺𝑂
𝑃
(𝑋) = (𝑔𝑂

𝑃
(𝑥1), 𝑔𝑂

𝑃
(𝑥2),⋯ , 𝑔𝑂

𝑃
(𝑥𝑛),⋯ , 𝑔𝑂

𝑃
(𝑥𝑛+𝑛′ )),

𝐺𝑁
𝑃
(𝑋) = (𝑔𝑁

𝑃
(𝑥1), 𝑔𝑁

𝑃
(𝑥2),⋯ , 𝑔𝑁

𝑃
(𝑥𝑛),⋯ , 𝑔𝑁

𝑃
(𝑥𝑛+𝑛′ )).

In the case of object addition, we can efficiently update the feature matrix by directly applying Proposition 3. This strategy 
eliminates the need to recalculate previously computed, and significantly reduces the required processing time, thereby enhancing 
computational efficiency.

4.2. Updating mechanism of W-MGME when deleting objects

Apart from object addition, there is also be cases where certain objects are deleted. Similar to the scenario of object addition, when 
objects are deleted, the neighborhood relationship matrix of each granularity experiences alterations. This subsection will examine 
11

the subject from this standpoint.
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Proposition 4. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), the neighborhood relation 
matrix 𝑃𝑖

𝛿
= [m𝛿𝑃𝑖

𝑗,𝑘
]𝑛×𝑛 for 𝑃𝑖. Following the deletion of 𝑛′ objects, the updated neighborhood relation matrix ′𝑃𝑖

𝛿
is as follows:

′𝑃𝑖

𝛿
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
𝛿𝑃𝑖

11 ⋯ m
𝛿𝑃𝑖

1,𝑛−𝑛′−1 m
′ 𝛿𝑃𝑖

1,𝑛−𝑛′
⋯ m

′ 𝛿𝑃𝑖

1,𝑛

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

m
𝛿𝑃𝑖

𝑛−𝑛′−1,1 ⋯ m
𝛿𝑃𝑖

𝑛−𝑛′−1,𝑛−𝑛′−1 m
′ 𝛿𝑃𝑖

𝑛−𝑛′−1,𝑛−𝑛′
⋯ m

′ 𝛿𝑃𝑖

𝑛−𝑛′−1,𝑛

m
𝛿𝑃𝑖

𝑛−𝑛′ ,1 ⋯ m
𝛿𝑃𝑖

𝑛−𝑛′ ,𝑛−𝑛′−1 m
′ 𝛿𝑃𝑖

𝑛−𝑛′ ,𝑛−𝑛′
⋯ m

′ 𝛿𝑃𝑖

𝑛−𝑛′ ,𝑛

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

m
′ 𝛿𝑃𝑖

𝑛,1 ⋯ m
′ 𝛿𝑃𝑖

𝑛,𝑛−𝑛′−1 m
′ 𝛿𝑃𝑖

𝑛,𝑛−𝑛′
⋯ m

′ 𝛿𝑃𝑖
𝑛,𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

m
′ 𝛿𝑃𝑖

𝑗,𝑛−𝑘
=

{
1, If 𝑥𝑛−𝑘 ∈ [𝑥𝑗 ]𝑅𝑃𝑖

𝛿

0, others
, (𝑗 ∈ {1,2,⋯ , 𝑛}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

m
′ 𝛿𝑃𝑖

𝑛−𝑗,𝑘
=

{
1, If 𝑥𝑘 ∈ [𝑥𝑛−𝑗 ]𝑅𝑃𝑖

𝛿

0, others
, (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛}) (27)

m
′ 𝛿𝑃𝑖

𝑛−𝑗,𝑛−𝑘
=

{
1, If 𝑥𝑛−𝑘 ∈ [𝑥𝑛−𝑗 ]𝑅𝑃𝑖

𝛿

0, others
. (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

Proposition 5. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), the decision matrix 𝑑 = [D𝑑
𝑗,𝑘
]𝑛×𝑛 for 𝑑, let 𝑓 (𝑥, 𝑑) denote the

attribute value of 𝑥 on 𝑑. Following the deletion of 𝑛′ objects, the updated decision matrix ′𝑑 is as follows:

′𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

D𝑑
11 ⋯ D𝑑

1,𝑛−𝑛′−1 D′𝑑
1,𝑛−𝑛′

⋯ D′𝑑
1,𝑛

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
D𝑑

𝑛−𝑛′−1,1 ⋯ D𝑑
𝑛−𝑛′−1,𝑛−𝑛′−1 D′𝑑

𝑛−𝑛′−1,𝑛−𝑛′
⋯ D′𝑑

𝑛−𝑛′−1,𝑛

D′𝑑
𝑛−𝑛′ ,1 ⋯ D′𝑑

𝑛−𝑛′ ,𝑛−𝑛′−1 D′𝑑
𝑛−𝑛′ ,𝑛−𝑛′

⋯ D′𝑑
𝑛−𝑛′ ,𝑛

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
D′𝑑

𝑛,1 ⋯ D′𝑑
𝑛,𝑛−𝑛′−1 D′𝑑

𝑛,𝑛−𝑛′
⋯ D′𝑑

𝑛,𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

D
′𝑑
𝑗,𝑛−𝑘

=
{

1, 𝑓 (𝑥𝑗 , 𝑑) = 𝑓 (𝑥𝑛−𝑘, 𝑑)
0, others

, (𝑗 ∈ {1,2,⋯ , 𝑛}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

D
′𝑑
𝑛−𝑗,𝑘

=
{

1, 𝑓 (𝑥𝑛−𝑗 , 𝑑) = 𝑓 (𝑥𝑘, 𝑑)
0, others

, (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛}) (28)

D
′𝑑
𝑛−𝑗,𝑛−𝑘

=
{

1, 𝑓 (𝑥𝑛−𝑗 , 𝑑) = 𝑓 (𝑥𝑛−𝑘, 𝑑)
0, others

. (𝑗 ∈ {1,2,⋯ , 𝑛′}, 𝑘 ∈ {1,2,⋯ , 𝑛′})

Proposition 6. Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑈 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, 𝑃 ⊆ 𝐴, 𝑃𝑖 ⊆ 𝑃 (𝑖 = 1, 2, ⋯ , 𝑚 ≤ 2|𝑃 |), following the deletion of 𝑛′
objects, the domain is transformed into 𝑈 ′. Subsequently, the feature matrix of 𝑈 ′ is updated as:

𝐻∼𝑋
𝑈 ′ (𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ∼𝑋
𝑃1

(𝑥1) ℎ∼𝑋
𝑃2

(𝑥1) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥1)

ℎ∼𝑋
𝑃1

(𝑥2) ℎ∼𝑋
𝑃2

(𝑥2) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥2)

⋮ ⋮ ⋮ ⋮

ℎ∼𝑋
𝑃1

(𝑥𝑛−𝑛′−1) ℎ∼𝑋
𝑃2

(𝑥𝑛−𝑛′−1) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥𝑛−𝑛′−1)

ℎ∼𝑋
𝑃1

(𝑥𝑛−𝑛′ ) ℎ∼𝑋
𝑃2

(𝑥𝑛−𝑛′ ) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥𝑛−𝑛′ )

⋮ ⋮ ⋮ ⋮

ℎ∼𝑋
𝑃1

(𝑥𝑛) ℎ∼𝑋
𝑃2

(𝑥𝑛) ⋯ ℎ∼𝑋
𝑃𝑠

(𝑥𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,𝐿𝑋
𝑈 ′ (𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑙𝑋
𝑃1
(𝑥1) 𝑙𝑋

𝑃2
(𝑥1) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥1)

𝑙𝑋
𝑃1
(𝑥2) 𝑙𝑋

𝑃2
(𝑥2) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥2)

⋮ ⋮ ⋮ ⋮

𝑙𝑋
𝑃1
(𝑥𝑛−𝑛′−1) 𝑙𝑋

𝑃2
(𝑥𝑛−𝑛′−1) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥𝑛−𝑛′−1)

𝑙𝑋
𝑃1
(𝑥𝑛−𝑛′ ) 𝑙𝑋

𝑃2
(𝑥𝑛−𝑛′ ) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥𝑛−𝑛′ )

⋮ ⋮ ⋮ ⋮

𝑙𝑋
𝑃1
(𝑥𝑛) 𝑙𝑋

𝑃2
(𝑥𝑛) ⋯ 𝑙𝑋

𝑃𝑠
(𝑥𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where, for ∀𝑡 ∈ {1, 2, ⋯ , 𝑛′}, ∀𝑖 ∈ {1, 2, ⋯ , 𝑠}, we can derive:
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Algorithm 2: W-MGMA algorithm.

Input: A  = (𝑈, 𝐴 ∪ {𝑑}), and its optimal feature subset 𝐵, 𝛿, 𝛽 ∈ (0.5, 1], 𝑈 ′ = {𝑥𝑛+1, 𝑥𝑛+2, ⋯ , 𝑥𝑛+𝑛′ }, matrices 𝑃𝐴
𝑖

𝛿,𝑈
(𝑃𝐴

𝑖
⊆ 𝐴), 𝑑,𝐴

𝑈
, 𝑃𝐵

𝑗

𝛿,𝑈
(𝑃𝐵

𝑗
⊆ 𝐵), 

𝑑,𝐵
𝑈

Output: A new optimal feature subset 𝐵′ .

1 Add object set 𝑈 ←𝑈 ∪𝑈 ′ ;

2 Update matrices 𝑃𝑖

𝛿,𝑈
←

𝑃𝑖

𝛿,𝑈
, 𝑑,𝐴

𝑈
←𝑑,𝐴

𝑈
, 𝑃𝐵

𝑗

𝛿,𝑈
←

𝑃𝐵
𝑗

𝛿,𝑈
, 𝑑,𝐵

𝑈
←𝑑,𝐵

𝑈
;

3 Calculate the new 𝑈 (𝑃
𝐴, 𝑑) for feature set 𝐴 and the new 𝑈 (𝑃

𝐵, 𝑑) for feature set 𝐵;

4 if 𝑈 (𝑃
𝐵, 𝑑) > 𝑈 (𝑃

𝐴, 𝑑) then

5 turn to Step 9;

6 else

7 turn to Step 15;

8 end

9 For each 𝑃𝐴−𝐵
𝑘

⊆ {𝑃𝐴 − 𝑃𝐵}, using Equation (22) to calculate 𝑈
𝑜𝑢𝑡
(𝑃𝐴−𝐵

𝑘
, 𝐵, 𝑑) and then arrange these granularities in descending order based on their 

exterior significance measures as {𝑃𝐴−𝐵
1 , 𝑃𝐴−𝐵

2 , ⋯ , 𝑃𝐴−𝐵|𝐴−𝐵|};

10 while 𝑈 (𝑃
𝐵, 𝑑) > 𝑈 (𝑃

𝐴, 𝑑) do

11 for 𝑙 = 1 to |𝐴 −𝐵| do

12 select 𝐵 ←𝐵 ∪ {𝑃𝐴−𝐵
𝑙

} and calculate 𝑈 (𝑃
𝐵, 𝑑);

13 end

14 end

15 for each 𝑃𝐵 ⊆ 𝐵 do

16 Calculate 𝑈 (𝐵 − 𝑃𝐵, 𝑑);
17 if 𝑈 (𝐵 − 𝑃𝐵, 𝑑) ≤ 𝑈 (𝐵, 𝑑) then

18 𝐵 ←𝐵 − 𝑃𝐵

19 end

20 end

21 𝐵′ ←𝐵;

22 return: The optimal feature subset 𝐵′ .

ℎ∼𝑋
𝑃𝑖

(𝑥𝑛−𝑡) =
⎧⎪⎨⎪⎩
1, [𝑥𝑛−𝑡]𝑅𝑃𝑖

𝛿

∩𝑋 = ∅

0, [𝑥𝑛−𝑡]𝑅𝑃𝑖
𝛿

∩𝑋 ≠ ∅
,

𝑙𝑋
𝑃𝑖
(𝑥𝑛−𝑡) =

{
1, [𝑥𝑛−𝑡]𝑅𝑃𝑖

𝛿

⊆ 𝑋

0, others
.

(29)

Given a  = (𝑈, 𝐴 ∪ {𝑑}), for 𝑃 ⊆ 𝐴, ∀𝑥𝑡 ∈𝑈 (𝑡 = 1, 2, ⋯ , 𝑛), 𝛽 ∈ (0.5, 1], following the addition of 𝑛′ objects, the updated positive and 
negative domain vectors are as follows:

𝐺𝑂
𝑃
(𝑋) = (𝑔𝑂

𝑃
(𝑥1), 𝑔𝑂

𝑃
(𝑥2),⋯ , 𝑔𝑂

𝑃
(𝑥𝑛−𝑛′ ),⋯ , 𝑔𝑂

𝑃
(𝑥𝑛)),

𝐺𝑁
𝑃
(𝑋) = (𝑔𝑁

𝑃
(𝑥1), 𝑔𝑁

𝑃
(𝑥2),⋯ , 𝑔𝑁

𝑃
(𝑥𝑛−𝑛′ ),⋯ , 𝑔𝑁

𝑃
(𝑥𝑛)).

4.3. Updating algorithm when adding or deleting objects

To facilitate efficient feature selection during object addition or deletion, we have devised two algorithms, namely W-MGMA and 
W-MGMD. The specific algorithmic processes are presented in Algorithm 2 and Algorithm 3.

In algorithm W-MGMA, let 𝑚 represent the number of features, 𝑚̃ denotes the number of the previous feature subset 𝐵, 𝑛 denotes 
the number of original objects and 𝑛̃ denotes the number of objects added. Step 1 involves adding objects to the original INS. 
Next, in Step 2 − 3, the new neighborhood relation matrix and decision matrix are updated using Proposition 1 and Proposition 2, 
then calculate the W-MGME before and after the addition of objects, with a time complexity of 𝑂(𝑚2(𝑛 + 𝑛̃)𝑛̃). Steps 4 − 8 determine 
whether the W-MGME of the previous feature subset 𝐵 is greater than that of the original feature set 𝐴. Steps 9 −14 sort the remaining 
granularities in descending order based on their corresponding external significance measures and update the feature subset, with a 
time complexity of 𝑂((𝑚 − 𝑚̃)2(𝑛 + 𝑛̃)2). Steps 15 −20 remove redundant attributes from the feature subset B, with a time complexity 
of 𝑂(𝑚̃3𝑛̃2). Finally, the optimal feature subset is outputted.

In algorithm W-MGMD, 𝑚, 𝑛, and 𝑚̃ have the same meaning as in Algorithm W-MGMA. 𝑛̃ denotes the number of objects deleted. 
In Step 1, the original INS undergoes object deletion. Subsequently, in Steps 2 −3, the new neighborhood relation matrix and decision 
matrix are updated based on Proposition 4 and Proposition 5, respectively, and then, the W-MGME is calculated before and after the 
deletion of objects. This calculation involves a time complexity of 𝑂(𝑚2(𝑛 − 𝑛̃)𝑛). Steps 4 − 8 determine whether the W-MGME of the 
previous feature subset 𝐵 is less than or equal to the W-MGME of the original feature set 𝐴. In Steps 9 − 14, redundant attributes 
are eliminated from the feature subset 𝐵. The time complexity of this operation is 𝑂(𝑚̃3 𝑛̃2). During Steps 15 − 20, the remaining 
granularities are sorted in a descending order based on their corresponding external significance measures. Subsequently, the feature 
subset is updated. The computational complexity of this procedure is 𝑂((𝑚 − 𝑚̃)2(𝑛 − 𝑛̃)2). Finally, the optimal feature subset is 
13

generated.
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Algorithm 3: W-MGMD algorithm.

Input: A  = (𝑈, 𝐴 ∪ {𝑑}), and its optimal feature subset 𝐵, 𝛿, 𝛽 ∈ (0.5, 1], 𝑈 ′ = {𝑥1, 𝑥2, ⋯ , 𝑥′
𝑛
}, matrices 𝑃𝐴

𝑖

𝛿,𝑈
(𝑃𝐴

𝑖
⊆ 𝐴), 𝑑,𝐴

𝑈
, 𝑃𝐵

𝑗

𝛿,𝑈
(𝑃𝐵

𝑗
⊆ 𝐵), 𝑑,𝐵

𝑈
.

Output: A new optimal feature subset 𝐵′ .

1 Delete object set 𝑈 ←𝑈 −𝑈 ′ ;

2 Update matrices 𝑃𝑖

𝛿,𝑈
←

𝑃𝑖

𝛿,𝑈
, 𝑑,𝐴

𝑈
←𝑑,𝐴

𝑈
, 𝑃𝐵

𝑗

𝛿,𝑈
←

𝑃𝐵
𝑗

𝛿,𝑈
, 𝑑,𝐵

𝑈
←𝑑,𝐵

𝑈
;

3 Calculate the new 𝑈 (𝑃
𝐴, 𝑑) for feature set 𝐴 and the new 𝑈 (𝑃

𝐵, 𝑑) for feature set 𝐵;

4 if 𝑈 (𝑃
𝐵, 𝑑) ≤ 𝑈 (𝑃

𝐴, 𝑑) then

5 turn to Step 9;

6 else

7 turn to Step 15;

8 end

9 for each 𝑃𝐵 ⊆ 𝐵 do

10 Calculate 𝑈 (𝐵 − 𝑃𝐵, 𝑑);
11 if 𝑈 (𝐵, 𝑑) ≤ 𝑈 (𝐵 − 𝑃𝐵, 𝑑) then

12 𝐵 ←𝐵 − 𝑃𝐵

13 end

14 end

15 For each 𝑃𝐴−𝐵
𝑘

⊆ {𝑃𝐴 − 𝑃𝐵}, using Equation (22) to calculate 𝑈
𝑜𝑢𝑡
(𝑃𝐴−𝐵

𝑘
, 𝐵, 𝑑) and then arrange these granularities in descending order based on their 

exterior significance measures as {𝑃𝐴−𝐵
1 , 𝑃𝐴−𝐵

2 , ⋯ , 𝑃𝐴−𝐵|𝐴−𝐵|};

16 while 𝑈 (𝑃
𝐵, 𝑑) > 𝑈 (𝑃

𝐴, 𝑑) do

17 for 𝑙 = 1 to |𝐴 −𝐵| do

18 select 𝐵 ←𝐵 ∪ {𝑃𝐴−𝐵
𝑙

} and calculate 𝑈 (𝑃
𝐵, 𝑑);

19 end

20 end

21 𝐵′ ←𝐵;

22 return: The optimal feature subset 𝐵′ .

Table 2

Time Complexity Comparison of W-MGMN, W-MGMA and W-MGMD.

Algorithms Time complexity

W-MGMN 𝑂(𝑚2(𝑛+ 𝑛̃) +𝑚3(𝑛+ 𝑛̃)2 +𝑚3(𝑛+ 𝑛̃)2 +𝑚3(𝑛+ 𝑛̃)2)
W-MGMA 𝑂(𝑚2𝑛̃(𝑛+ 𝑛̃) + (𝑚− 𝑚̃)2(𝑛+ 𝑛̃)2 + 𝑚̃3(𝑛+ 𝑛̃)2)

W-MGMN 𝑂(𝑚2(𝑛− 𝑛̃) +𝑚3(𝑛− 𝑛̃)2 +𝑚3(𝑛− 𝑛̃)2 +𝑚3(𝑛− 𝑛̃)2)
W-MGMD 𝑂(𝑚2𝑛̃(𝑛− 𝑛̃) + (𝑚− 𝑚̃)2(𝑛− 𝑛̃)2 + 𝑚̃3(𝑛− 𝑛̃)2)

Table 3

The Detailed Introduction of The Datasets.

No. Datasets Abbreviation Objects Features Classes Type

1 Statlog Statlog 2310 19 7 Real

2 Abalone Abalone 4178 9 3 Real

3 Shill Bidding Shill 6321 13 2 Real

4 Central Nervous System Nervous 60 7130 2 Real

5 DLBCL-Harvard DLBCL 77 7131 2 Real

6 LungCancer-BAWHospital LungB 181 12533 2 Real

7 LungCancer-DanaFarberCancerInstitute LungD 203 12600 5 Real

8 Prostate Cancer Prostate 102 12601 2 Real

9 Breast Cancer Breast 97 16185 2 Real

10 Gene Expression Cancer RNA-Seq Gene 801 20531 5 Real

11 Ovarian Cancer NCI Q-Star Ovarian 215 37333 3 Real

12 Condition Monitoring of Hydraulic Systems Condition 2205 43680 3 Real

Table 2 demonstrates the overall time complexity of W-MGMN, W-MGMA and W-MGMD respectively. It is evident from the table 
that the time complexity of W-MGMA and W-MGMD are significantly lower compared to the time complexity of the W-MGMN. 
Therefore, the W-MGMA and W-MGMD demonstrate significantly higher efficiency in feature selection compared to the W-MGMN.

5. Experimental decision and analysis

In this chapter, we selected 12 datasets from UCI (as shown in Table 3) and conducted a series of experiments to validate the 
effectiveness of the proposed feature algorithm. The experimental algorithms were implemented in Python and executed on a personal 
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computer with the following specifications: Apple M1 CPU, 16 GB of RAM, and Sonoma 14.2.1 operating system.
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5.1. Experimental design

Before commencing the experiments, we conducted data preprocessing by employing the technique of max-min scaling normal-

ization to rescale the data within the range of 0 to 1. The procedure is as follows:

𝑏(𝑥𝑗 ) =
𝑏(𝑥𝑗 ) − min𝑏(𝑥)

max𝑏(𝑥) − min𝑏(𝑥)
,

where min 𝑏(𝑥) and max𝑏(𝑥) represent the maximum and minimum values of attribute 𝑏, respectively.

To address missing values within the dataset, we employed the K-Nearest Neighbors algorithm to approximate these values by 
referencing neighboring samples. We determined similarity between a missing value and other samples through Euclidean distance 
calculation. This process allowed us to pinpoint the K most similar samples as the closest neighbors to the missing value. Ultimately, 
we filled in the missing values by averaging the values of these nearest neighbor samples.

To evaluate the effectiveness of the designed algorithm, we used four classifiers: Recursive Neural Network (RNN), Random 
Forest (RF), Naive Bayes (NB), and Decision Tree (DT) to assess the classification accuracy after performing feature selection. In the 
DT classifier, the max depth was set to 3. Similarly, in the RF classifier, the max depth was set to 3. For the RNN classifier, the 
batch size was set to 32, and the number of iterations was set to 100. The NB classifier was utilized with default parameters. For 
the classification process, we applied ten-fold cross-validation, randomly dividing the dataset into ten mutually exclusive subsets. In 
each iteration, one subset was used as the validation set, while the remaining nine subsets were employed for model training and 
evaluation. This process was repeated ten times, and the average results were considered as the final evaluation metrics.

Initially, we conducted a time analysis for feature selection on 12 datasets, investigating the influence of various neighborhood 
radius 𝛿 and parameter 𝛽 on the algorithm’s effectiveness. Based on these results, we selected suitable parameters for subsequent 
experiments. Subsequently, we compared the classification accuracy and runtime of our proposed algorithm with six different feature 
selection algorithms on identical datasets to validate its efficacy. Lastly, we employed p-value tests to examine the disparities between 
our algorithm and the comparative approaches. The specific details of the selected comparative algorithms are outlined as follows:

1. Hybrid Feature Selection Method Based on Harmony Search and Naked Mole-Rat Algorithms (HS-NMR) [29]: The paper employs the 
Harmony Search (HS) algorithm and a novel nature-inspired algorithm known as the Naked Mole-Rat (NMR) algorithm to devise 
a novel hybrid feature selection approach for identifying the optimal subset of features.

2. Hybrid two-stage feature selection method for microarray data (MMBDE) [30]: Introducing a two-stage hybrid feature selection 
method, MMBDE, based on the improved minimum redundancy maximum relevance (mRMR) and enhanced binary differential 
evolution (BDE) algorithms.

3. Hierarchical Harris hawks optimizer for feature selection (EHHO) [31]: This algorithm employs the Harris’s Hawk Optimization 
(HHO) technique and incorporates a hierarchical framework to address intricate problems, thereby devising an algorithm dedi-

cated to feature selection.

4. Dynamic Salp swarm algorithm (DSSA) [32]: This algorithm is built upon the Shark Search Algorithm (SSA) and proposes an 
enhanced version that incorporates a local search algorithm to enhance the capabilities of SSA. This modification aims to address 
the challenges of maintaining population diversity and avoiding local optima commonly encountered by SSA.

5. Feature Selection using PSO-MI (HDFS) [33]: This method is based on particle swarm optimization and proposes a novel feature 
selection algorithm for handling high-dimensional datasets.

6. Fast Genetic Algorithm for Feature Selection (CHC𝑄𝑋) [34]: This method utilizes a qualitative approximation variant called CHC𝑄𝑋 , 
which is based on the genetic algorithm-based CHC algorithm, for feature selection.

7. Embedded chaotic whale survival algorithm (ECWSA) [35]: This algorithm incorporates chaos theory to steer the movement patterns 
of whales during the search process, thereby enhancing the effectiveness of feature selection.

8. competitive grey wolf optimizer algorithm (OBCGWO) [36]: This algorithm enhances the competitive binary grey wolf optimizer 
by introducing the opposition-based competitive grey wolf optimizer, allowing it to execute feature selection efficiently within 
a continuous search space.

5.2. Performance verification of the W-MGMN algorithm

In this subsection, we will utilize 12 datasets to evaluate the performance of W-MGMN by comparing its feature selection and 
classification capabilities with those of other algorithms.

To begin with, we examine the influence of various parameters on algorithm effectiveness, using the results obtained under the 
RNN classifier as an example. Neighborhood radius 𝛿 is varied from 0 to 1 with a step size of 0.2, while parameter 𝛽 is selected from 
the range of 0.6 to 1 with an increment of 0.2. The classification results corresponding to different parameter values under the RNN 
classifier are displayed in Fig. 3. From the figure, we can observe that the variation in accuracy is more significant when 𝛿 changes 
compared to when 𝛽 changes. Therefore, we can conclude that 𝛿 has a greater impact on the results than 𝛽. Additionally, when 𝛿
is within the range of 0 to 0.2 and 𝛽 is set to 0.6, the accuracy of the experimental results is generally the highest. Based on these 
findings, for the subsequent experiments, we will select 𝛿 as 0.1 and 𝛽 as 0.6.

Table 4 presents the number of features selected by W-MGMN and other algorithms across the 12 datasets. It is evident from the 
table that all algorithms have selected a smaller number of features compared to the original dataset. Notably, W-MGMN exhibits the 
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lowest average number of selected features, indicating its effectiveness in performing feature selection.
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Fig. 3. Classification Accuracy of Different Parameters 𝛿 and 𝛽 under RNN Classifier.

Table 4

Number of Selected Features by Different Algorithms when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets RAW HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO W-MGMN

Statlog 19 9 4 10 11 11 14 7 7 3

Abalone 9 2 4 5 6 6 2 2 4 4

Shill 14 3 3 4 3 5 7 4 3 2

Nervous 7130 1057 115 142 3446 3445 3586 1563 1392 76

DLBCL 7131 671 108 229 3396 3427 3562 10 1498 143

LungB 12533 445 69 1666 6131 5847 6248 364 2690 25

LungD 12600 425 188 171 6270 5590 6272 203 2780 130

Prostate 12601 391 233 289 6212 5753 6307 3210 2603 193

Breast 16185 3213 63 19 7872 7467 8066 3565 3739 46

Gene 20531 2165 203 744 7966 7496 8270 115 3654 11

Ovarian 37333 17048 312 33 18486 18263 9345 4338 11052 182

Condition 43680 8888 352 22272 21595 21247 16050 518 11287 224

Average 14147.08 2697.25 137.83 2132 6782.83 6546.42 5644.08 1558.28 3392 86.58

Subsequently, we assess and compare the feature selection and classification performance of W-MGMN and alternative algorithms 
across the four designated classifiers. The classification accuracy of each algorithm after feature selection is presented in Tables 5, 
6, 7 and 8. The “RAW” column represents the original classification accuracy of the datasets before feature selection. The highest 
classification accuracy is shown in bold. The values on the left of “±” indicate the average, while the values on the right indicate 
the variance. Based on the results, it is evident that the W-MGMN algorithm consistently achieves higher classification accuracy 
compared to the original dataset. Moreover, in the majority of the datasets, W-MGMN outperforms the other six algorithms in terms 
of accuracy. Hence, W-MGMN effectively eliminates redundant features from the data and improves the classification accuracy.

Based on the number of selected features and the achieved classification accuracy, it can be inferred that W-MGMN performs 
efficient dimensionality reduction, identifies the optimal subset of features, and enhances the classification precision during data 
16

processing.
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Table 5

Classification Accuracy of Different Algorithms under RNN Classifier when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets RAW HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO W-MGMN

Statlog 87.62±0.08 93.33±0.10 80.95±0.08 92.14±0.10 92.38±0.10 95.95±0.11 91.67±0.10 91.67±0.10 89.05±0.10 94.05±0.10

Abalone 51.91±0.01 54.82±0.04 52.51±0.04 51.91±0.04 54.67±0.05 54.19±0.04 51.08±0.03 52.75±0.04 51.79±0.05 56.22±0.05

Shill 92.41±0.14 97.24±0.24 91.23±0.19 99.60±0.24 99.05±0.24 99.45±0.24 98.18±0.24 98.50±0.24 98.42±0.24 97.39±0.23

Nervous 57.89±0.01 66.67±0.16 66.67±0.02 66.67±0.10 83.33±0.01 75.00±0.02 58.33±0.05 66.67±0.17 66.67±0.11 91.67±0.15

DLBCL 56.25±0.23 87.50±0.20 68.75±0.11 87.50±0.19 81.25±0.08 81.25±0.08 81.25±0.08 87.50±0.07 93.75±0.20 99.75±0.23

LungB 78.38±0.00 98.00±0.24 98.00±0.23 75.68±0.12 81.08±0.11 78.38±0.12 89.19±0.10 97.30±0.23 92.68±0.15 99.30±0.23

LungD 78.38±0.00 90.24±0.14 97.56±0.14 92.68±0.14 58.54±0.07 85.37±0.09 85.37±0.11 92.68±0.13 97.30±0.23 100.0±0.00

Prostate 38.10±0.00 76.19±0.14 94.00±0.15 80.95±0.14 47.62±0.00 66.67±0.00 57.14±0.00 72.38±0.02 90.48±0.19 95.24±0.24

Breast 57.89±0.00 73.68±0.11 47.37±0.07 52.63±0.01 89.63±0.00 42.11±0.01 42.11±0.00 82.11±0.01 63.16±0.16 94.74±0.18

Gene 40.37±0.01 95.00±0.16 95.76±0.16 95.00±0.16 92.80±0.03 30.43±0.01 38.51±0.01 95.76±0.16 96.00±0.16 96.89±0.15

Ovarian 60.47±0.00 67.44±0.16 79.07±0.17 74.42±0.06 85.81±0.00 55.81±0.00 88.37±0.05 81.40±0.14 69.77±0.17 93.02±0.22

Condition 65.75±0.05 80.11±0.09 90.06±0.19 69.06±0.03 89.06±0.04 65.75±0.03 87.96±0.02 91.16±0.20 91.16±0.18 97.79±0.24

Average 64.57±0.05 81.69±0.15 80.16±0.13 78.19±0.12 79.64±0.06 69.54±0.06 72.43±0.07 84.15±0.13 83.42±0.15 93.01±0.17

Table 6

Classification Accuracy of Different Algorithms under RF Classifier when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets RAW HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO W-MGMN

Statlog 86.95±0.12 85.86±2.55 76.19±1.74 87.86±2.69 86.57±2.12 83.10±2.35 87.33±2.57 86.81±0.94 91.71±0.33 92.67±0.01

Abalone 53.08±0.03 54.15±1.75 53.27±2.35 54.46±1.88 54.32±2.20 53.91±1.14 50.80±2.87 52.62±1.47 54.51±0.41 55.64±0.00

Shill 89.32±0.01 98.18±0.45 91.35±1.29 98.20±0.42 98.18±0.45 98.20±0.42 98.24±0.41 98.20±0.42 98.26±0.24 98.37±0.00

Nervous 58.33±1.81 61.67±1.00 65.00±1.40 65.00±0.72 58.33±3.44 63.33±6.33 61.67±0.15 63.33±0.53 60.00±1.28 65.00±2.47

DLBCL 76.61±0.99 76.61±2.71 84.46±1.45 80.54±0.47 78.04±1.98 81.79±1.16 79.11±0.78 81.79±0.39 81.79±0.16 80.54±1.03

LungB 97.30±1.81 98.33±1.55 96.73±3.56 98.89±2.22 98.89±2.22 98.89±0.22 98.89±2.22 93.39±0.54 91.17±0.41 100.0±0.00

LungD 78.31±0.36 85.81±0.41 86.29±0.99 85.76±0.69 86.69±4.39 86.14±6.23 86.17±5.36 78.29±0.78 94.44±0.00 90.14±0.24

Prostate 87.45±1.63 92.36±0.70 90.27±0.51 90.36±0.31 89.36±3.75 90.36±0.48 89.36±0.98 85.27±0.48 87.45±2.77 92.27±1.05

Breast 63.78±2.59 73.44±0.91 70.00±0.41 62.78±0.27 72.22±3.30 70.56±3.75 69.44±1.61 72.00±0.96 74.22±0.34 74.56±1.59

Gene 69.04±0.59 99.50±0.06 97.75±1.09 97.88±1.94 99.00±0.94 98.88±1.18 99.38±0.84 94.38±1.87 98.63±0.87 99.63±0.00

Ovarian 71.28±2.00 73.55±1.55 76.47±0.86 75.17±1.46 75.50±2.07 74.03±1.92 74.98±0.35 74.35±0.62 73.12±2.60 76.75±1.77

Condition 94.36±0.06 94.47±1.91 92.49±2.90 94.58±1.13 94.47±2.04 94.80±2.21 94.14±1.92 92.38±1.05 94.14±1.04 95.69±0.03

Average 77.15±1.00 82.83±1.30 81.69±1.50 82.62±1.18 82.63±2.49 81.67±2.15 82.46±1.67 81.07±0.84 81.04±0.87 85.10±0.68

Table 7

Classification Accuracy of Different Algorithms under NB Classifier when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets RAW HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO W-MGMN

Statlog 69.76±0.07 75.38±2.38 71.86±2.78 83.05±3.20 76.52±2.48 80.05±2.82 78.90±2.92 81.95±1.97 83.33±0.27 81.76±0.05

Abalone 44.71±0.79 51.00±0.05 51.43±2.85 51.53±1.48 51.50±1.70 51.71±1.60 48.86±2.39 50.17±0.31 50.96±0.10 51.74±0.04

Shill 97.04±0.00 98.04±0.43 90.95±1.24 98.04±0.43 98.04±0.43 97.04±0.43 97.02±0.68 97.04±0.42 98.04±0.43 97.28±0.00

Nervous 66.67±2.22 68.00±0.75 65.00±1.72 68.00±0.26 60.00±5.28 61.67±2.42 58.33±0.17 70.00±0.00 69.67±0.33 70.00±4.33

DLBCL 78.93±2.17 83.86±0.73 79.11±1.14 85.36±1.20 79.11±3.00 80.36±3.15 78.93±3.62 84.14±0.19 78.93±1.75 85.71±1.79

LungB 94.59±0.00 97.28±0.60 96.70±3.67 98.39±0.40 98.89±2.22 98.36±0.50 94.44±1.67 95.09±0.15 92.69±0.49 98.92±0.05

LungD 89.67±0.07 88.81±0.24 92.79±1.02 87.81±0.65 89.69±4.01 90.69±3.96 90.67±3.38 92.74±0.22 91.87±0.48 93.62±0.29

Prostate 62.82±1.86 76.82±0.03 75.82±0.65 77.73±0.64 72.82±3.65 62.82±3.65 61.82±3.45 76.82±0.03 85.82±3.65 95.27±0.92

Breast 62.78±3.46 80.89±0.79 79.00±0.72 66.56±0.60 80.89±0.79 63.89±0.63 62.78±1.65 70.22±0.09 80.89±1.36 81.00±1.98

Gene 68.29±0.40 90.26±0.62 93.13±1.89 93.13±2.23 78.28±2.39 79.03±4.65 79.14±3.30 93.01±0.83 90.77±0.34 93.50±0.07

Ovarian 65.06±0.96 73.61±0.06 72.61±0.69 76.58±0.04 73.54±0.60 65.52±3.84 71.70±0.46 71.68±0.94 72.64±0.61 89.70±0.40

Condition 78.79±0.08 80.45±2.34 77.13±1.88 80.12±2.37 79.34±2.66 79.90±2.96 80.23±2.99 82.11±0.23 82.89±0.65 87.73±0.19

Average 73.30±1.01 80.37±0.75 78.88±1.69 80.53±1.13 77.47±2.29 74.54±2.44 75.24±2.23 80.56±0.45 81.54±0.87 85.52±0.84

5.3. Performance verification of the W-MGMA algorithm

In this subsection, we will compare the computational efficiency and feature selection capability differences between W-MGMN 
and W-MGMA, aiming to evaluate the effectiveness and efficiency of W-MGMA.

Prior to the comparison, we divided each preprocessed dataset into an initial object set, 𝑈 , and an object addition set, 𝑈 ′ . We then 
randomly selected objects from 𝑈 ′ at different proportions (10%, 20%, 30%, 40%, 50%) and added them to 𝑈 , resulting in dynamic 
test datasets. Subsequently, we employed various neighborhood radius 𝛿 and parameters, 𝛽, to calculate the computation time of the 
W-MGMA operation. The range for 𝛿 was chosen from 0 to 1 with an increment of 0.2, while 𝛽 ranged from 0.6 to 1 with an increment 
of 0.2. The results are depicted in Fig. 4. Upon analyzing the runtime results across the 12 datasets, we observed that the computation 
time was longest and most compelling when 𝛿 ranged from 0 to 0.2 and 𝛽 was set to 0.6. Therefore, for subsequent experiments, we 
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selected 𝛿 = 0.1 and 𝛽 = 0.6 as the parameter values.
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Table 8

Classification Accuracy of Different Algorithms under DT Classifier when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets RAW HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO W-MGMN

Statlog 54.67±0.03 88.95±1.59 84.00±1.94 91.10±1.41 89.62±1.78 89.71±2.11 89.04±0.19 89.38±2.02 90.81±0.51 82.43±0.05

Abalone 44.17±0.77 53.24±0.99 53.68±2.11 53.17±1.98 53.20±1.63 53.41±1.09 51.04±2.60 53.41±1.09 55.04±0.01 55.11±0.07

Shill 97.28±0.00 98.29±0.49 91.79±1.37 99.45±0.33 99.51±0.26 99.43±0.31 99.53±0.22 99.45±0.11 99.51±0.26 99.57±0.00

Nervous 50.00±6.11 64.00±1.79 55.09±0.28 63.33±2.60 66.67±0.82 50.00±2.54 60.00±0.20 60.00±1.34 66.67±2.87 66.67±3.33

DLBCL 78.04±2.37 85.96±1.00 76.79±2.85 82.50±3.58 74.11±0.56 77.50±2.38 85.54±2.15 84.46±0.75 83.29±0.29 86.79±1.54

LungB 91.75±0.31 93.42±1.84 93.78±3.69 94.51±0.05 94.53±0.33 94.42±0.78 97.28±0.36 86.26±0.73 95.14±0.45 94.53±0.23

LungD 75.36±0.55 87.29±0.48 89.07±0.60 86.21±0.77 83.26±5.90 89.10±0.72 88.10±0.52 83.24±0.98 88.09±0.15 89.10±0.65

Prostate 86.36±1.20 86.45±0.99 85.36±0.35 83.64±0.31 87.36±2.26 75.55±1.86 82.55±0.03 86.45±0.84 87.45±0.08 88.27±0.74

Breast 62.11±2.86 61.11±1.41 66.22±0.09 64.11±0.94 64.67±0.10 68.33±0.49 60.11±3.86 64.11±1.41 61.00±1.99 64.22±4.76

Gene 87.51±0.06 95.38±1.38 92.76±2.14 96.01±0.01 97.88±2.31 97.25±2.25 98.13±1.60 87.89±0.86 97.00±0.32 98.00±0.04

Ovarian 59.13±1.10 72.21±1.02 70.99±1.29 70.95±0.08 71.32±0.32 60.00±3.66 68.40±0.16 72.56±1.21 72.06±0.15 73.72±1.24

Condition 93.59±0.06 94.25±1.32 93.26±2.08 93.70±0.15 93.58±2.43 94.28±2.19 94.03±2.55 93.59±0.67 94.15±0.85 94.36±0.05

Average 73.33±1.29 81.71±1.43 79.40±1.57 81.56±0.93 81.35±1.56 77.49±1.61 81.15±1.2 80.07±1.00 82.52±0.66 82.73±1.06

Fig. 4. Computation Time of Different Parameters 𝛿 and 𝛽 When Adding Objects.

Subsequently, utilizing the 12 datasets, we computed the runtime for adding objects at proportions of 10%, 20%, 30%, 40%, 
and 50%, as depicted in Table 9. Fig. 6 provides a visual representation of the contrasting runtime between the two algorithms. 
Upon analyzing the outcomes, we noted that across all 12 datasets, irrespective of their object quantity or attribute quantity, the 
computation time of W-MGMA was significantly lower compared to W-MGMN, thus affirming the superior efficacy of the W-MGMA. 
Furthermore, we observed that the computation efficiency of W-MGMA did not exhibit linear fluctuations with dataset size.

Tables 10 and 11 respectively demonstrate the classification accuracy of W-MGMA’s feature selection during object addition 
under RNN, RF, NB, and DT classifiers. From these results, we observe that in the majority of datasets, the classification accuracy of 
W-MGMA is comparable to that of W-MGMN and, at times, even surpasses the classification accuracy of W-MGMN. Hence, we can 
deduce that W-MGMA is highly effective.

Based on the efficiency and effectiveness of the W-MGMA, it can be inferred that the computational time for feature selection is 
considerably lower than that of W-MGMN. Additionally, the chosen outcomes are comparable to, and in some cases even superior to, 
those of W-MGMN. Consequently, when adding objects to a NIS, the incremental algorithm W-MGMA can efficiently and effectively 
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conduct feature selection.
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Table 9

Runtime of Different Algorithms as Objects Increase when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets
10% 20% 30% 40% 50%

W-MGMN W-MGMA W-MGMN W-MGMA W-MGMN W-MGMA W-MGMN W-MGMA W-MGMN W-MGMA

Statlog 0.826 0.076 1.258 0.106 1.511 0.132 1.833 0.159 2.136 0.181

Abalone 3.816 0.119 4.534 0.191 5.064 0.261 5.547 0.282 6.003 0.335

Shill 1.977 0.185 2.283 0.234 2.617 0.327 3.219 0.361 3.798 0.418

Nervous 2.251 0.696 2.774 0.893 3.049 0.942 3.598 1.050 4.121 1.112

DLBCL 3.839 0.090 4.352 0.098 4.970 0.110 5.969 0.121 6.809 0.171

LungB 6.426 0.505 7.574 0.670 8.344 0.680 9.597 0.743 11.33 0.880

LungD 7.016 0.211 8.974 0.252 9.968 0.331 11.62 0.455 14.04 0.904

Prostate 7.053 0.097 8.149 0.153 9.424 0.247 10.07 0.362 11.70 0.484

Breast 4.955 0.095 6.696 0.131 7.833 0.160 8.663 0.393 9.495 0.499

Gene 175.1 2.436 247.6 4.981 350.0 5.693 459.1 6.409 511.7 7.180

Ovarian 33.04 0.447 44.09 0.456 52.81 1.740 64.23 2.197 74.85 2.654

Condition 398.4 8.649 586.9 11.41 690.9 14.59 970.8 16.30 1159 20.11

Table 10

Classification Accuracy of W-MGMA under Different Classifiers when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets
RNN (Adding Objects) RF (Adding Objects)

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Statlog 92.62±0.10 91.90±0.10 92.14±0.10 93.71±0.00 93.39±0.07 92.43±0.03 92.57±0.04 92.48±0.02 92.81±0.03 92.19±0.02

Abalone 51.20±0.04 54.31±0.04 54.43±0.04 55.62±0.05 57.54±0.05 55.59±0.07 54.99±0.06 55.33±0.07 55.45±0.05 55.78±0.05

Shill 97.31±0.23 97.08±0.24 97.39±0.23 97.31±0.23 97.87±0.23 98.31±0.00 98.29±0.00 98.28±0.00 98.26±0.00 98.31±0.00

Nervous 84.21±0.12 89.47±0.11 83.33±0.05 91.67±0.17 94.74±0.19 78.33±3.36 81.67±3.58 80.00±3.22 80.00±3.22 80.00±2.67

DLBCL 87.50±0.10 87.50±0.05 100.0±0.00 85.00±0.06 87.50±0.07 90.89±1.08 86.79±2.17 85.36±1.57 88.21±1.51 89.64±1.62

LungB 94.59±0.10 91.89±0.16 94.59±0.16 97.30±0.13 100.0±0.00 99.44±0.03 100.0±0.00 100.0±0.00 99.44±0.03 100.0±0.00

LungD 94.59±0.10 95.12±0.15 95.12±0.15 92.68±0.12 100.0±0.00 90.17±0.28 90.69±0.15 89.19±0.23 91.67±0.18 92.17±0.19

Prostate 90.48±0.19 89.47±0.11 90.48±0.13 100.0±0.00 100.0±0.00 93.36±1.38 94.27±0.31 94.27±0.93 94.27±0.27 94.27±0.37

Breast 84.21±0.12 94.74±0.16 84.21±0.17 89.47±0.16 94.74±0.19 84.33±0.93 85.44±0.65 84.56±1.26 82.22±1.00 87.67±1.15

Gene 91.99±0.12 91.30±0.14 94.41±0.13 93.17±0.13 95.65±0.14 93.38±0.08 90.63±0.20 91.26±0.14 90.63±0.18 92.76±0.09

Ovarian 88.37±0.21 83.72±0.21 90.70±0.21 91.24±0.24 95.35±0.22 82.81±1.14 83.38±0.69 83.83±0.79 89.29±0.18 87.90±0.23

Condition 92.82±0.23 93.37±0.23 98.90±0.24 97.24±0.23 96.69±0.23 94.36±0.03 94.36±0.03 94.37±0.04 94.47±0.03 94.25±0.02

Table 11

Classification Accuracy of W-MGMA under Different Classifiers when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets
NB (Adding Objects) DT (Adding Objects)

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Statlog 74.67±0.14 78.86±0.12 85.29±0.07 87.43±0.09 88.52±0.09 82.24±0.06 82.43±0.06 82.29±0.06 82.24±0.06 84.19±0.06

Abalone 52.05±0.05 52.00±0.04 52.96±0.04 52.96±0.04 52.05±0.03 55.06±0.07 55.06±0.08 55.09±0.08 55.02±0.08 55.04±0.07

Shill 97.28±0.00 97.28±0.00 97.21±0.00 97.36±0.00 97.28±0.00 99.56±0.00 99.56±0.00 99.31±0.00 99.57±0.00 99.57±0.00

Nervous 78.33±3.92 70.00±7.67 75.00±3.47 75.00±4.58 70.00±4.33 70.00±3.78 78.33±3.36 73.33±2.33 80.00±3.22 80.00±4.89

DLBCL 92.13±0.14 90.14±0.51 93.39±0.75 92.31±0.41 93.39±0.75 81.96±2.20 80.54±2.28 83.04±1.94 84.46±2.20 86.79±1.67

LungB 98.92±0.05 98.92±0.05 98.92±0.05 98.92±0.05 98.92±0.05 99.47±0.02 99.47±0.02 98.92±0.05 98.92±0.05 99.47±0.02

LungD 85.14±0.36 86.81±0.81 93.22±0.49 90.37±0.15 91.32±0.66 80.76±0.67 76.33±0.39 80.74±0.53 79.81±0.51 80.71±0.88

Prostate 94.25±0.61 94.33±0.40 95.57±0.93 94.19±0.27 95.91±0.37 81.45±0.44 82.36±0.35 84.45±0.36 82.36±0.55 86.27±0.57

Breast 91.47±0.30 90.39±0.27 90.02±0.30 90.52±0.41 91.85±0.39 71.67±0.67 72.78±1.36 75.78±0.47 74.00±2.42 76.00±0.79

Gene 97.25±0.12 96.14±0.08 97.75±0.02 98.01±0.24 98.13±0.81 87.88±0.18 87.89±0.18 87.76±0.20 87.26±0.20 87.88±0.18

Ovarian 88.38±0.37 91.51±0.37 91.01±0.16 91.84±0.23 92.91±0.18 72.16±0.65 73.07±0.49 72.16±0.65 73.07±0.49 73.07±0.49

Condition 87.73±0.19 87.73±0.19 87.73±0.19 87.73±0.19 87.73±0.19 93.15±0.06 93.37±0.05 93.48±0.05 93.48±0.05 93.59±0.05

5.4. Performance verification of the W-MGMD algorithm

This subsection aims to analyze and compare the differences in computational efficiency and feature selection capabilities between 
W-MGMN and W-MGMA, thereby evaluating the effectiveness and efficiency of W-MGMD. The experimental methodology is similar 
to the previous subsection.

Before conducting the comparison, we start with each preprocessed dataset as the initial object set, denoted as 𝑈 . Then, we 
randomly select objects from 𝑈 at different proportions (10%, 20%, 30%, 40%, 50%) and remove them from 𝑈 , resulting in dynamic 
testing datasets. Next, we calculate the runtime of W-MGMA operation using different neighborhood radius 𝛿 and parameter 𝛽. We 
consider a range of 0 to 1 for 𝛿 with a step size of 0.2, and a range of 0.6 to 1 for parameter 𝛽 with a step size of 0.2. Subsequently, 
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we present the results in Fig. 5. Analyzing the outcomes from the 12 datasets, we observe that the longest runtime occurs when 𝛿 is 
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Table 12

Runtime of Different Algorithms as Objects Decrease when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets
10% 20% 30% 40% 50%

W-MGMN W-MGMD W-MGMN W-MGMD W-MGMN W-MGMD W-MGMN W-MGMD W-MGMN W-MGMD

Statlog 1.524 0.153 1.227 0.129 0.937 0.104 0.744 0.083 0.593 0.070

Abalone 5.804 0.330 5.018 0.251 4.226 0.203 3.388 0.122 3.180 0.068

Shill 3.563 0.376 2.737 0.326 2.324 0.281 1.977 0.225 1.747 0.151

Nervous 4.562 0.526 4.174 0.478 3.679 0.432 3.061 0.374 2.321 0.335

DLBCL 5.624 0.071 4.874 0.046 4.348 0.047 3.933 0.043 3.439 0.035

LungB 10.34 0.751 9.329 0.670 8.582 0.618 7.314 0.535 6.325 0.276

LungD 12.70 0.542 11.24 0.325 9.242 0.231 8.863 0.220 7.360 0.188

Prostate 11.68 0.104 10.15 0.101 9.227 0.071 8.540 0.062 7.184 0.044

Breast 9.079 0.095 8.085 0.067 7.683 0.053 6.504 0.045 4.830 0.042

Gene 509.3 8.565 444.5 7.442 341.2 5.161 250.9 4.041 168.4 3.436

Ovarian 71.89 1.754 61.30 1.473 50.95 0.845 42.38 0.720 29.42 0.432

Condition 1036 19.47 940.8 16.19 668.7 14.05 543.7 10.78 334.2 8.054

Fig. 5. Computation Time of Different Parameters 𝛿 and 𝛽 When Deleting Objects.

between 0 and 0.2, and 𝛽 is set to 0.6, which provides the most convincing results. Consequently, for the subsequent experiments, 
we select 𝛿 = 0.1 and 𝛽 = 0.6 as the parameter settings.

Table 12 presents the runtime for removing objects at different proportions (10%, 20%, 30%, 40%, 50%) across the 12 datasets. These 
results are visually represented in Fig. 7, allowing for a clear comparison of the disparities in runtime between the two algorithms. 
Based on the analysis of the results, we can observe that for all 12 datasets, regardless of whether they have a large number of objects 
or a high number of attributes, W-MGMD consistently exhibits significantly lower computation time compared to W-MGMN. This 
substantiates the W-MGMD outperforms the W-MGMN in terms of efficiency. Similarly, the computational efficiency of the W-MGMD 
does not follow a linear relationship with the size of the dataset.

The classification accuracy of feature selection using W-MGMD under RNN, RF, NB, and DT classifiers during objects removal 
20

is presented in Tables 13 and 14. Upon analyzing the results in the tables, we can observe that in most datasets, the classification 
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Fig. 6. Computation Time of Different Algorithms when Adding Objects (𝛿 = 0.1, 𝛽 = 0.6).

accuracy of feature selection using W-MGMD is comparable to, and sometimes even surpasses, that of W-MGMN. Therefore, we can 
conclude that the W-MGMD is effective in terms of feature selection.

Based on the analysis of efficiency and effectiveness between W-MGMD and W-MGMN, we can draw the following conclusions: 
W-MGMD demonstrates significantly reduced runtime during feature selection compared to the W-MGMN, while similar, or even 
superior selection outcomes. Therefore, when the objective entails removing objects from a NIS, W-MGMD proves to be an efficient 
and effective method for feature selection. It accomplishes the task within a shorter time and the selected features exhibit no significant 
degradation compared to W-MGMN, and in some cases, may even outperform it.

5.5. Statistical testing

To enhance the comparison of various algorithms’ experimental outcomes, we utilized both the Friedman and Wilcoxon test to 
assess the validity of the algorithmic comparisons.

The Friedman test is a non-parametric hypothesis test used to compare whether the means of multiple related samples are equal. 
Its null hypothesis posits that all algorithms exhibit comparable classification performance. The formula is defined as

𝜒2
F
= 12𝑛

𝑘(𝑘+ 1)

(
𝑘∑

𝑗=1
𝑅2

𝑗 −
𝑘(𝑘+ 1)2

4

)
,

where 𝑛 and 𝑘 indicate the number of samples and algorithms being compared respectively, 𝑅𝑖 denotes the average ranking of the 
classification accuracy results for algorithm 𝑖 across various classifiers.

Table 15 shows the average rankings of the HS-NMR, MMBD, EHHO, DSSA, HDFS, CHC, and W-MGMN algorithms under the RNN, 
RF, NB, and DT classifiers. It is evident that W-MGMN consistently ranks first across all four classifiers, demonstrating the superiority 
of the proposed algorithm.

Table 16 displays the results of the Wilcoxon test used to assess the relative performance and differences between W-MGMN 
and eight other algorithms. The significance level was set at 0.05. If the P-value exceeds 0.05, it suggests that the performance 
difference between the two algorithms is not significant. Conversely, if the P-value is below 0.05, it indicates a significant difference in 
performance between the two algorithms. As evident from the table, all P-values are under 0.05, demonstrating statistically significant 
21

differences between W-MGMN and the other eight algorithms.
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Fig. 7. Computation Time of Different Algorithms when Deleting Objects (𝛿 = 0.1, 𝛽 = 0.6).

Table 13

Classification Accuracy of W-MGMD under Different Classifiers when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets
RNN (Deleting Objects) RF (Deleting Objects)

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Statlog 95.24±0.11 93.33±0.11 93.57±0.11 91.81±0.10 90.00±0.08 92.10±0.02 92.67±0.03 92.33±0.03 92.43±0.02 91.62±0.04

Abalone 58.97±0.05 52.27±0.04 56.82±0.05 54.19±0.05 52.75±0.04 55.30±0.07 55.45±0.07 55.61±0.06 55.28±0.06 55.14±0.06

Shill 97.55±0.23 97.71±0.23 97.41±0.22 97.31±0.23 97.49±0.23 98.34±0.00 98.26±0.00 98.32±0.00 98.29±0.00 98.39±0.00

Nervous 89.47±0.14 78.95±0.14 94.74±0.15 84.21±0.15 89.47±0.15 78.36±0.06 78.33±2.25 80.00±3.22 78.33±2.25 76.67±2.33

DLBCL 93.75±0.05 93.75±0.09 87.50±0.06 93.75±0.08 81.25±0.12 90.89±1.08 93.57±0.73 89.82±1.20 85.36±2.38 88.04±1.29

LungB 97.30±0.12 97.30±0.14 100.0±0.00 100.0±0.00 94.59±0.13 99.44±0.03 98.36±0.06 96.70±0.07 99.44±0.03 98.36±0.06

LungD 95.12±0.16 95.12±0.15 97.56±0.16 90.56±0.15 92.68±0.15 92.14±0.10 90.67±0.26 89.67±0.16 91.19±0.17 89.67±0.21

Prostate 85.71±0.15 90.48±0.17 95.24±0.18 95.24±0.19 90.48±0.16 94.36±1.38 95.18±0.60 93.27±0.89 94.27±0.67 94.27±0.26

Breast 94.74±0.15 92.45±0.02 89.47±0.17 84.21±0.15 89.47±0.15 89.56±0.60 86.33±0.96 87.56±0.79 82.22±1.39 87.44±0.59

Gene 90.06±0.13 97.52±0.14 93.79±0.13 91.30±0.13 91.93±0.13 91.38±0.14 91.76±0.12 91.51±0.14 91.51±0.17 89.76±0.08

Ovarian 97.67±0.22 86.05±0.20 88.37±0.22 90.70±0.21 93.02±0.21 85.17±0.57 84.29±0.85 83.29±0.29 87.45±0.43 83.83±0.53

Condition 97.24±0.23 97.24±0.23 96.69±0.23 90.61±0.22 94.48±0.23 94.70±0.03 94.58±0.04 94.70±0.04 94.47±0.03 94.47±0.03

6. Conclusions and future work

With the rapid advancement of technology, there has been a significant increase in the size of data, leading to a proliferation of 
redundant features. Effectively processing such large-scale data poses significant challenges to traditional rough set theory. To address 
this, multigranulation rough sets offer a rational approach by analyzing and handling problems from multiple levels and granularities. 
Feature selection, as a dimensionality reduction technique, aims to identify the most informative subset of features from the original 
data, thereby enhancing the performance and effectiveness of machine learning models. It has emerged as an efficient information 
preprocessing method. In this paper, we explore the incremental feature selection method using a matrix-based approach within 
the W-GMNRS framework. This method addresses the shortcomings of existing rough set models in handling dynamic datasets, such 
as slow runtime and lackluster performance. It enhances the efficiency of feature selection, conserves computational resources, and 
strengthens the application of rough set theory models. To validate this method, we conducted experiments on 12 publicly available 
22

datasets, and the results demonstrate the following:
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Table 14

Classification Accuracy of W-MGMD under Different Classifiers when 𝛿 = 0.1, 𝛽 = 0.6.

Datasets
NB (Deleting Objects) DT (Deleting Objects)

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Statlog 83.87±0.05 85.90±0.10 78.86±0.12 78.76±0.08 77.19±0.03 82.38±0.06 82.38±0.06 82.29±0.06 82.33±0.06 82.29±0.06

Abalone 52.05±0.03 52.00±0.04 52.05±0.03 52.45±0.02 52.00±0.04 55.06±0.08 55.04±0.08 55.06±0.08 55.04±0.07 55.02±0.08

Shill 97.28±0.00 97.23±0.00 97.22±0.00 97.28±0.00 97.21±0.00 99.56±0.00 99.54±0.00 99.49±0.00 99.42±0.00 99.36±0.00

Nervous 77.28±0.13 71.67±5.03 73.33±4.00 71.67±3.92 78.33±2.25 70.92±0.05 75.00±5.14 81.67±1.92 78.33±0.58 66.67±1.11

DLBCL 93.39±0.75 93.39±0.75 93.39±0.75 93.39±0.75 93.39±0.75 85.71±2.10 83.39±1.87 85.89±1.79 83.04±1.94 81.79±3.00

LungB 98.92±0.05 97.28±0.13 97.28±0.13 97.28±0.13 97.81±0.07 98.92±0.05 98.92±0.05 96.14±0.13 95.58±0.11 96.14±0.13

LungD 92.45±0.74 92.22±0.12 93.03±0.76 91.32±0.65 90.77±0.63 81.29±0.62 79.76±0.93 79.31±0.58 80.65±0.45 80.74±0.48

Prostate 95.92±0.47 95.49±0.05 95.82±0.58 95.96±0.67 94.54±0.26 87.27±0.59 81.45±1.44 86.36±0.60 83.36±0.79 82.36±0.75

Breast 91.65±0.26 91.44±0.28 90.97±0.23 90.55±0.23 91.39±0.50 76.00±1.08 73.89±0.65 74.89±1.35 73.89±2.19 75.89±1.05

Gene 96.13±0.01 96.13±0.01 97.75±0.02 97.13±0.02 91.26±0.06 88.01±0.19 87.63±0.21 87.64±0.18 87.26±0.20 82.89±0.13

Ovarian 92.35±0.37 92.04±0.37 90.56±0.37 89.84±0.37 88.63±0.37 73.07±0.49 72.64±0.71 73.07±0.49 73.07±0.49 72.64±0.71

Condition 87.73±0.19 87.73±0.19 87.73±0.19 87.73±0.19 87.73±0.19 93.48±0.05 93.37±0.05 93.26±0.05 93.37±0.05 93.15±0.05

Table 15

Average Rank of the Classification Accuracy of Different Algorithms 𝛿 = 0.1, 𝛽 = 0.6.

Classifiers HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO W-MGMN

RNN 5.08 5.42 5.50 5.08 6.25 6.96 4.42 4.71 1.58

RF 5.54 5.75 4.71 5.25 4.95 5.58 6.71 4.88 1.63

NB 4.88 6.00 3.88 5.66 6.21 7.63 4.79 4.33 1.63

DT 5.46 6.42 5.83 5.00 5.25 5.21 5.79 3.71 2.33

Table 16

P Value of the Wilcoxon Test when 𝛿 = 0.1, 𝛽 = 0.6.

Classifiers HS-NMR MMBDE EHHO DSSA HDFS CHC𝑄𝑋 ECWSA OBCGWO

RNN 0.0005 0.0005 0.0024 0.0015 0.0034 0.0009 0.0010 0.0015

RF 0.0009 0.0262 0.0050 0.0004 0.0049 0.0005 0.0014 0.0050

NB 0.0024 0.0004 0.0269 0.0034 0.0005 0.0004 0.0040 0.0012

DT 0.0342 0.0269 0.0342 0.0141 0.0754 0.0129 0.0200 0.0109

1. When applying W-MGMN for feature selection, the obtained classification results not only surpass those of the original dataset 
but also outperform other feature selection algorithms. This demonstrates the strong feature selection capability of W-MGMN.

2. The proposed dynamic feature selection algorithms demonstrates good classification results when there are additions or removals 
of objects. They also exhibit significantly lower runtime compared to W-MGMN, validating the effectiveness and efficiency of 
the dynamic algorithms.

Incremental feature selection algorithms are extensively applied across various sectors due to their practicality and versatility. Our 
goal is to deploy our algorithm in widely encountered scenarios, such as medical diagnostics, financial risk evaluation, and industrial 
monitoring. By extracting the most relevant features from vast amounts of dynamic information, our algorithm helps professionals 
better analyze data.

When information is updated, the number of features may increase or decrease. In such cases, the proposed method becomes 
ineffective. Therefore, based on the findings of this study, further exploration into incremental update mechanisms when the number 
of features changes could enhance the model’s adaptability, allowing it to perform better feature selection in the face of changes in 
both samples and features.
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