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Cognitive learning and two-way learning are effective knowledge representations, which can 
simulate the human brain to learn concepts. The combination of both topics has achieved some 
results and improved conceptual evolution ability in fuzzy formal concept analysis (FFCA), but 
there are still some shortcomings: 1) FFCA does not consider the flexibility of concepts, which 
makes it difficult to select suitable concepts; 2) the existing necessary and sufficient concepts fail 
to learn directly from any information granules; 3) the cognitive learning mechanism ignores to 
integrate previously acquired knowledge into the present state in the process of dynamic concept 
learning. To tackle these issues, in this paper, we put forward a novel two-way concept-cognitive 
learning (TCCL) model based on three-way decision in fuzzy formal contexts. Firstly, we introduce 
the object and attribute operators to learn variable precision object induced three-way concept, 
where such concept has flexibility by adjusting thresholds. Then, to learn directly necessary and 
sufficient three-way concept from the given clues, we investigate a new TCCL model, which 
has low computation cost for concept learning. Furthermore, updating mechanism of three-

way concept is discussed in dynamic learning environment. Finally, the conducted experiments 
explicate the effectiveness and feasibility of our proposed approach in the large-scale datasets.

1. Introduction

Cognitive computing is a computer system that simulates the human thinking process which includes perception, attention and 
thinking through computers [1]. It focuses on how to address the issues of inaccuracy, uncertainty and partially reality so as to achieve 
different levels of perception, memory and solution to the problems. Up to now, this theory has become a hot research direction 
that combines with other approaches such as psychology, mathematics, etc [2]. We have witnessed various theories and models of 
cognitive computing. For instance, concept-cognitive learning (CCL) reveals the systematic laws of human brain by concept formation 
and learning, such as Wille’s concept [3,4], object-oriented concept [5], fuzzy concept [6–9] and three-way concept [10,11].
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As an extension of Wille’s concept (also called classical concept), the fuzzy concept learning can directly deal with the continuous 
data by transforming the attribute values into the membership degree of these attributes belonging to object, which greatly saves 
time consumption. After decades of development, fuzzy concept, as highly complementary to rough set, has attracted much attention 
including fuzzy two-way learning, concept clustering, rule extraction and so forth [12–21]. An outstanding advantage of fuzzy 
concept cannot only mine valuable information representation but also reduce the loss of useful information in the cognitive process. 
Moreover, three-way decision [23] is an innovative theory which facilitates thinking, problem settling and information processing 
in decision making [24]. Its basic idea of this theory is the tripartite granulation thinking paradigm, which is the positive region 
𝑃𝑂𝑆, the negative region 𝑁𝐸𝐺 and the boundary region 𝐵𝑁𝐷 of a universal set. Combining three-way decision, three-way concept 
[25], as an extension of classical concept, can more comprehensively describe conceptual information by expressing the semantics of 
“jointly possessed” and “jointly not possessed” in a formal context. That is to say, three-way concept incorporates the positive region 
and negative region to divide objects (attributes) into three regions for making three-way decision. Moreover, several researches 
indicate that three-way decision is effective about conceptual representing and learning [10,26–28]. Nevertheless, these technologies 
have some limitations which manifest in: 1) although fuzzy concept can degenerate into classical concept, continuous data at this 
time will also be transformed into discrete data; 2) fuzzy concept shows great strictness when applying to crisp sets; 3) the classical 
concept emphasizes learning from discrete data, which is not suitable for continuous data without discretization.

CCL refers to adopt certain methods to learn unknown concepts from the given clues, which reveals human cognitive processes 
in the form of conceptual knowledge. In a general sense, it is generally investigated from three aspects: the cognitive mechanism 
of concept formation, the construction and optimization of concept cognition, and the simulation of cognitive process. Recently, 
many scholars have proposed several CCL models and methods to meet different practical requirements. For instance, Xu et al. [29]

introduced a two-way learning model for transformation of information granules. Additionally, inspired by this work, to describe 
the transformation theory on fuzzy datasets, it was extended for fuzzy formal context [30]. Subsequently, Xu and Guo et al. [31,32]

proposed a novel TCCL method for directly converting arbitrary information granules into sufficient and necessary information 
granules for dynamic concept learning, which improves the conceptual evolution mechanism. Shi and Mi et al. [33–35] constructed 
a series of CCL models, which aimed at obtaining conceptual generalization capability and solving classification task. These cognitive 
models have different cognitive mechanisms which include but not limited to conceptual clustering [18,34,35], dynamic concept 
learning [31,32,36–38] and classification learning [16,17,33]. Although these models achieve several significant advantages in two-

way learning research, they still have some problems.

∙ The above existing CCL models emphasize how to acquire knowledge and their applications, but ignore how to select the suitable 
concepts from continuous data without discretization.

∙ Most existing CCL models do not think about the transformation of information granules based on three-way decision. Therefore, 
it is necessary for us to mine the wealth knowledge and further make decision analysis.

To address the aforementioned issues, introducing the idea of threshold is a significant tool for data mining and knowledge repre-

sentation. We use medical decision-making as an example to introduce the main thought. Practically, when investigating suspected 
cases of the heart disease, doctors pay more attention to excluding whether new patients are diagnosed through the prime symptoms 
of previous patients, including shortness of breath, pectoralgia, nervous and so forth. If these patients’ symptom indicators are higher 
than the standard values (thresholds), the doctor will primarily screening these indicators from new patient. In such case, a subset of 
patients who suffer from a particular disease are diagnosed. They are called the positive region. Simultaneously, if several subsidiary 
symptoms such as cough, abdominal distension and so on are not pivotal factors, when indexes are less than standard values, a subset 
of patients who are diagnosed not suffering from disease, is called the negative region. Furthermore, a subset of patients for whom 
the doctor is unable to make a clear diagnosis is called the boundary region. Therefore, a novel TCCL model is introduced through 
three-way decision. Fig. 1 describes the steps of the proposed approach in the block diagram. The main contributions of this paper 
are summarized as follows.

∙ By adjusting the thresholds 𝛼 and 𝛾 , variable precision object induced three-way concept (for short VPO3C) has more flexibility 
in applications, where several suitable concepts are obtained by setting thresholds.

∙ To directly transform arbitrary information granules into necessary and sufficient three-way concepts, we propose a novel TCCL 
mechanism based on three-way decision. The experiment illustrates learning concept from the viewpoint of cognition in a shorter 
period of time.

∙ We propose an updating mechanism of VPO3C based on information granules and can integrate the newly input information 
into the current concepts to increase the efficiency of concept learning.

The remaining sections of this paper are structured as follows. Section 2 introduces some notions of L-context analysis, fuzzy 
formal concept analysis and fuzzy three-way concept analysis. Section 3 discusses the notions and properties of VPO3C. In Section 4, 
a novel TCCL based on VPO3C is presented. Section 5 studies an updating mechanism of VPO3C based on information granules in a 
dynamic environment. In Section 6, the experimental analysis is conducted to demonstrate the effectiveness of the proposed method. 
Section 7 covers some conclusions and further work.

2. Preliminaries

In this section, to begin with, we revisit the notion of fuzzy formal context and fuzzy logic, and more detailed information could 
2

be found from the corresponding papers [3,4,6,7].
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Fig. 1. Flowchart of the proposed approach.

2.1. L-context analysis

A structure L = (𝐿, ∨, ∧, →, 0, 1) is called a residuated lattice such that 1) (𝐿, ∨, ∧, 0, 1) is a lattice with the greatest element 1 and 
the least element 0; 2) (𝐿, ⊗, 1𝐿) is a commutative monoid (i.e., ⊗ is commutative and associative, and 𝑎 ⊗ 1 = 1 ⊗ 𝑎 = 𝑎 for each 
𝑎 ∈𝐿); 3) (⊗, →) is an adjoint pair (i.e., 𝑎 ≤ 𝑏 → 𝑐 iff 𝑎 ⊗𝑏 ≤ 𝑐 holds for all 𝑎, 𝑏, 𝑐 ∈𝐿).

In a residuated lattice L and a nonempty set 𝐺, a L-set of 𝐺 is described as a mapping �̃� ∶𝐺→ L with �̃�(𝑔) expressing as the truth 
degree of 𝑔 belonging to �̃�. Let a triple (𝐺, 𝐴, �̃�) be a L-context where 𝐺 = {𝑔1, 𝑔2, ⋯ , 𝑔𝑛} and 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑚} are the object set and 
attribute set, respectively. �̃� ∶ 𝐺 × 𝐴 → 𝐿 is a L-relation with �̃�(𝑔, 𝑎), perceived as the truth value of object 𝑔 having attribute 𝑎. In 
some practical applications, if 𝐿 = [0, 1], then L-context is denoted as a fuzzy formal context.

Definition 1. [4] Let 𝜓 ∶ 𝑀 → 𝑁 and 𝜑 ∶ 𝑁 → 𝑀 be two mappings between ordered sets (𝑀, ≤) and (𝑁, ≤). Then a pair (𝜓, 𝜑) is 
called an isotone Galois connection satisfying

1. for any 𝑚1, 𝑚2 ∈𝑀 , if 𝑚1 ≤𝑚2 ⇒ 𝜓(𝑚1) ≤ 𝜓(𝑚2);
2. for any 𝑛1, 𝑛2 ∈𝑁 , if 𝑛1 ≤ 𝑛2 ⇒ 𝜑(𝑛1) ≤ 𝜑(𝑛2);
3. for any 𝑚 ∈𝑀 and 𝑛 ∈𝑁 , 𝑚 ≤ 𝜑

(
𝜓(𝑚)

)
and 𝑛 ≥ 𝜓

(
𝜑(𝑛)

)
.

2.2. Fuzzy formal concept analysis

Before starting with this subsection, we first briefly introduce the notations of fuzzy formal context and fuzzy concept.

Let 𝑈 be a universe, and a fuzzy set 𝐹 on 𝑋 which is described as a membership function 𝐹 (⋅) ∶ 𝑈 → [0, 1]. For any 𝑥 ∈𝑈 , 𝐹 (𝑥) is 
referred to as the membership degree of 𝑥 with respect to 𝐹 . In particular, we denote by  (𝑈 ) the union of all fuzzy sets on 𝑈 .

Let (𝐺, 𝐴, �̃�) be a fuzzy formal context, where 𝐺 and 𝐴 are the set of objects and the set of attributes, respectively. �̃� is a fuzzy 
relation between 𝐺 and 𝐴, and each �̃�(𝑔, 𝑎) represents the membership degree of object 𝑔 to attribute 𝑎.

Definition 2. [22] Let (𝐺, 𝐴, �̃�) be a fuzzy formal context. For any 𝑋 ⊆𝐺 and �̃� ∈  (𝐴), two derivation operators (⋅)∗ are denoted as 
follows:

𝑋∗(𝑎) =
⋀
𝑥∈𝑋

�̃�(𝑥, 𝑎), 𝑎 ∈𝐴,

�̃�∗ =
{
𝑥 ∈𝐺 ∶ ∀𝑎 ∈𝐴, �̃�(𝑎) ≤ �̃�(𝑥, 𝑎)

}
,

where a pair (𝑋, �̃�) is called a fuzzy concept if 𝑋∗ = �̃� and �̃�∗ =𝑋. In a general sense, 𝑋 and �̃� are the extent and intent of (𝑋, �̃�), 
respectively. It is evident that (𝑋∗∗, 𝑋∗) and (�̃�∗, �̃�∗∗) are two fuzzy concepts.

2.3. Fuzzy three-way concept analysis

To maintain consistence, the above defined operators ∗ are called the positive operators in Definition 2. Correspondingly, refer-

ence [25] also gives a pair of negative operators and three-way operators as follows.
3

Let �̃�𝑐 =𝐺 ×𝐴 − �̃� be the complement of �̃�, where �̃�𝑐(𝑔, 𝑎) means that the non-membership degree of object 𝑔 to attribute 𝑎.
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Table 1

A fuzzy formal context.

𝐺 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

1 0.35 1.00 0.10 0.35 0.90 0.50

2 0.80 0.45 1.00 0.20 0.50 0.65

3 0.25 0.80 0.50 0.25 0.85 0.80

4 0.35 0.60 0.20 0.30 0.35 0.65

5 0.30 0.75 0.85 0.20 0.80 0.70

Given a fuzzy formal context (𝐺, 𝐴, �̃�), for any 𝑋 ⊆𝐺 and �̃� ∈  (𝐴), a pair of operators (⋅)∗̄ are given as follows:

𝑋 ∗̄(𝑎) =
⋀
𝑥∈𝑋

�̃�𝑐(𝑥, 𝑎), 𝑎 ∈𝐴,

�̃�∗̄ =
{
𝑥 ∈𝐺 ∶ ∀𝑎 ∈𝐴, �̃�(𝑎) ≤ �̃�𝑐(𝑥, 𝑎)

}
,

this pair of negative operators could describe the information between objects and attributes. In addition, 𝑋∗̄ represents that 𝑋
possesses the minimum non-membership degree on attribute 𝑎. �̃�∗̄ is considered to be the cognitive procee from attribute to object. As 
described previously, both the positive operators and negative operators are equally important to characterize a concept. Thus, three-

way operator based on three-way decision is constructed and the corresponding three-way concept is formed. For 𝑋 ⊆𝐺 and 𝐵, 𝐶 ⊆𝐴, 
the three-way operators ⋖∶ (𝐺) →  (𝐴) ×  (𝐴) and ⋗∶  (𝐴) ×  (𝐴) → (𝐺) are defined by 𝑋⋖ = (𝑋∗, 𝑋 ∗̄) and (�̃�, �̃�)⋗ = �̃�∗ ∩ �̃� ∗̄. 
Then (𝑋, (�̃�, �̃�)) is a fuzzy three-way concept if 𝑋⋖ = (�̃�, �̃�) and (�̃�, �̃�)⋗ =𝑋.

Example 1. Table 1 (𝐺, 𝐴, �̃�) is a record of screening patients for heart disease, where 𝐺 and 𝐴 are five patients and six symptoms. For 
the sake of simplicity, we denote five patients by 1, 2, 3, 4 and 5, respectively, and six symptoms (cough, shortness of breath, nervous, 
fever, edema and pectoralgia) by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 , respectively. We take 𝑋 = {2, 3} and compute 𝑋∗ = (𝑎0.25, 𝑏0.45, 𝑐0.5, 𝑑0.2, 𝑒0.5, 𝑓 0.65). 
After that 𝑋∗∗ = {2, 3, 5} and then (𝑋∗∗, 𝑋∗) is a fuzzy concept. In addition, 𝑋 ∗̄ = (𝑎0.2, 𝑏0.2, 𝑐0, 𝑑0.75, 𝑒0.15, 𝑓 0.2) which implies that 
𝑋 ∗̄∗̄ = {2, 3, 5}. Thus, ({2, 3, 5}, ((𝑎0.25, 𝑏0.45𝑐0.5, 𝑑0.2, 𝑒0.5, 𝑓 0.65), (𝑎0.2, 𝑏0.2𝑐0, 𝑑0.75, 𝑒0.15, 𝑓 0.2))) is a fuzzy three-way concept.

3. The construction process of VPO3C

In this section, we first propose two categories of concepts which are 𝛼 positive concept and 𝛾 negative concept. Then several 
properties are discussed as follows. Subsequently, inspired by the thought of three-way decision [23], we introduce the notions of 
VPO3C.

3.1. 𝛼 positive concept and 𝛾 negative concept

Definition 3. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context. For any 𝑋 ⊆𝐺, 𝐵 ⊆𝐴, two operators ↑𝛼 and ↓𝛼 are denoted as:

𝑋↑𝛼 = {𝑎 ∈𝐴 ∶ ∀𝑔 ∈𝑋𝑐, �̃�(𝑔, 𝑎) ≥ 𝛼};

𝐵↓𝛼 = {𝑔 ∈𝐺 ∶ ∃𝑎 ∈ 𝐵, �̃�(𝑔, 𝑎) < 𝛼},

where 𝑋↑𝛼 is the set of attributes shared by all objects in the complement of 𝑋 with the degree not less than 𝛼, and 𝐵↓𝛼 is the set 
of objects possessing at least one attribute in 𝐵 with the degree less than 𝛼. For convenience, we denote ↑𝛼 and ↓𝛼 as the 𝛼-positive 
operators.

Property 1. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context. 𝑋, 𝑋1, 𝑋2, 𝑋𝑖 ⊆ 𝐺, 𝐵, 𝐵1, 𝐵2, 𝐵𝑖 ⊆ 𝐴 (𝑖 ∈Λ where Λ is an index set). Then we have

1. 𝑋1 ⊆𝑋2 ⇒𝑋
↑𝛼
1 ⊆𝑋

↑𝛼
2 ;

2. 𝐵1 ⊆ 𝐵2 ⇒𝐵
↓𝛼
1 ⊆ 𝐵

↓𝛼
2 ;

3. 𝑋↑𝛼↓𝛼 ⊆ 𝑋, 𝐵 ⊆ 𝐵↓𝛼↑𝛼 ;

4. 𝑋↑𝛼↓𝛼↑𝛼 =𝑋↑𝛼 , 𝐵↓𝛼 =𝐵↓𝛼↑𝛼↓𝛼 ;

5. 𝑋↑𝛼 ⊇ 𝐵 ⇔𝑋 ⊇𝐵↓𝛼 ;

6. (
⋂

𝑖∈Λ 𝑋𝑖)↑𝛼 =
⋂

𝑖∈Λ𝑋
↑𝛼
𝑖

, (⋃𝑖∈Λ𝐵𝑖)↓𝛼 =
⋃

𝑖∈Λ 𝐵
↓𝛼
𝑖

;

7. (
⋃

𝑖∈Λ 𝑋𝑖)↑𝛼 ⊇
⋃

𝑖∈Λ𝑋
↑𝛼
𝑖

, (⋂𝑖∈Λ𝐵𝑖)↓𝛼 ⊆
⋂

𝑖∈Λ 𝐵
↓𝛼
𝑖

.

Proof. 1. For any 𝑋1 ⊆𝑋2, it is evident that 𝑋↑𝛼
1 ⊆𝑋

↑𝛼
2 with the fact of 𝑋𝑐

2 ⊆𝑋𝑐
1 .

2. Easy, so it is omitted.

3. Proceeding by contradiction, suppose that 𝑋↑𝛼↓𝛼 ⊆ 𝑋 does not hold. There is 𝑦 ∈𝑋↑𝛼↓𝛼 such that 𝑦 ∉𝑋. Assume that 𝑦 ∈𝑋↑𝛼↓𝛼 , 
then there exists 𝑎 ∈𝑋↑𝛼 satisfying �̃�(𝑦, 𝑎) < 𝛼. With the fact of 𝑎 ∈𝑋↑𝛼 , we have �̃�(𝑥, 𝑎) ≥ 𝛼 for any 𝑥 ∈𝑋𝑐 . As 𝑦 ∉𝑋, then 𝑦 ∈𝑋𝑐 . 
4

Hence, �̃�(𝑦, 𝑎) ≥ 𝛼. This is a contradiction with the fact of �̃�(𝑦, 𝑎) < 𝛼. Thus, 𝑋↑𝛼↓𝛼 ⊆ 𝑋. We next verify the another formula. For 
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any 𝑎 ∉ 𝐵↓𝛼↑𝛼 , then there exists 𝑥 ∉ 𝐵↓𝛼 such that �̃�(𝑥, 𝑎) < 𝛼. With the fact of 𝑥 ∉ 𝐵↓𝛼 , we have �̃�(𝑥, 𝑏) ≥ 𝛼 for any 𝑏 ∈ 𝐵. This 
implies that 𝑎 ∉ 𝐵. Therefore, 𝐵 ⊆𝐵↓𝛼↑𝛼 .

4. For any 𝑋 ⊆ 𝐺, since 𝑋↑𝛼↓𝛼 ⊆ 𝑋, it follows that 𝑋↑𝛼↓𝛼↑𝛼 ⊆ 𝑋↑𝛼 from Property 1.1 and 1.3. Conversely, suppose that 𝐵 = 𝑋↑𝛼 . 
Because 𝐵 ⊆ 𝐵↓𝛼↑𝛼 from Property 1.3, we have 𝑋↑𝛼 ⊆ 𝑋↑𝛼↓𝛼↑𝛼 , which follows that 𝑋↑𝛼 = 𝑋↑𝛼↓𝛼↑𝛼 . In a similar way, it can be 
proved that 𝐵↓𝛼 = 𝐵↓𝛼↑𝛼↓𝛼 .

5. Necessity. Since 𝑋↑𝛼 ⊇ 𝐵, we have 𝑋 ⊇ 𝑋↑𝛼↓𝛼 ⊇ 𝐵↓𝛼 from Property 1.1 and 1.3. Sufficiency. Thanks to 𝑋 ⊇ 𝐵↓𝛼 , it holds that 
𝑋↑𝛼 ⊇ 𝐵↓𝛼↑𝛼 ⊇ 𝐵.

6. The following statements are equivalent:

𝑎 ∈ (
⋂
𝑖∈Λ

𝑋𝑖)↑𝛼 ⇔ ∀𝑔 ∈ (
⋂
𝑖∈Λ

𝑋𝑖)𝑐 , �̃�(𝑔, 𝑎) ≥ 𝛼

⇔ ∀𝑔 ∈
⋃
𝑖∈Λ

𝑋𝑐
𝑖
, �̃�(𝑔, 𝑎) ≥ 𝛼

⇔ ∀𝑖 ∈ Λ,∀𝑔 ∈𝑋𝑐
𝑖
, �̃�(𝑔, 𝑎) ≥ 𝛼

⇔ ∀𝑖 ∈ Λ, 𝑎 ∈𝑋
↑𝛼
𝑖

⇔ 𝑎 ∈
⋂
𝑖∈Λ

𝑋
↑𝛼
𝑖

.

It follows that (⋂𝑖∈Λ𝑋𝑖)↑𝛼 =
⋂

𝑖∈Λ𝑋
↑𝛼
𝑖

. The other one is similarly proved.

7. It can be obviously induced from Property 1.1. □

From the above analysis, we see that the pair (↑𝛼, ↓𝛼) forms an isotone Galois connection between (2𝐺, ⊆) and (2𝐴, ⊆) from 
Definition 1 based on Property 1.1, 1.2 and 1.3. Then item 4 shows that the result of applying ↑𝛼 and ↓𝛼 three times respectively 
is the same as that of applying them once. Item 5 is an equivalent statement of isotone Galois connection with respect to (↑𝛼, ↓𝛼). 
Items 6 and 7 demonstrate that the distribution property derived from an object set is valid in the intersection but not in the union. 
Conversely, for any subset of attributes, the distribution property is applicable in the union but not in the intersection.

Definition 4. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context. A pair (𝑋, 𝐵) satisfying 𝑋↑𝛼 =𝐵 and 𝐵↓𝛼 =𝑋 is defined as a 𝛼-positive concept. 
Then 𝑋 and 𝐵 are the extent and intent of 𝛼-positive concept.

For any 𝑋 ⊆𝐺, 𝐵 ⊆ 𝐴, we see that (𝑋↑𝛼↓𝛼 , 𝑋↑𝛼 ) and (𝐵↓𝛼 , 𝐵↓𝛼↑𝛼 ) are 𝛼-positive concepts from Property 1.4. Subsequently, for any 
two 𝛼-positive concepts (𝑋1, 𝐵1) and (𝑋2, 𝐵2), the partial order ≤ is denoted as follows:

(𝑋1,𝐵1) ≤ (𝑋2,𝐵2)⇔𝑋1 ⊆𝑋2 ⇔𝐵1 ⊆𝐵2,

where (𝑋1, 𝐵1) is a sub-concept of (𝑋2, 𝐵2), and (𝑋2, 𝐵2) is referred to as a super-concept of (𝑋1, 𝐵1). Then the set of all 𝛼-positive 
concepts forms a complete lattice, denoted by 𝐿𝛼(𝐺, 𝐴, �̃�).

Example 2. Further considering Table 1, given 𝛼 = 0.6, for the object 𝑋 = {2, 3}, this implies that doctor mainly focuses on symptoms 
based on the medical reports of previous patients 1, 4 and 5 when examining patients 2 and 3. Then we can obtain 𝑋↑𝛼 = {𝑏}, which 
means that the main symptom of heart disease caused by patients 1, 4 and 5 is shortness of breath 𝑏 when screening for heart disease. 
Now, we focus on whether patients 2 and 3 have symptom 𝑏. On this basis, we compute 𝑋↑𝛼↓𝛼 = {2}. This shows that only patient 2 
has non-prominent symptoms among the two patients 2 and 3. That is to say, patient 2 appears to have milder symptoms of heart 
disease compared to patient 3.

On the other hand, concept plays a crucial role in solving classification problems [16–18,33,34] in concept-cognitive learning. 
According to the property of 𝛼-positive concept, we know that |𝑋↑𝛼↓𝛼 ||𝑋| ≤ 1. However, it is well known that |𝑋∗∗||𝑋| ≥ 1 from Definition 2. 
Therefore, the extent of 𝛼-positive concept is in the same class 𝑋, which is more accurate than fuzzy concept.

Henceforth, we will continue to introduce the notion of 𝛾-negative concept.

Definition 5. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context. For any 𝑋 ⊆𝐺, 𝐵 ⊆𝐴, two operators ↑𝛾 and ↓𝛾 are denoted as:

𝑋↑𝛾 = {𝑎 ∈𝐴 ∶ ∀𝑔 ∈𝑋𝑐, �̃�(𝑔, 𝑎) < 𝛾};

𝐵↓𝛾 = {𝑔 ∈𝐺 ∶ ∃𝑎 ∈𝐵, �̃�(𝑔, 𝑎) ≥ 𝛾},

where 𝑋↑𝛾 is the set of attributes possessed by all objects in the complement of 𝑋 with the degree less than 𝛾 , and 𝐵↓𝛾 is the set of 
objects possessing at least one attribute in 𝐵 with the degree not less than 𝛾 . For the sake of simplicity, we write ↑𝛾 and ↓𝛾 as the 
𝛾-negative operators.

Analogously, we also discuss its properties, but its proof process is similar to Property 1, so we will omit them. For 𝑋, 𝑋1, 𝑋2, 𝑋𝑖 ⊆
5

𝐺, 𝐵, 𝐵1, 𝐵2, 𝐵𝑖 ⊆ 𝐴 (𝑖 ∈Λ where Λ is an index set), we have
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1. 𝑋1 ⊆𝑋2 ⇒𝑋
↑𝛾
1 ⊆𝑋

↑𝛾
2 ;

2. 𝐵1 ⊆ 𝐵2 ⇒𝐵
↓𝛾
1 ⊆𝐵

↓𝛾
2 ;

3. 𝑋↑𝛾↓𝛾 ⊆ 𝑋, 𝐵 ⊆ 𝐵↓𝛾↑𝛾 ;

4. 𝑋↑𝛾↓𝛾↑𝛾 =𝑋↑𝛾 , 𝐵↓𝛾 = 𝐵↓𝛾↑𝛾↓𝛾 ;

5. 𝑋↑𝛾 ⊇ 𝐵 ⇔𝑋 ⊇𝐵↓𝛾 ;

6. (
⋂

𝑖∈Λ 𝑋𝑖)↑𝛾 =
⋂

𝑖∈Λ𝑋
↑𝛾
𝑖

, (⋃𝑖∈Λ𝐵𝑖)↓𝛾 =
⋃

𝑖∈Λ𝐵
↓𝛾
𝑖

;

7. (
⋃

𝑖∈Λ 𝑋𝑖)↑𝛾 ⊇
⋃

𝑖∈Λ𝑋
↑𝛾
𝑖

, (⋂𝑖∈Λ𝐵𝑖)↓𝛾 ⊆
⋂

𝑖∈Λ𝐵
↓𝛾
𝑖

.

Moreover, if 𝑋↑𝛾 = 𝐵 and 𝐵↓𝛾 =𝑋 for any 𝑋 ⊆𝐺, 𝐵 ⊆𝐴, then (𝑋, 𝐵) is called a 𝛾-negative concept.

Example 3. Further continuing Table 1, suppose that 𝑋 = {2, 3} and 𝛾 = 0.4, it can be checked that 𝑋↑𝛾 = {𝑎, 𝑑} which represents 
that patients 1, 4 and 5 exhibit milder symptoms cough 𝑎 and fever 𝑑 when screening for heart disease. To assess whether patients 
2 and 3 have symptoms 𝑎 and 𝑑. Then we can obtain {𝑎, 𝑑}↓𝛾 = {2}. This implies that patient 2 appears to be more severe symptoms 
compared to patient 3. We use (2, 𝑎𝑑) instead of its standard format (2, {𝑎, 𝑑}). In the end, (2, 𝑎𝑑) is a 𝛾-concept.

3.2. Variable precision object induced three-way concept

To address the aforementioned challenges, three-way decision plays a pivotal role for data mining and decision-making activities. 
Inspired by the thought of three-way concept [10], we will propose the notion of variable precision object induced three-way concept 
in this subsection.

For two pairs of sets (𝐵𝑖, 𝐶𝑖) and (𝐵𝑗, 𝐶𝑗 ), if 𝐵𝑖 ⊆ 𝐵𝑗 and 𝐶𝑖 ⊆ 𝐶𝑗 , then we denote by (𝐵𝑖, 𝐶𝑖) ⊆ (𝐵𝑗, 𝐶𝑗 ). Furthermore, the union and 
intersection are given by [25]:

(𝐵𝑖,𝐶𝑖) ∪ (𝐵𝑗,𝐶𝑗 ) = (𝐵𝑖 ∪𝐵𝑗,𝐶𝑖 ∪𝐶𝑗 );

(𝐵𝑖,𝐶𝑖) ∩ (𝐵𝑗,𝐶𝑗 ) = (𝐵𝑖 ∩𝐵𝑗,𝐶𝑖 ∩𝐶𝑗 ).

Definition 6. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. For any 𝑋 ⊆ 𝐺, 𝐵, 𝐶 ⊆ 𝐴, a pair of three-way operators is 
defined as follows:

𝑋⋖𝛼𝛾 = (𝑋↑𝛼 ,𝑋↑𝛾 );

(𝐵,𝐶)⋗𝛼𝛾 =𝐵↓𝛼 ∪𝐶↓𝛾 ,
(1)

where this pair of three-way operators is called the 𝛼 − 𝛾-object induced three-way operator or variable precision object induced 
three-way operator.

It should be noticed that the condition 0 ≤ 𝛾 < 𝛼 ≤ 1 can guarantee the disjointness of 𝑋↑𝛼 and 𝑋↓𝛾 . Moreover, the operators ⋖𝛼𝛾

and ⋗𝛼𝛾 combine 𝛼-positive operators and 𝛾-negative operators together, which describe not only the positive attributes but also 
the negative attributes. In such case, for an arbitrary 𝑋 ⊆ 𝐺, 𝑋⋖𝛼𝛾 can formalize 𝐴 into three disjoint regions, that is the positive, 
negative and boundary regions:

(1) 𝑃𝑂𝑆𝛼 =𝑋↑𝛼 = {𝑎 ∈𝐴 ∶ ∀𝑔 ∈𝑋𝑐, �̃�(𝑔, 𝑎) ≥ 𝛼};

(2) 𝑁𝐸𝐺𝛾 =𝑋↑𝛾 = {𝑎 ∈𝐴 ∶ ∀𝑔 ∈𝑋𝑐, �̃�(𝑔, 𝑎) < 𝛾};

(3) 𝐵𝑁𝐷𝛼,𝛾 =𝐴− 𝑃𝑂𝑆𝛼 −𝑁𝐸𝐺𝛾 .

This pair of 𝛼 − 𝛾-object induced three-way operator has the following properties.

Property 2. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. For 𝑋, 𝑋1, 𝑋2, 𝑋𝑖 ⊆ 𝐺, 𝐵, 𝐶, 𝐵1, 𝐶1, 𝐵2, 𝐶2, 𝐵𝑖, 𝐶𝑖 ⊆ 𝐴 (𝑖 ∈ Λ where 
Λ is an index set). Then we have

1. 𝑋1 ⊆𝑋2 ⇒𝑋
⋖𝛼𝛾

1 ⊆𝑋
⋖𝛼𝛾

2 ;

2. (𝐵1, 𝐶1) ⊆ (𝐵2, 𝐶2) ⇒ (𝐵1, 𝐶1)⋗𝛼𝛾 ⊆ (𝐵2, 𝐶2)⋗𝛼𝛾 ;

3. 𝑋⋖𝛼𝛾⋗𝛼𝛾 ⊆ 𝑋, (𝐵, 𝐶) ⊆ (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ;

4. 𝑋⋖𝛼𝛾⋗𝛼𝛾⋖𝛼𝛾 =𝑋⋖𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾⋗𝛼𝛾 ;

5. 𝑋⋖𝛼𝛾 ⊇ (𝐵, 𝐶) ⇔𝑋 ⊇ (𝐵, 𝐶)⋗𝛼𝛾 ;

6. (
⋂

𝑖∈Λ 𝑋𝑖)⋖𝛼𝛾 =
⋂

𝑖∈Λ𝑋
⋖𝛼𝛾

𝑖
, (⋃𝑖∈Λ(𝐵𝑖, 𝐶𝑖))⋗𝛼𝛾 =

⋃
𝑖∈Λ(𝐵𝑖, 𝐶𝑖)⋗𝛼𝛾 ;

7. (
⋃

𝑖∈Λ 𝑋𝑖)⋖𝛼𝛾 ⊇
⋃

𝑖∈Λ𝑋
⋖𝛼𝛾

𝑖
, (⋂𝑖∈Λ(𝐵𝑖, 𝐶𝑖))⋗𝛼𝛾 ⊆

⋂
𝑖∈Λ(𝐵𝑖, 𝐶𝑖)⋗𝛼𝛾 .

Proof. We only prove the items 3, 4 and 6 here. The conclusions 1, 2, 5 and 7 are obvious.

3. From Property 1.3, we obtain 𝑋⋖𝛼𝛾⋗𝛼𝛾 = (𝑋↑𝛼 , 𝑋↑𝛾 )⋗𝛼𝛾 =𝑋↑𝛼↓𝛼 ∪𝑋↑𝛾↓𝛾 ⊆ 𝑋 ∪𝑋 =𝑋. Analogously, (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 = (𝐵↓𝛼 ∪𝐶↓𝛾 )⋖𝛼𝛾 =
6

((𝐵↓𝛼 ∪𝐶↓𝛾 )↑𝛼 , (𝐵↓𝛼 ∪𝐶↓𝛾 )↑𝛾 ) ⊇ (𝐵↓𝛼↑𝛼 ∪𝐶↓𝛾↑𝛼 , 𝐵↓𝛼↑𝛾 ∪𝐶↓𝛾↑𝛾 ) ⊇ (𝐵↓𝛼↑𝛼 , 𝐶↓𝛾↑𝛾 ) ⊇ (𝐵, 𝐶).
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4. It follows from items 1 and 3 that 𝑋⋖𝛼𝛾⋗𝛼𝛾⋖𝛼𝛾 ⊆ 𝑋⋖𝛼𝛾 . On the other hand,

𝑋⋖𝛼𝛾⋗𝛼𝛾⋖𝛼𝛾 = (𝑋↑𝛼 ,𝑋↑𝛾 )⋗𝛼𝛾⋖𝛼𝛾 = (𝑋↑𝛼↓𝛼 ∪𝑋↑𝛾↓𝛾 )⋖𝛼𝛾

= ((𝑋↑𝛼↓𝛼 ∪𝑋↑𝛾↓𝛾 )↑𝛼 , (𝑋↑𝛼↓𝛼 ∪𝑋↑𝛾↓𝛾 )↑𝛾 )

⊇ (𝑋↑𝛼↓𝛼↑𝛼 ∪𝑋↑𝛾↓𝛾↑𝛼 ,𝑋↑𝛼↓𝛼↑𝛾 ∪𝑋↑𝛾↓𝛾↑𝛾 ))

⊇ (𝑋↑𝛼↓𝛼↑𝛼 ,𝑋↑𝛾↓𝛾↑𝛾 ) = (𝑋↑𝛼 ,𝑋↑𝛾 ) =𝑋⋖𝛼𝛾 .

Thus, we have 𝑋⋖𝛼𝛾⋗𝛼𝛾⋖𝛼𝛾 =𝑋⋖𝛼𝛾 . By the similar proof, we prove (𝐵, 𝐶)⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾⋗𝛼𝛾 .

6. It holds that (⋂𝑖∈Λ𝑋𝑖)⋖𝛼𝛾 = ((
⋂

𝑖∈Λ𝑋𝑖)↑𝛼 , (
⋂

𝑖∈Λ𝑋𝑖)↑𝛾 ) = (
⋂

𝑖∈Λ𝑋
↑𝛼
𝑖

, ⋂𝑖∈Λ𝑋
↑𝛾
𝑖
) =⋂

𝑖∈Λ(𝑋
↑𝛼
𝑖

, 𝑋↑𝛾
𝑖
) =⋂

𝑖∈Λ𝑋
⋖𝛼𝛾

𝑖
In a similar way, it 

is obvious that (⋃𝑖∈Λ(𝐵𝑖, 𝐶𝑖))⋗𝛼𝛾 =
⋃

𝑖∈Λ(𝐵𝑖, 𝐶𝑖)⋗𝛼𝛾 also holds. □

Based on the 𝛼 − 𝛾-object induced three-way operator, we can define the following three-way concept.

Definition 7. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. For any 𝑋 ⊆ 𝐺, 𝐵, 𝐶 ⊆ 𝐴, if a pair (𝑋, (𝐵, 𝐶)) satisfying 
𝑋⋖𝛼𝛾 = (𝐵, 𝐶) and (𝐵, 𝐶)⋗𝛼𝛾 =𝑋 is named a 𝛼 − 𝛾-object induced three-way concept or variable precision object induced three-way 
concept (short for VPO3C). Furthermore, it is known that (𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ) and ((𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ) are VPO3Cs from Property 2.4. 
Then the set of all VPO3Cs is denoted by 𝐿𝛼𝛾 (𝐺, 𝐴, �̃�), where the infimum and supermum are respectively given by:⋀

𝑖∈Λ

(
𝑋𝑖, (𝐵𝑖,𝐶𝑖)

)
=
(
(
⋀
𝑖∈Λ

𝑋𝑖)⋖𝛼𝛾⋗𝛼𝛾 ,
⋀
𝑖∈Λ

(𝐵𝑖,𝐶𝑖)
)
;

⋁
𝑖∈Λ

(
𝑋𝑖, (𝐵𝑖,𝐶𝑖)

)
=
(⋁

𝑖∈Λ
𝑋𝑖,

(⋁
𝑖∈Λ

(𝐵𝑖,𝐶𝑖)
)⋗𝛼𝛾⋖𝛼𝛾

)
.

Example 4. Continued with Example 1. Let 𝛼 = 0.6, 𝛾 = 0.4, and 𝑋 = {2, 3}. Then 𝑋⋖𝛼𝛾 = ({𝑏}, {𝑎, 𝑑}), besides, ({𝑏}, {𝑎, 𝑑})⋗𝛼𝛾 =
{2} ∪{2} = {2}. Hence, 

(
{2}, ({𝑏}, {𝑎, 𝑑})

)
is a VPO3C. Remarkably, for the sake of simplicity, we clearly abbreviate 

(
{2}, ({𝑏}, {𝑎, 𝑑})

)
as 

(
2, (𝑏, 𝑎𝑑)

)
.

From the above analysis, we can find that VPO3C has comprehensive and diverse information, which demonstrates that three-way 
decision has advantages in collecting information.

4. Two-way concept-cognitive learning based on VPO3C

In the earlier section, we have systematically discussed the relationship between the extent and the intent with respect to VPO3C. 
From cognitive granular, the consistency between objects and attributes can reflect the nature or the laws of things. If humans 
are interested in an unknown object, they usually have a vague and rough impression during their initial perception. The above 
uncertain impression is typically composed of some sufficient and necessary attributes. When this object aligns with its attributes, 
the systematic law of the human brain can be revealed.

In fact, in some practical applications, the establishment of concept (𝑋, (𝐵, 𝐶)) satisfying 𝑋⋖𝛼𝛾 = (𝐵, 𝐶) and (𝐵, 𝐶)⋗𝛼𝛾 =𝑋 is not 
easy to directly obtain in a fuzzy formal context (𝐺, 𝐴, �̃�). Hence, how to find the three-way concepts from the given clues is an 
important problem of concept learning. Before beginning the discussion below, we refer to the clues (i.e., object information 𝑋 and 
attribute information (𝐵, 𝐶)) as information granules to illustrate the learning process of concept cognition.

4.1. Two-way concept-cognitive learning

Definition 8. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. ⋖𝛼𝛾 and ⋗𝛼𝛾 are a pair of three-way learning operators. For 
any information granules 𝑋 ⊆𝐺, 𝐵, 𝐶 ⊆ 𝐴, we define

1 = {(𝑋, (𝐵,𝐶))|(𝐵,𝐶) ⊆𝑋⋖𝛼𝛾 , (𝐵,𝐶)⋗𝛼𝛾 ⊆ 𝑋};

2 = {(𝑋, (𝐵,𝐶))|(𝐵,𝐶) ⊇𝑋⋖𝛼𝛾 , (𝐵,𝐶)⋗𝛼𝛾 ⊇ 𝑋}.

If (𝑋, (𝐵, 𝐶)) ∈ 1, then (𝑋, (𝐵, 𝐶)) is a necessary 𝛼− 𝛾 three-way information granule. If (𝑋, (𝐵, 𝐶)) ∈ 2, then (𝑋, (𝐵, 𝐶)) is a sufficient 
𝛼 − 𝛾 three-way information granule. Simultaneously, if (𝑋, (𝐵, 𝐶)) ∈ 1 ∩ 2, then (𝑋, (𝐵, 𝐶)) is a necessary and sufficient 𝛼 − 𝛾

three-way information granule. Next, if (𝑋, (𝐵, 𝐶)) ∉ 1 ∪ 2, then (𝑋, (𝐵, 𝐶)) is an inconsistent 𝛼 − 𝛾 three-way information granule.

As a matter of fact, a necessary and sufficient 𝛼 − 𝛾 three-way information granule is a VPO3C. Due to the lack of VPO3Cs at 
the beginning of cognitive learning, the learning systems 1 and 2 are the inevitable requirement to learn three-way concepts from 
inconsistent 𝛼 − 𝛾 three-way information granules.

Theorem 1. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. 1 is a necessary 𝛼 − 𝛾 three-way information granule set. For any 
7

𝑋 ⊆𝐺, 𝐵, 𝐶 ⊆𝐴, then the following statements hold:
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1.
(
𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)

)
∈ 1;

2.
(
𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)

)
∈ 1;

3.
(
(𝐵, 𝐶)⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)

)
∈ 1;

4.
(
𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 , 𝑋⋖𝛼𝛾

)
∈ 1;

5.
(
𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)

)
∈ 1;

6.
(
𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾

)
∈ 1.

Proof. We only prove items 1, 3 and 5 here. The proofs of items 2, 4 and 6 are similar to the previous three items.

1. It follows from Property 2.3 and 2.7 that (𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 )⋖𝛼𝛾 ⊇ 𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ⊇ 𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶). On the other hand, from 
Property 2.3 and 2.6, we have (𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶))⋗𝛼𝛾 =𝑋⋖𝛼𝛾⋗𝛼𝛾 ∪ (𝐵, 𝐶)⋗𝛼𝛾 ⊆ 𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 .

3. According to Property 2.3, we can get that (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ⊇ (𝐵, 𝐶) ⊇ (𝐵, 𝐶) ∩𝑋⋖𝛼𝛾 . In addition, also from Property 2.7, it is evident 
that (𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶))⋗𝛼𝛾 ⊆ 𝑋⋖𝛼𝛾⋗𝛼𝛾 ∩ (𝐵, 𝐶)⋗𝛼𝛾 ⊆ (𝐵, 𝐶)⋗𝛼𝛾 .

5. 𝑋⋖𝛼𝛾⋗𝛼𝛾⋖𝛼𝛾 =𝑋⋖𝛼𝛾 ⊇ 𝑋⋖𝛼𝛾 ∩(𝐵, 𝐶) holds naturally based on Property 2.4. Then we also obtain that (𝑋⋖𝛼𝛾 ∩(𝐵, 𝐶))⋗𝛼𝛾 ⊆ 𝑋⋖𝛼𝛾⋗𝛼𝛾 ∩
(𝐵, 𝐶)⋗𝛼𝛾 ⊆ 𝑋⋖𝛼𝛾⋗𝛼𝛾 . □

Theorem 2. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. 2 is a sufficient 𝛼 − 𝛾 three-way information granule set. For any 
𝑋 ⊆𝐺, 𝐵, 𝐶 ⊆𝐴, then

1.
(
𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾

)
∈ 2;

2.
(
𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)

)
∈ 2.

Proof. For simplicity, we only prove item 1, and second one can be demonstrated in a similar way.

1. It is sure that (𝑋 ∩(𝐵, 𝐶)⋗𝛼𝛾 )⋖𝛼𝛾 =𝑋⋖𝛼𝛾 ∩(𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ⊆ (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 from Property 2.6. Furthermore, (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾 ⊇

𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾 . Thus (𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ) ∈ 2. □

Theorems 1 and 2 show that machine can accurately learn several necessary 𝛼 − 𝛾 three-way information granules and sufficient 
𝛼−𝛾 three-way information granules from the given general three-way information granules. Therefore, we also discuss the following 
theorems to illustrate the acquisition of necessary and sufficient 𝛼 − 𝛾 three-way information granules.

Theorem 3. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. 1 ∩ 2 is a necessary and sufficient 𝛼 − 𝛾 three-way information 
granule set. For an arbitrary (𝑋, (𝐵, 𝐶)) ∈ 1, then

1.
(
(𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋, 

(
(𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋

)⋖𝛼𝛾
)
∈ 1 ∩ 2;

2.
((
(𝐵, 𝐶) ∪𝑋⋖𝛼𝛾

)⋗𝛼𝛾 , (𝐵, 𝐶) ∪𝑋⋖𝛼𝛾
)
∈ 1 ∩ 2.

Proof. We only prove item 1. Then by the similar proof we can demonstrate second one.

1. Because (𝑋, (𝐵, 𝐶)) ∈ 1, then (𝐵, 𝐶) ⊆ 𝑋⋖𝛼𝛾 and (𝐵, 𝐶)⋗𝛼𝛾 ⊆ 𝑋, which implies that (𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋 = (𝐵, 𝐶)⋗𝛼𝛾 . Next, we obtain 
((𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋)⋖𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 = ((𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋)⋖𝛼𝛾 and ((𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋)⋖𝛼𝛾⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋. Therefore, 
((𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋, ((𝐵, 𝐶)⋗𝛼𝛾 ∩𝑋)⋖𝛼𝛾 ) ∈ 1 ∩ 2. □

Theorem 4. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. 1 ∩ 2 is a necessary and sufficient 𝛼 − 𝛾 three-way information 
granule set. For an arbitrary (𝑋, (𝐵, 𝐶)) ∈ 2, then the following statements hold:

1.
(
(𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋, 

(
(𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋

)⋖𝛼𝛾
)
∈ 1 ∩ 2;

2.
((
(𝐵, 𝐶) ∩𝑋⋖𝛼𝛾

)⋗𝛼𝛾 , (𝐵, 𝐶) ∩𝑋⋖𝛼𝛾
)
∈ 1 ∩ 2.

Proof. We only prove item 1 here.

1. According to (𝑋, (𝐵, 𝐶)) ∈ 2, there holds (𝐵, 𝐶) ⊇ 𝑋⋖𝛼𝛾 and (𝐵, 𝐶)⋗𝛼𝛾 ⊇ 𝑋, which means that (𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋 = (𝐵, 𝐶)⋗𝛼𝛾 . Then 
we obtain ((𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋)⋖𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 = ((𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋)⋖𝛼𝛾 , and ((𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋)⋖𝛼𝛾⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾 = (𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋. 
Therefore, ((𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋, ((𝐵, 𝐶)⋗𝛼𝛾 ∪𝑋)⋖𝛼𝛾 ) ∈ 1 ∩ 2. □

Theorems 3 and 4 respectively illustrate that there are two ways to learn necessary and sufficient 𝛼 − 𝛾 three-way information 
granules from necessary or sufficient 𝛼 − 𝛾 three-way information granule.

Based on above analysis, we conclude that there exist 16 ways to learn and transform an inconsistent information granule into 
necessary and sufficient 𝛼 − 𝛾 three-way information granules, and its explanation is depicted in Fig. 2.

4.2. A concise learning mechanism based on information granules

In subsection 3.2, in a given fuzzy formal context, for any information granules 𝑋 ⊆ 𝐺, 𝐵, 𝐶 ⊆ 𝐴, then we see that 
8

(𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ) and ((𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ) are VPO3Cs of 1 ∩ 2. In fact, if (𝑋, (𝐵, 𝐶)) ∈ 1 ∩ 2, then (𝑋, (𝐵, 𝐶)) = (𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ) =
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Fig. 2. The learning process of necessary and sufficient 𝛼 − 𝛾 three-way information granules.

((𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ). From Theorems 1 and 2, we can find that whether it is a necessary 𝛼 − 𝛾 three-way information granule or a 
sufficient 𝛼 − 𝛾 three-way information granule, the final VPO3C can be transformed into (𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾 ) and ((𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 ). 
In such case, the extents and intents of necessary 𝛼 − 𝛾 three-way information granule can be considered as a special general three-

way information granule. Similarly, the sufficient 𝛼− 𝛾 three-way information granule also has the same situation. Thus, assume that 
𝑌 𝐹 and (𝐵, 𝐶)𝐻 represent the extent and intent of general three-way information granules. Then from Theorems 1 and 2, we can 
obtain 𝑌 𝐹 = {𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 , 𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾 , 𝑋⋖𝛼𝛾⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾 } and (𝐵, 𝐶)𝐻 = {𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶), 𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶), 𝑋⋖𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 }. Therefore, 
1 ∩ 2 = {(𝑌 ⋖𝛼𝛾⋗𝛼𝛾 , 𝑌 ⋖𝛼𝛾 )|𝑌 ∈ 𝑌 𝐹 } ∪ {((𝐸, 𝐹 )⋗𝛼𝛾 , (𝐸, 𝐹 )⋗𝛼𝛾⋖𝛼𝛾 )|(𝐸, 𝐹 ) ∈ (𝐵, 𝐶)𝐻}.

Theorem 5. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. 1 ∩ 2 is a necessary and sufficient 𝛼 − 𝛾 three-way information 
granule set, then the following statements hold:

1.
((

𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾
)⋖𝛼𝛾⋗𝛼𝛾 , 

(
𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾

)⋖𝛼𝛾
)
∈ 1 ∩ 2;

2.
((

𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾
)⋖𝛼𝛾⋗𝛼𝛾 , 

(
𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾

)⋖𝛼𝛾
)
∈ 1 ∩ 2;

3.
(
𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾

)
∈ 1 ∩ 2;

4.
(
(𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾

)
∈ 1 ∩ 2;

5.
((

𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)
)⋗𝛼𝛾 , 

(
𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)

)⋗𝛼𝛾⋖𝛼𝛾
)
∈ 1 ∩ 2;

6.
((

𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)
)⋗𝛼𝛾 , 

(
𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)

)⋗𝛼𝛾⋖𝛼𝛾
)
∈ 1 ∩ 2;

Proof. It follows immediately from Theorems 1, 2, 3 and 4. □

Theorem 5 shows that there exist 6 ways to directly learn the VPO3Cs. However, these three-way concepts might be the same, so 
the number is less than or equal to six. Its explanation is described in Fig. 3.

To better explain the construction process of VPO3C in a fuzzy formal context, the following example is used to supplement the 
calculation steps. Moreover, Algorithm 1 presents the corresponding concept formation algorithm, which can fully excavate rich 
knowledge.

Example 5. Continued with Example 1. Let 𝛼 = 0.6, 𝛾 = 0.4, 𝑋 = {12}, and (𝐵, 𝐶) = (𝑏𝑒, 𝑎). Then using Eq. (1) we have 𝑋⋖𝛼𝛾 = (𝑏𝑓 , 𝑎𝑑)
and 𝑋⋖𝛼𝛾⋗𝛼𝛾 = {12}. At the same time, (𝐵, 𝐶)⋗𝛼𝛾 = {24} and (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾 = (𝑏𝑒, 𝑎𝑑). Hence, VPO3Cs are shown as follows:

1.
((

𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾
)⋖𝛼𝛾⋗𝛼𝛾 , 

(
𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾

)⋖𝛼𝛾
)
=
(
124, (𝑏𝑒𝑓 , 𝑎𝑑)

)
;

2.
((

𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾
)⋖𝛼𝛾⋗𝛼𝛾 , 

(
𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾

)⋖𝛼𝛾
)
=
(
2, (𝑏, 𝑎𝑑)

)
;

3.
(
𝑋⋖𝛼𝛾⋗𝛼𝛾 , 𝑋⋖𝛼𝛾

)
=
(
12, (𝑏𝑓 , 𝑎𝑑)

)
;

4.
(
(𝐵, 𝐶)⋗𝛼𝛾 , (𝐵, 𝐶)⋗𝛼𝛾⋖𝛼𝛾

)
=
(
24, (𝑏𝑒, 𝑎𝑑)

)
;

5.
((

𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)
)⋗𝛼𝛾 , 

(
𝑋⋖𝛼𝛾 ∪ (𝐵, 𝐶)

)⋗𝛼𝛾⋖𝛼𝛾
)
=
(
124, (𝑏𝑒𝑓 , 𝑎𝑑)

)
;

6.
((

𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)
)⋗𝛼𝛾 , 

(
𝑋⋖𝛼𝛾 ∩ (𝐵, 𝐶)

)⋗𝛼𝛾⋖𝛼𝛾
)
=
(
2, (𝑏, 𝑎𝑑)

)
.

9

As it can be seen from Example 5, four of VPO3Cs are different.
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Fig. 3. The concise learning process of necessary and sufficient 𝛼 − 𝛾 three-way information granules.

Algorithm 1: Learning VPO3Cs (LVPTC).

Input: A fuzzy formal context (𝐺, 𝐴, �̃�), 𝛼, 𝛾 , and given three-way information granules 𝑋 and (𝐵, 𝐶).
Output: VPO3C set 1 ∩ 2 .

1: Initialize: 1 ∩ 2 ← ∅.

2: if (𝑋, (𝐵, 𝐶)) ∉ 1 ∪ 2 then

3: Compute the extent and intent of three-way information granules 𝑌 𝐹 and (𝐵, 𝐶)𝐻 ;

4: for each 𝑌 ∈ 𝑌 𝐹 do

5: Compute the VPO3C (𝑌 ⋖𝛼𝛾⋗𝛼𝛾 , 𝑌 ⋖𝛼𝛾 ) from Theorem 5;

6: end for

7: for each (𝐸, 𝐹 ) ∈ (𝐵, 𝐶)𝐻 do

8: Compute the VPO3C ((𝐸, 𝐹 )⋗𝛼𝛾 , (𝐸, 𝐹 )⋗𝛼𝛾⋖𝛼𝛾

)
from Theorem 5;

9: end for

10: end if

11: 1 ∩ 2 ← (𝑌 ⋖𝛼𝛾⋗𝛼𝛾 , 𝑌 ⋖𝛼𝛾 ) and 1 ∩ 2 ← ((𝐸, 𝐹 )⋗𝛼𝛾 , (𝐸, 𝐹 )⋗𝛼𝛾⋖𝛼𝛾 ).
12: Return 1 ∩ 2 .

5. Updating mechanism of VPO3Cs based on information granules

With the viewpoint of cognitive computing, the object set 𝑋 and the pair of attributes subset (𝐵, 𝐶) in the information granules 
will be updated as time goes by, which shows that the previous three-way concepts should be updated to simulate intelligence 
behaviors of the human brain. As it can be seen from Example 1, five patients with heart disease have six symptoms. As time 
progresses, there will be more patients with other symptoms, such as abdominal distention, jaundice, anxiety and so forth. In this 
case, therefore, it is desirable to update the VPO3Cs when facing the scenario of dynamic information granules. To tackle this issue, 
we mainly focus on two dynamic updating mechanisms of information granules. The first is the dynamic information on the object 
set 𝑋, and the other one is the dynamic information on the pair of attribute (𝐵, 𝐶).

5.1. Updating mechanism based on VPO3Cs

In this subsection, we will introduce some symbolic descriptions before stating our issue.

Assume that 𝑛 object sets 𝐺1, 𝐺2, ⋯ , 𝐺𝑛 with 𝐺1 ⊆ 𝐺2 ⊆ ⋯ ⊆ 𝐺𝑛 are denoted as {𝐺𝑡}↑. Then 𝑛 attribute sets 𝐴1, 𝐴2, ⋯ , 𝐴𝑛 with 
𝐴1 ⊆ 𝐴2 ⊆⋯ ⊆ 𝐴𝑛 are denoted as {𝐴𝑡}↑. Furthermore, 𝑛 object sets in the information granule 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 with 𝑋1 ⊆𝑋2 ⊆⋯ ⊆𝑋𝑛

are denoted as {𝑋𝑡}↑. The 𝑛 attribute sets in the information granule (𝐵, 𝐶)1, (𝐵, 𝐶)2, ⋯ , (𝐵, 𝐶)𝑛 with (𝐵, 𝐶)1 ⊆ (𝐵, 𝐶)2 ⊆⋯ ⊆ (𝐵, 𝐶)𝑛
are denoted as {(𝐵, 𝐶)𝑡}↑. Hereafter, for any 𝑖 ≤ 𝑛, we denote by Γ(𝐴𝑖) the power set of the pair of attribute set 𝐴𝑖 .

Definition 9. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1. 𝐺𝑖−1, 𝐺𝑖 are object sets of {𝐺𝑡}↑ and 𝐴𝑖−1, 𝐴𝑖 are attribute sets 
of {𝐴𝑡}↑. 𝑋𝑖−1, 𝑋𝑖 are the object sets in the information granule of {𝑋𝑡}↑. (𝐵, 𝐶)𝑖−1, (𝐵, 𝐶)𝑖 are the attribute sets in the information 
granule of {(𝐵, 𝐶)𝑡}↑. Denote △𝐺𝑖−1 =𝐺𝑖 −𝐺𝑖−1, △𝐴𝑖−1 =𝐴𝑖 −𝐴𝑖−1, △𝑋𝑖−1 =𝑋𝑖 −𝑋𝑖−1 and △(𝐵, 𝐶)𝑖−1 = (𝐵, 𝐶)𝑖 − (𝐵, 𝐶)𝑖−1. Assume 
10

that
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(1)𝐹𝑖−1 ∶ 2𝑋𝑖−1 → Γ(𝐴𝑖−1), 𝐻𝑖−1 ∶ 2(𝐵,𝐶)𝑖−1 → 2𝐺𝑖−1 ,

(2)𝐹△𝑋𝑖−1
∶ 2△𝑋𝑖−1 → Γ(𝐴𝑖−1), 𝐻△𝑋𝑖−1

∶ 2(𝐵,𝐶)𝑖−1 → 2△𝐺𝑖−1 ,

(3)𝐹△(𝐵,𝐶)𝑖−1 ∶ 2
𝑋𝑖 → Γ(△𝐴𝑖−1), 𝐻△(𝐵,𝐶)𝑖−1 ∶ 2

△(𝐵,𝐶)𝑖−1 → 2𝐺𝑖 ,

(4)𝐹𝑖 ∶ 2𝑋𝑖 → Γ(𝐴𝑖), 𝐻𝑖−1 ∶ 2(𝐵,𝐶)𝑖 → 2𝐺𝑖 ,

are four pairs of cognitive mappings which satisfy the following properties:

𝐹𝑖(𝑋𝑖) = 𝐹𝑖−1(𝑋𝑖−1) ∩ 𝐹△𝑋𝑖−1
(△𝑋𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖), △𝑋𝑖−1 ≠ ∅, (2)

𝐻𝑖((𝐵,𝐶)𝑖) =𝐻𝑖−1
(
(𝐵,𝐶)𝑖−1

)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝑖−1

)
∪𝐻△(𝐵,𝐶)𝑖−1

(
△ (𝐵,𝐶)𝑖−1

)
, △(𝐵,𝐶)𝑖−1 ≠ ∅, (3)

where 𝐻△(𝐵,𝐶)𝑖−1
(
△ (𝐵, 𝐶)𝑖−1

)
is set to be empty when △(𝐵, 𝐶)𝑖−1 = ∅, while 𝐹△𝑋𝑖−1

(△𝑋𝑖−1) is not necessarily empty when △𝑋𝑖−1 =
∅.

From the above statement, 𝐹𝑖, 𝐻𝑖 can be regarded as the current state of 𝐹𝑖−1, 𝐻𝑖−1 with the newly updated information 𝐹△𝑋𝑖−1
, 

𝐻△𝑋𝑖−1
and 𝐹△(𝐵,𝐶)𝑖−1 , 𝐻△(𝐵,𝐶)𝑖−1 . Therefore, from 𝐹𝑖−1, 𝐻𝑖−1 to 𝐹𝑖, 𝐻𝑖, it is necessary to update three-way concepts. It should be 

pointed out that this cognitive process is considered as transformation between information granules from the perspective of granular 
computing. In addition, it is important to update the necessary and sufficient 𝛼 − 𝛾 three-way information granules (1 ∩ 2)𝑖 with 
the combination of (1 ∩ 2)1, (1 ∩ 2)2, ⋯ , (1 ∩ 2)𝑛. To address the above-state problems, we will continue to discuss the dynamic 
mechanism when the objects and the attributes are added to the information granules, respectively.

5.2. Updating mechanism when the objects in the information granules are added

This subsection primarily focuses on the approach for dynamically updating the VPO3Cs when the information 𝑋 in the object 
set will be increased and the information (𝐵, 𝐶) in the attribute set will be unchanged owing to the adding of numerous objects and 
attributes in the continuous data set. From the above discussion, it should be noted that the key to obtaining the VPO3Cs is divided 
into two main components. First, it is evident that 𝑋𝐼 ∈ {𝑋, 𝑋 ∩ (𝐵, 𝐶)⋗𝛼𝛾 , 𝑋 ∪ (𝐵, 𝐶)⋗𝛼𝛾 } and (𝐵, 𝐶)𝐼 ∈ {(𝐵, 𝐶), (𝐵, 𝐶) ∩𝑋⋖𝛼𝛾 , (𝐵, 𝐶) ∪
𝑋⋖𝛼𝛾 } could be considered as derived information granules induced by the initial information granules 𝑋 and (𝐵, 𝐶). Furthermore, 
based on derived information granules 𝑋𝐼 and (𝐵, 𝐶)𝐼 , we can construct the extents 𝑌 𝐹 and intents (𝐵, 𝐶)𝐻 of VPO3Cs and thereby 
implement updating efficiency. Therefore, we propose the updating mechanism when the object set in the information granule is 
added.

When the information 𝑋 in the object set is added and the information (𝐵, 𝐶) in the attribute set is unchanged, the above three 
derived information granules 𝑋𝑖, 𝑋𝑖 ∩ (𝐵, 𝐶)⋗𝛼𝛾

𝑖
, 𝑋𝑖 ∪ (𝐵, 𝐶)⋗𝛼𝛾

𝑖
will be changed simultaneously, where 𝑖 represents the 𝑖-th state. For 

convenience, we first assume that 𝑋𝐼 =𝑋𝑖 and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖 are information granules on the object and attribute sets. Next, we 
investigate the updating mechanism with respect to the VPO3Cs.

Proposition 1. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1, △𝑋𝑖−1 ≠ ∅ and △(𝐵, 𝐶)𝑖−1 = ∅. Suppose 𝑋𝐼 =𝑋𝑖 and (𝐵, 𝐶)𝐼 =
(𝐵, 𝐶)𝑖, then we have

1. If 𝑌 𝐹 =𝑋𝐼 , then △𝑌 𝐹
𝑖−1 =𝑋𝑖 −𝑋𝑖−1,

2. If 𝑌 𝐹 =𝑋𝐼 ∪𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then 𝑌 𝐹 =𝑋𝑖−1 ∪△𝑋𝑖−1 ∪𝐻𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
. Command 𝑌 𝐹

𝑖−1 =𝑋𝑖−1 ∪𝐻𝑖−1
(
(𝐵, 𝐶)𝑖−1

)
and △𝑌 𝐹

𝑖−1 =△𝑋𝑖−1 ∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
,

3. If 𝑌 𝐹 =𝑋𝐼 ∩𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then 𝑌 𝐹 =𝑋𝑖−1 ∪△𝑋𝑖−1 ∩

(
𝐻𝑖−1((𝐵, 𝐶)𝑖−1) ∪𝐻△𝑋𝑖−1

((𝐵, 𝐶)𝑖−1)
)
. Command 𝑌 𝐹

𝑖−1 =𝑋𝑖−1 ∩𝐻𝑖−1
(
(𝐵, 𝐶)𝑖−1

)
and △𝑌 𝐹

𝑖−1 =△𝑋𝑖−1 ∩𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
.

Then VPO3Cs are updated as follows:(
𝐻𝑖𝐹𝑖(𝑌 𝐹 ), 𝐹𝑖(𝑌 𝐹 )

)
=
(
𝐻𝑖

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
, 𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)

=
(
𝐻𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△(𝐵,𝐶)𝑖−1

(
𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
,

𝐹𝑖−1(𝑌 𝐹
𝑖−1) ∩ 𝐹△𝑌 𝐹

𝑖−1
(△𝑌 𝐹

𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌
𝐹 )
)
.

(4)

4. If (𝐵, 𝐶)𝐻 = (𝐵, 𝐶)𝐼 , then △(𝐵, 𝐶)𝐻
𝑖−1 = ∅,

5. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝐼 , then (𝐵, 𝐶)𝐻 = 𝐹𝑖−1(𝑋𝑖−1) ∩ 𝐹△𝑋𝑖−1
(△𝑋𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∩ (𝐵, 𝐶)𝑖. Command (𝐵, 𝐶)𝐻

𝑖−1 =
𝐹𝑖−1(𝑋𝑖−1) ∩ 𝐹△𝑋𝑖−1

(△𝑋𝑖−1) ∩ (𝐵, 𝐶)𝑖 and △(𝐵, 𝐶)𝐻
𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∩ (𝐵, 𝐶)𝑖 = ∅.

Thus VPO3Cs are updated as follows:(
𝐻𝑖

(
(𝐵,𝐶)𝐻

)
, 𝐹𝑖𝐻𝑖

(
(𝐵,𝐶)𝐻

))
=
(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
,

( ) ( ) ( ( ) ( ))) (5)
11

𝐹𝑖−1𝐻𝑖−1 (𝐵,𝐶)𝐻
𝑖−1 ∩ 𝐹△𝑋𝑖−1

𝐻△𝑋𝑖−1
(𝐵,𝐶)𝐻

𝑖−1 ∪ 𝐹△(𝐵,𝐶)𝐻
𝑖−1

𝐻𝑖−1 (𝐵,𝐶)𝐻
𝑖−1 ∪𝐻△𝑋𝑖−1

(𝐵,𝐶)𝐻
𝑖−1 .
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6. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 , then (𝐵, 𝐶)𝐻 = 𝐹𝑖−1(𝑋𝑖−1) ∩ 𝐹△𝑋𝑖−1
(△𝑋𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∪ (𝐵, 𝐶)𝑖. Command (𝐵, 𝐶)𝐻

𝑖−1 =
𝐹𝑖−1(𝑋𝑖−1) ∩ 𝐹△𝑋𝑖−1

(△𝑋𝑖−1) ∪ (𝐵, 𝐶)𝑖 and △(𝐵, 𝐶)𝐻
𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖).

Then VPO3C is updated as follows:(
𝐻𝑖

(
(𝐵,𝐶)𝐻

)
, 𝐹𝑖𝐻𝑖

(
(𝐵,𝐶)𝐻

))
=
(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
,

𝐹𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
∩𝐺𝑖−1

))
∩ 𝐹△𝑋𝑖−1

(
𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)

∩△𝐺𝑖−1

))
∪ 𝐹△(𝐵,𝐶)𝐻

𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)))

.

(6)

Proof. We only prove Eq. (4) here, and Eq. (5) and Eq. (6) can be demonstrated in a similar way. According to Definition 9, we 
can get 𝐹𝑖(𝑌 𝐹

𝑖
) = 𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 ). For (𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3) ∈ 𝐹𝑖(𝑌 𝐹
𝑖
), then assuming that (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈

𝐹𝑖−1(𝑌 𝐹
𝑖−1) ∩ 𝐹△𝑌 𝐹

𝑖−1
(△𝑌 𝐹

𝑖−1) and (𝑎3, 𝑏3) ∈ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌
𝐹 ). From Property 2, we conclude

𝐻𝑖

(
(𝑎1𝑎2𝑎3, 𝑏1𝑏2𝑏3)

)
=𝐻𝑖

(
(𝑎1, 𝑏1)

)
∪𝐻𝑖

(
(𝑎2, 𝑏2)

)
∪𝐻𝑖

(
(𝑎3, 𝑏3)

)
=
(
𝐻𝑖−1

(
(𝑎1, 𝑏1)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
(𝑎1, 𝑏1)

))
∪
(
𝐻𝑖−1

(
(𝑎2, 𝑏2)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
(𝑎2, 𝑏2)

))
∪𝐻△(𝐵,𝐶)𝑖−1

(
(𝑎3, 𝑏3)

)
=
(
𝐻𝑖−1

(
(𝑎1, 𝑏1)

)
∪𝐻𝑖−1

(
(𝑎2, 𝑏2)

))
∪
(
𝐻△𝑌 𝐹

𝑖−1

(
(𝑎1, 𝑏1)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
(𝑎2, 𝑏2)

))
∪𝐻△(𝐵,𝐶)𝑖−1

(
(𝑎3, 𝑏3)

)
=𝐻𝑖−1

(
(𝑎1𝑎2, 𝑏1𝑏2)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
(𝑎1𝑎2, 𝑏1𝑏2)

)
∪𝐻△(𝐵,𝐶)𝑖−1

(
(𝑎3, 𝑏3)

)
.

Finally, it follows that Eq. (4) holds by using recursive approach. □

As shown in Proposition 1, we know that there are six methods of updating the VPO3Cs when 𝑋𝐼 =𝑋𝑖 and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖 from 
the current state 𝐹𝑖−1, 𝐻𝑖−1 to 𝐹𝑖, 𝐻𝑖 with the newly input information on the object set and attribute set. Hereafter, in fact, assuming 
𝑋𝐼 =𝑋𝑖 ∩𝐻𝑖

(
(𝐵, 𝐶)𝑖

)
and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖, the VPO3Cs generated will be partially identical to those generated when 𝑋𝐼 =𝑋𝑖 and 

(𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖. Thus, in the following proposition, we only discuss the case where the concepts are different from Proposition 1.

Proposition 2. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1, △𝑋𝑖−1 ≠ ∅ and △(𝐵, 𝐶)𝑖−1 = ∅. Suppose 𝑋𝐼 =𝑋𝑖 ∩𝐻𝑖

(
(𝐵, 𝐶)𝑖

)
and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖, then we have 𝑋𝐼

𝑖−1 = 𝑋𝑖−1 ∩ 𝐻𝑖−1
(
(𝐵, 𝐶)𝑖−1

)
and △𝑋𝐼

𝑖−1 = △𝑋𝑖−1 ∩ 𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
. The following statement 

holds:

1. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 , then (𝐵, 𝐶)𝐻 = 𝐹𝑖−1(𝑋𝐼
𝑖−1) ∩ 𝐹△𝑋𝐼

𝑖−1
(△𝑋𝐼

𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑋
𝐼
𝑖
) ∪ (𝐵, 𝐶)𝑖. Command (𝐵, 𝐶)𝐻

𝑖−1 =
𝐹𝑖−1(𝑋𝐼

𝑖−1) ∩ 𝐹△𝑋𝐼
𝑖−1

(△𝑋𝐼
𝑖−1) ∪ (𝐵, 𝐶)𝑖 and △(𝐵, 𝐶)𝐻

𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋
𝐼
𝑖
).

Then VPO3C is updated as follows:

(
𝐻𝑖

(
(𝐵,𝐶)𝐻

)
, 𝐹𝑖𝐻𝑖

(
(𝐵,𝐶)𝐻

))
=

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
,

𝐹𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
∩𝐺𝑖−1

))
∩ 𝐹△𝑋𝑖−1

(
𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
∩△𝐺𝑖−1

))

∪ 𝐹△(𝐵,𝐶)𝐻
𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)))

.

(7)

Similarly, VPO3Cs generated when 𝑋𝐼 = 𝑋𝑖 ∪𝐻𝑖

(
(𝐵, 𝐶)𝑖

)
and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖 are partially the same as those generated when 

𝑋𝐼 =𝑋𝑖 and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖. Hence, two different approaches to updating three-way concepts are proposed in Proposition 3.

Proposition 3. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1, △𝑋𝑖−1 ≠ ∅ and △(𝐵, 𝐶)𝑖−1 = ∅. Suppose 𝑋𝐼 =𝑋𝑖 ∪𝐻𝑖

(
(𝐵, 𝐶)𝑖

)
and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖, then we obtain 𝑋𝐼

𝑖−1 =𝑋𝑖−1 ∪𝐻𝑖−1
(
(𝐵, 𝐶)𝑖−1

)
and △𝑋𝐼

𝑖−1 =△𝑋𝑖−1 ∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
. The following propositions 

hold:

1. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝐼 , then (𝐵, 𝐶)𝐻 = 𝐹𝑖

(
𝑋𝑖 ∪ 𝐻𝑖

(
(𝐵, 𝐶)𝑖

))
∩ (𝐵, 𝐶)𝐼 . Command (𝐵, 𝐶)𝐻

𝑖−1 = (𝐵, 𝐶)𝑖−1 ∩ 𝐹𝑖−1

(
𝑋𝑖−1 ∪

𝐻𝑖−1
(
(𝐵, 𝐶)𝑖−1

))
∩ 𝐹△𝑋𝐼

𝑖−1

(
△𝑋𝑖−1 ∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

))
and △(𝐵, 𝐶)𝐻

𝑖−1 = ∅.

Then VPO3C is updated as follows:(
𝐻𝑖

(
(𝐵,𝐶)𝐻

)
, 𝐹𝑖𝐻𝑖

(
(𝐵,𝐶)𝐻

))
=
(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
,

( ) ( ) ( ( ) ( ))) (8)
12

𝐹𝑖−1𝐻𝑖−1 (𝐵,𝐶)𝐻
𝑖−1 ∩ 𝐹△𝑋𝑖−1

𝐻△𝑋𝑖−1
(𝐵,𝐶)𝐻

𝑖−1 ∪ 𝐹△(𝐵,𝐶)𝐻
𝑖−1

𝐻𝑖−1 (𝐵,𝐶)𝐻
𝑖−1 ∪𝐻△𝑋𝑖−1

(𝐵,𝐶)𝐻
𝑖−1 .
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Fig. 4. The dynamic learning process of 𝛼 − 𝛾 three-way concepts when the objects in the information granules are added.

2. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∪(𝐵, 𝐶)𝐼 , command (𝐵, 𝐶)𝐻
𝑖−1 = (𝐵, 𝐶)𝑖−1∪𝐹𝑖−1

(
𝑋𝑖−1∪𝐻𝑖−1

(
(𝐵, 𝐶)𝑖−1

))
∩𝐹△𝑋𝐼

𝑖−1

(
△𝑋𝑖−1∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

))
and △(𝐵, 𝐶)𝐻

𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋
𝐼 ).

Thus VPO3C is updated as follows:

(
𝐻𝑖

(
(𝐵,𝐶)𝐻

)
, 𝐹𝑖𝐻𝑖

(
(𝐵,𝐶)𝐻

))
=

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
,

𝐹𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
∩𝐺𝑖−1

))
∩ 𝐹△𝑋𝑖−1

(
𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)

∩△𝐺𝑖−1

))
∪ 𝐹△(𝐵,𝐶)𝐻

𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)))

.

(9)

From Propositions 1-3, one can conclude that there exist nine methods of updating VPO3Cs from the current state 𝐹𝑖−1 , 𝐻𝑖−1 to 
𝐹𝑖, 𝐻𝑖 when the information 𝑋 on the object set is added and the information (𝐵, 𝐶) on the attribute set is unchanged. Fig. 4 vividly 
shows the dynamic concept learning process by recursive approach based on VPO3Cs.

From this point of view, the corresponding precise algorithm is presented in Algorithm 2. Now, we will analyze its time com-

plexity. Assume (𝐺, 𝐴, �̃�) is a fuzzy formal context, and the cardinality of objects and attributes are |𝐺| and |𝐴|. The cardinality of 
objects in the information granule 

(
𝑋, (𝐵, 𝐶)

)
is |𝑋| and the cardinality of positive attributes and negative attributes are |𝐵| and |𝐶|. 

Then extent and intent of information granule 
(
𝑋, (𝐵, 𝐶)

)
are 𝑌 𝐹 and (𝐵, 𝐶)𝐻 , respectively. In the Step 1, the time complexity is 

𝑂(|𝐺1||𝐴1|)(|𝑌 𝐹
1 | + |(𝐵1, 𝐶1)𝐻 |) based on Algorithm 1. Running Steps 3-16 take 𝑂(|𝐺𝑖||𝐴𝑖|)(|𝑋𝐼

𝑖
||𝑌 𝐹

𝑖
||(𝐵, 𝐶)𝐻

𝑖
|). Hence, running Steps 

2-19 take 𝑂(𝑛|𝐺𝑛||𝐴𝑛|)(|𝑋𝐼
𝑛
||𝑌 𝐹

𝑛
||(𝐵, 𝐶)𝐻

𝑛
|) where 𝑛 is the number of cognitive state. Therefore, the time complexity of Algorithm 2

is 𝑂(𝑛|𝐺𝑛||𝐴𝑛|)(|𝑋𝐼
𝑛
||𝑌 𝐹

𝑛
||(𝐵, 𝐶)𝐻

𝑛
|). Then an example describes the calculation process.

Example 6. In Example 1, we know that five patients have six symptoms. As time progresses, there will be more patients (such as 
patients 6, 7, 8, 9 and 10) from whom other symptoms, such as abdominal distention, jaundice, anxiety and nausea will be observed. 
The information is depicted in Table 2. It should be noticed that the fuzzy membership degrees of patients 1, 2, 3, 4 and 5 under the 
new symptoms abdominal distention, jaundice, anxiety and nausea do not have to be “0” owing to new symptoms that can be tested 
in the original five patients in the later treatment.

Five original patients and six original symptoms in Table 1 are denoted by 𝐺1 = {1, 2, 3, 4, 5} and 𝐴1 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. Then the 
information granules are given by 𝑋1 = {12} and (𝐵, 𝐶)1 = (𝑏𝑒, 𝑎). Assume 𝛼 = 0.6 and 𝛾 = 0.4, then we have 𝐹1(𝑋1) = (𝑏𝑓 , 𝑎𝑑) and ( )
13

𝐻1 (𝐵, 𝐶)1 = {24}.
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Algorithm 2: Updating mechanism of VPO3Cs when objects in the information granule are added (UMVPO).

Input: A fuzzy formal context (𝐺, 𝐴, �̃�), 𝛼, 𝛾 , and given three-way information granules 𝑋1 and (𝐵, 𝐶)1 .
Output: VPO3Cs (1 ∩ 2)𝑛 .
1: Initialize: (1 ∩ 2)1 = {(𝑌 ⋖𝛼𝛾⋗𝛼𝛾 , 𝑌 ⋖𝛼𝛾 )|𝑌 ∈ 𝑌 𝐹

1 } ∪ {
(
(𝐸, 𝐹 )⋗𝛼𝛾 , (𝐸, 𝐹 )⋗𝛼𝛾⋖𝛼𝛾

)|(𝐸, 𝐹 ) ∈ (𝐵, 𝐶)𝐻1 } and 𝑖 = 2.

2: while 𝑖 ≤ 𝑛 do

3: Compute derived information granules 𝑋𝐼
𝑖

and (𝐵, 𝐶)𝐼
𝑖
;

4: Update the extent and intent of three-way information granules 𝑌 𝐹
𝑖

and (𝐵, 𝐶)𝐻
𝑖

;

5: for each 𝑋 ∈𝑋𝐼
𝑖

do

6: for each 𝑌 ∈ 𝑌 𝐹
𝑖

do

7: Compute the VPO3C (𝐻𝑖𝐹𝑖(𝑌 ), 𝐹𝑖(𝑌 )
)

from Eq. (4);

8: end for

9: for each (𝐸, 𝐹 ) ∈ (𝐵, 𝐶)𝐻
𝑖

do

10: if △(𝐵, 𝐶)𝐻
𝑖−1 = ∅ then

11: Compute the VPO3C 
(
𝐻𝑖

(
(𝐸, 𝐹 )

)
, 𝐹𝑖𝐻𝑖

(
(𝐸, 𝐹 )

))
from Eq. (5) or (8);

12: else

13: Compute the VPO3C 
(
𝐻𝑖

(
(𝐸, 𝐹 )

)
, 𝐹𝑖𝐻𝑖

(
(𝐸, 𝐹 )

))
from Eq. (6), (7) or (9);

14: end if

15: end for

16: end for

17: Set (1 ∩ 2)𝑖 ←
(
𝐻𝑖𝐹𝑖(𝑌 ), 𝐹𝑖(𝑌 )

)
and (1 ∩ 2)𝑖 ←

(
𝐻𝑖

(
(𝐸, 𝐹 )

)
, 𝐹𝑖𝐻𝑖

(
(𝐸, 𝐹 )

))
.

18: 𝑖 → 𝑖 + 1;

19: end while

20: Return (1 ∩ 2)𝑛 .

Table 2

A fuzzy formal context.

G 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗

1 0.35 1.00 0.10 0.35 0.90 0.50 0.65 0.70 0.20 0.30

2 0.80 0.45 1.00 0.20 0.50 0.65 0.45 0.25 0.45 0.00

3 0.25 0.80 0.50 0.25 0.85 0.80 0.70 0.55 0.30 0.40

4 0.35 0.60 0.20 0.30 0.35 0.65 0.65 0.30 0.21 0.35

5 0.30 0.75 0.85 0.20 0.80 0.70 0.80 0.69 0.15 0.47

6 0.47 0.25 0.56 0.30 0.00 0.84 0.90 0.80 0.30 0.78

7 0.86 0.85 0.67 0.20 0.70 0.65 0.00 0.30 0.35 0.49

8 0.21 0.48 0.49 0.40 0.60 0.78 0.70 0.50 0.28 0.57

9 0.51 0.89 0.53 0.35 0.30 0.70 0.68 0.60 0.37 0.00

10 0.34 0.65 0.65 0.49 0.75 0.65 0.85 0.90 0.29 0.15

Furthermore, we denote the new patients with heart disease by 6,7,8,9,10 and new symptoms by 𝑔, ℎ, 𝑖, 𝑗, respectively. Let 𝐺2 =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 𝐴2 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗}, 𝑋2 = {1, 2, 7, 8}, (𝐵, 𝐶)2 = (𝑏𝑒, 𝑎), △𝐺1 =𝐺2 −𝐺1 = {6, 7, 8, 9, 10}, △𝐴1 = {𝑔, ℎ, 𝑖, 𝑗}, 
△𝑋1 = {7, 8}, △(𝐵, 𝐶)1 = ∅. First, assuming 𝑋𝐼 =𝑋2 and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)2,

1. If 𝑌 𝐹 =𝑋𝐼 = {1278}, then 𝑌 𝐹
1 = {12} and △𝑌 𝐹

1 = {78},

2. If 𝑌 𝐹 =𝑋𝐼 ∪𝐻2
(
(𝐵, 𝐶)𝐼

)
= {1246789}, then 𝑌 𝐹

1 = {124} and △𝑌 𝐹
1 = {6789},

3. If 𝑌 𝐹 =𝑋𝐼 ∩𝐻2
(
(𝐵, 𝐶)𝐼

)
= {278}, then 𝑌 𝐹

1 = {2} and △𝑌 𝐹
1 = {78},

4. If (𝐵, 𝐶)𝐻 = (𝐵, 𝐶)2 = (𝑏𝑒, 𝑎), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒, 𝑎) and △(𝐵, 𝐶)𝐻1 = ∅,

5. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝐼 = ∅, then (𝐵, 𝐶)𝐻1 = ∅ and △(𝐵, 𝐶)𝐻1 = ∅,

6. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 = (𝑏𝑒𝑓𝑔, 𝑎𝑖), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒𝑓 , 𝑎) and △(𝐵, 𝐶)1 = (𝑔, 𝑖).

Therefore, there are four non-empty VPO3Cs which are 
(
127, (𝑓𝑔, 𝑖)

)
, 
(
1246789, (𝑏𝑒𝑓𝑔, 𝑎𝑖)

)
, 
(
246789, (𝑏𝑒𝑔, 𝑎𝑖)

)
and 

(
27, (𝑓, 𝑖)

)
.

Secondly, assuming (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖 and 𝑋𝐼 =𝑋2 ∩𝐻2
(
(𝐵, 𝐶)𝐼

)
,

1. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 = (𝑏𝑒𝑔, 𝑎𝑖), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒, 𝑎) and △(𝐵, 𝐶)𝐻1 = (𝑔, 𝑖). Thus, VPO3C is 
(
246789, (𝑏𝑒𝑔, 𝑎𝑖)

)
.

Finally, suppose 𝑋𝐼 =𝑋2 ∪𝐻2
(
(𝐵, 𝐶)𝐼

)
and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖,

1. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝐼 = (𝑏𝑒, 𝑎), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒, 𝑎) and △(𝐵, 𝐶)𝐻1 = ∅,

2. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 = (𝑏𝑒𝑓𝑔, 𝑎𝑖), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒𝑓 , 𝑎) and △(𝐵, 𝐶)1 = (𝑔, 𝑖). Hence, VPO3Cs are 
(
246789, (𝑏𝑒𝑔, 𝑎𝑖)

)
and 

(
1246789, (𝑏𝑒𝑓𝑔, 𝑎𝑖)

)
.

To sum up, we know that there exist four different VPO3Cs from the state 𝐹1 , 𝐻1 to 𝐹2, 𝐻2.

5.3. Updating mechanism when the attributes in the information granules are added

Similar to subsection 5.2, we thoroughly elaborate the updating mechanism when the attributes in the information granule 
14

are added in this subsection. In fact, three derived information granules (𝐵, 𝐶)𝑖, (𝐵, 𝐶)𝑖 ∩ 𝑋
⋖𝛼𝛾

𝑖
, (𝐵, 𝐶)𝑖 ∪ 𝑋

⋖𝛼𝛾

𝑖
will vary under the 
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premise of changed information granule (𝐵, 𝐶)𝑖, where 𝑖 represents the 𝑖-th state. To acquire more knowledge, we develop methods 
to dynamically update the VPO3Cs.

Proposition 4. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1, △𝑋𝑖−1 = ∅ and △(𝐵, 𝐶)𝑖−1 ≠ ∅. Assuming 𝑋𝐼 = 𝑋𝑖 and 
(𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖, then the following statements hold:

1. If (𝐵, 𝐶)𝐻 = (𝐵, 𝐶)𝐼 , then △(𝐵, 𝐶)𝐻
𝑖−1 = (𝐵, 𝐶)𝑖 − (𝐵, 𝐶)𝑖−1,

2. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 , then command (𝐵, 𝐶)𝐻
𝑖−1 = 𝐹𝑖−1(𝑋𝑖−1) ∩𝐹△𝑋𝑖−1

(△𝑋𝑖−1) ∪ (𝐵, 𝐶)𝑖−1 and △(𝐵, 𝐶)𝐻
𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∪

△(𝐵, 𝐶)𝑖−1,
3. If (𝐵, 𝐶)𝐻 = 𝐹𝑖(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝐼 , then command (𝐵, 𝐶)𝐻

𝑖−1 = 𝐹𝑖−1(𝑋𝑖−1) ∩𝐹△𝑋𝑖−1
(△𝑋𝑖−1) ∩ (𝐵, 𝐶)𝑖−1 and △(𝐵, 𝐶)𝐻

𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∩
△(𝐵, 𝐶)𝑖−1.

Then VPO3Cs are updated as follows:

(
𝐻𝑖

(
(𝐵,𝐶)𝐻

)
, 𝐹𝑖𝐻𝑖

(
(𝐵,𝐶)𝐻

))
=

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
,

𝐹𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
∩𝐺𝑖−1

))
∩ 𝐹△𝑋𝑖−1

(
𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)
∩△𝐺𝑖−1

))

∪ 𝐹△(𝐵,𝐶)𝐻
𝑖−1

(
𝐻𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△𝑋𝑖−1

(
(𝐵,𝐶)𝐻

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐻

𝑖−1

(
△ (𝐵,𝐶)𝐻

𝑖−1
)))

.

(10)

4. If 𝑌 𝐹 =𝑋𝐼 , then △𝑌 𝐹
𝑖−1 =𝑋𝑖 −𝑋𝑖−1 = ∅,

5. If 𝑌 𝐹 = 𝑋𝐼 ∩ 𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then command 𝑌 𝐹

𝑖−1 = 𝑋𝑖−1 ∩
(
𝐻𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
∪ 𝐻△(𝐵,𝐶)𝑖−1

(
△ (𝐵, 𝐶)𝑖−1

))
and △𝑌 𝐹

𝑖−1 = 𝑋𝑖−1 ∩
𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
= ∅,

6. If 𝑌 𝐹 = 𝑋𝐼 ∪ 𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then command 𝑌 𝐹

𝑖−1 = 𝑋𝑖−1 ∪ 𝐻𝑖−1
(
(𝐵, 𝐶)𝑖−1

)
∪
(
𝐻△(𝐵,𝐶)𝑖−1

(
△ (𝐵, 𝐶)𝑖−1

)
∩ 𝐺𝑖−1

)
and △𝑌 𝐹

𝑖−1 =(
𝐻△(𝐵,𝐶)𝑖−1

(
△ (𝐵, 𝐶)𝑖−1

)
∩△𝐺𝑖−1

)
∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝑖−1

)
.

Therefore, VPO3Cs are updated as follows:

(
𝐻𝑖𝐹𝑖(𝑌 𝐹 ), 𝐹𝑖(𝑌 𝐹 )

)
=
(
𝐻𝑖

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
, 𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)

=
(
𝐻𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△(𝐵,𝐶)𝑖−1

(
𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
,

𝐹𝑖−1(𝑌 𝐹
𝑖−1) ∩ 𝐹△𝑌 𝐹

𝑖−1
(△𝑌 𝐹

𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌
𝐹 )
)
.

(11)

Proof. This proof is similar to Proposition 1. □

Proposition 4 indicates that there exist six VPO3Cs when 𝑋𝐼 =𝑋𝑖 and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)𝑖. However, when (𝐵, 𝐶)𝐼 = 𝐹𝑖(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝑖
and (𝐵, 𝐶)𝐼 = 𝐹𝑖(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝑖, there will be some duplicate three-way concepts after the same updating process, and here we only 
focus on different three-way concepts.

Proposition 5. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1, △𝑋𝑖−1 = ∅ and △(𝐵, 𝐶)𝑖−1 ≠ ∅. Assuming 𝑋𝐼 = 𝑋𝑖 and 
(𝐵, 𝐶)𝐼 = 𝐹𝑖(𝑋𝐼 ) ∩(𝐵, 𝐶)𝑖, then we have (𝐵, 𝐶)𝐼

𝑖−1 = 𝐹𝑖−1(𝑋𝑖−1) ∩𝐹△𝑋𝑖−1
(△𝑋𝑖−1) ∩(𝐵, 𝐶)𝑖−1 and △(𝐵, 𝐶)𝐼

𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∩△(𝐵, 𝐶)𝑖−1. 
The following statements hold:

1. If 𝑌 𝐹 = 𝑋𝐼 ∩ 𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then command 𝑌 𝐹

𝑖−1 = 𝑋𝑖−1 ∩
(
𝐻𝑖−1

(
(𝐵, 𝐶)𝐼

𝑖−1
)
∪ 𝐻△(𝐵,𝐶)𝐼

𝑖−1

(
△ (𝐵, 𝐶)𝐼

𝑖−1
))

and △𝑌 𝐹
𝑖−1 = 𝑋𝑖−1 ∩

𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝐼

𝑖−1
)
= ∅,

2. If 𝑌 𝐹 = 𝑋𝐼 ∪ 𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then command 𝑌 𝐹

𝑖−1 = 𝑋𝑖−1 ∪ 𝐻𝑖−1
(
(𝐵, 𝐶)𝐼

𝑖−1
)
∪
(
𝐻△(𝐵,𝐶)𝐼

𝑖−1

(
△ (𝐵, 𝐶)𝐼

𝑖−1
)
∩ 𝐺𝑖−1

)
and △𝑌 𝐹

𝑖−1 =(
𝐻△(𝐵,𝐶)𝐼

𝑖−1

(
△ (𝐵, 𝐶)𝐼

𝑖−1
)
∩△𝐺𝑖−1

)
∪𝐻△𝑋𝑖−1

(
(𝐵, 𝐶)𝐼

𝑖−1
)
.

Therefore, VPO3Cs are updated as follows:

(
𝐻𝑖𝐹𝑖(𝑌 𝐹 ), 𝐹𝑖(𝑌 𝐹 )

)
=
(
𝐻𝑖

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
, 𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)

=
(
𝐻𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△(𝐵,𝐶)𝑖−1

(
𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
,) (12)
15

𝐹𝑖−1(𝑌 𝐹
𝑖−1) ∩ 𝐹△𝑌 𝐹

𝑖−1
(△𝑌 𝐹

𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌
𝐹 ) .
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Fig. 5. The dynamic learning process of 𝛼 − 𝛾 three-way concepts when the attributes in the information granules are added.

Proposition 6. Let (𝐺, 𝐴, �̃�) be a fuzzy formal context with 0 ≤ 𝛾 < 𝛼 ≤ 1, △𝑋𝑖−1 = ∅ and △(𝐵, 𝐶)𝑖−1 ≠ ∅. Assuming 𝑋𝐼 = 𝑋𝑖 and 
(𝐵, 𝐶)𝐼 = 𝐹𝑖(𝑋𝐼 ) ∪(𝐵, 𝐶)𝑖, then we have (𝐵, 𝐶)𝐼

𝑖−1 = 𝐹𝑖−1(𝑋𝑖−1) ∩𝐹△𝑋𝑖−1
(△𝑋𝑖−1) ∪(𝐵, 𝐶)𝑖−1 and △(𝐵, 𝐶)𝐼

𝑖−1 = 𝐹△(𝐵,𝐶)𝑖−1 (𝑋𝑖) ∪△(𝐵, 𝐶)𝑖−1. 
The following statement holds:

1. If 𝑌 𝐹 =𝑋𝐼 ∩𝐻𝑖

(
(𝐵, 𝐶)𝐼

)
, then command 𝑌 𝐹

𝑖−1 =𝑋𝑖−1 ∩
(
𝐻𝑖−1

(
(𝐵, 𝐶)𝐼

𝑖−1
)
∪𝐻△(𝐵,𝐶)𝐼

𝑖−1

(
△ (𝐵, 𝐶)𝐼

𝑖−1
))

and △𝑌 𝐹
𝑖−1 = ∅.

Therefore, VPO3C is updated as follows:(
𝐻𝑖𝐹𝑖(𝑌 𝐹 ), 𝐹𝑖(𝑌 𝐹 )

)
=
(
𝐻𝑖

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
, 𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)

=
(
𝐻𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△𝑌 𝐹

𝑖−1

(
𝐹𝑖−1(𝑌 𝐹

𝑖−1) ∩ 𝐹△𝑌 𝐹
𝑖−1

(△𝑌 𝐹
𝑖−1)

)
∪𝐻△(𝐵,𝐶)𝑖−1

(
𝐹△(𝐵,𝐶)𝑖−1 (𝑌

𝐹 )
)
,

𝐹𝑖−1(𝑌 𝐹
𝑖−1) ∩ 𝐹△𝑌 𝐹

𝑖−1
(△𝑌 𝐹

𝑖−1) ∪ 𝐹△(𝐵,𝐶)𝑖−1 (𝑌
𝐹 )
)
.

(13)

According to Propositions 4-6, three-way updating concepts after adding attributes in the information granule can be obtained. 
We can see that a total of nine three-way updating concepts can be generated from the current information state 𝐹𝑖−1, 𝐻𝑖−1 to 𝐹𝑖, 𝐻𝑖

with △𝑋𝑖−1 = ∅ and △(𝐵, 𝐶)𝑖−1 ≠ ∅. Practically, the resulting concept might be less than or equal to nine. Fig. 5 describes the 
dynamic concept learning process by recursive approach based on VPO3Cs.

In addition, Algorithm 3 is an updating algorithm for the adding attributes in the information granule. Running Step 1 takes 
𝑂(|𝐺1||𝐴1|)(|𝑌 𝐹

1 | + |(𝐵1, 𝐶1)𝐻 |) based on Algorithm 1. In the Steps 3-12, the time complexity is 𝑂(|𝐺𝑖||𝐴𝑖|)(|(𝐵, 𝐶)𝐼
𝑖
||(𝐵, 𝐶)𝐻

𝑖
||𝑌 𝐹

𝑖
|). 

Hence, running Steps 2-15 take 𝑂(𝑛|𝐺𝑛||𝐴𝑛|)(|(𝐵, 𝐶)𝐼
𝑛
||(𝐵, 𝐶)𝐻

𝑛
||𝑌 𝐹

𝑛
|) where 𝑛 is the number of cognitive state. Therefore, the time 

complexity of Algorithm 3 is 𝑂(𝑛|𝐺𝑛||𝐴𝑛|)(|(𝐵, 𝐶)𝐼
𝑛
||(𝐵, 𝐶)𝐻

𝑛
||𝑌 𝐹

𝑛
|).

Example 7. Continued with Example 6, suppose that 𝑋2 = {12} and (𝐵, 𝐶)2 = (𝑏𝑒𝑔ℎ, 𝑎𝑖𝑗), then we obtain △𝑋1 = ∅ and △(𝐵, 𝐶)1 =
(𝑔ℎ, 𝑖𝑗). First, assuming 𝑋𝐼 =𝑋2 and (𝐵, 𝐶)𝐼 = (𝐵, 𝐶)2, then

1. If (𝐵, 𝐶)𝐻 = (𝐵, 𝐶)𝐼 = (𝑏𝑒𝑔ℎ, 𝑎𝑖𝑗), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒, 𝑎) and △(𝐵, 𝐶)𝐻1 = (𝑔ℎ, 𝑖𝑗),
2. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝐼 = (𝑏𝑒𝑓𝑔ℎ, 𝑎𝑖𝑗), then (𝐵, 𝐶)𝐻1 = (𝑏𝑒𝑓 , 𝑎) and △(𝐵, 𝐶)1 = (𝑔ℎ, 𝑖𝑗),
3. If (𝐵, 𝐶)𝐻 = 𝐹2(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝐼 = (∅, 𝑖), then (𝐵, 𝐶)𝐻1 = (∅, ∅) and △(𝐵, 𝐶)𝐻1 = (∅, 𝑖),
4. If 𝑌 𝐹 =𝑋𝐼 = {12}, then 𝑌 𝐹

1 = {12} and △𝑌 𝐹
1 = ∅,

5. If 𝑌 𝐹 =𝑋𝐼 ∩𝐻2
(
(𝐵, 𝐶)𝐼

)
= {2}, then 𝑌 𝐹

1 = {2} and △𝑌 𝐹
1 = ∅,

6. If 𝑌 𝐹 =𝑋𝐼 ∪𝐻2
(
(𝐵, 𝐶)𝐼

)
= {123456789}, then 𝑌 𝐹

1 = {12345} and △𝑌 𝐹
1 = {6789},

Therefore, there are four different non-empty VPO3Cs which are 
(
123456789, (𝑏𝑐𝑒𝑓𝑔ℎ, 𝑎𝑖𝑗)

)
, 
(
2, (∅, 𝑖)

)
, 
(
12, (𝑓, 𝑖)

)
and 

(
23456789,

(𝑏𝑒𝑔ℎ, 𝑎𝑖𝑗)
)
.

Next, suppose 𝑋𝐼 =𝑋2 and (𝐵, 𝐶)𝐼 = 𝐹𝑖(𝑋𝐼 ) ∩ (𝐵, 𝐶)𝑖,( )

16

1. 𝑌 𝐹 =𝑋𝐼 ∩𝐻2 (𝐵, 𝐶)𝐼 = {2}, then 𝑌 𝐹
1 = {2} and △𝑌 𝐹

1 = ∅,
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Algorithm 3: Updating mechanism of VPO3Cs when attributes in the information granules are added (UMVPA).

Input: A fuzzy formal context (𝐺, 𝐴, �̃�), 𝛼, 𝛾 , and given three-way information granules 𝑋1 and (𝐵, 𝐶)1 .
Output: VPO3Cs (1 ∩ 2)𝑛 .
1: Initialize: (1 ∩ 2)1 = {(𝑌 ⋖𝛼𝛾⋗𝛼𝛾 , 𝑌 ⋖𝛼𝛾 )|𝑌 ∈ 𝑌 𝐹

1 } ∪ {
(
(𝐸, 𝐹 )⋗𝛼𝛾 , (𝐸, 𝐹 )⋗𝛼𝛾⋖𝛼𝛾

)|(𝐸, 𝐹 ) ∈ (𝐵, 𝐶)𝐻1 } and 𝑖 = 2.

2: while 𝑖 ≤ 𝑛 do

3: Calculate information granules 𝑋𝐼
𝑖

and (𝐵, 𝐶)𝐼
𝑖
;

4: Update the extent and intent of three-way information granules (𝐵, 𝐶)𝐻
𝑖

and 𝑌 𝐹
𝑖

;

5: for each (𝐵, 𝐶) ∈ (𝐵, 𝐶)𝐼
𝑖

do

6: for each (𝐸, 𝐹 ) ∈ (𝐵, 𝐶)𝐻
𝑖

do

7: Compute the VPO3C 
(
𝐻𝑖

(
(𝐸, 𝐹 )

)
, 𝐹𝑖𝐻𝑖

(
(𝐸, 𝐹 )

))
from Eq. (10);

8: end for

9: for each 𝑌 ∈ 𝑌 𝐹
𝑖

do

10: Compute the VPO3C (𝐻𝑖𝐹𝑖(𝑌 ), 𝐹𝑖(𝑌 )
)

from Eq. (11), (12) or (13);

11: end for

12: end for

13: Set (1 ∩ 2)𝑖 ←
(
𝐻𝑖

(
(𝐸, 𝐹 )

)
, 𝐹𝑖𝐻𝑖

(
(𝐸, 𝐹 )

))
and (1 ∩ 2)𝑖 ←

(
𝐻𝑖𝐹𝑖(𝑌 ), 𝐹𝑖(𝑌 )

)
.

14: 𝑖 → 𝑖 + 1;

15: end while

16: Return (1 ∩ 2)𝑛 .

2. 𝑌 𝐹 =𝑋𝐼 ∪𝐻2
(
(𝐵, 𝐶)𝐼

)
= {12}, then 𝑌 𝐹

1 = {12} and △𝑌 𝐹
1 = ∅. Thus, non-empty VPO3Cs are 

(
2, (∅, 𝑖)

)
and 

(
12, (𝑓, 𝑖)

)
.

At last, assuming 𝑋𝐼 =𝑋2 and (𝐵, 𝐶)𝐼 = 𝐹𝑖(𝑋𝐼 ) ∪ (𝐵, 𝐶)𝑖,
1. 𝑌 𝐹 =𝑋𝐼 ∩𝐻2

(
(𝐵, 𝐶)𝐼

)
= {12}, then 𝑌 𝐹

1 = {12} and △𝑌 𝐹
1 = ∅. Hence, non-empty VPO3C is 

(
12, (𝑓, 𝑖)

)
.

In summary, we conclude from Example 7 that there are four non-empty VPO3Cs from the state 𝐹1, 𝐻1 to 𝐹2, 𝐻2 with the adding 
attributes in the information granule.

6. Experimental evaluation

In this section, a series of comparative experiments are conducted. To demonstrate the effectiveness of these algorithms, we 
will verify them from the perspective of running time and the number of concepts. In fact, although VPO3C can provide a more 
comprehensive description of conceptual information through positive and negative information, this will lead to longer time-

consuming and smaller numbers of concepts compared with two-way concepts. Therefore, interval-valued data [19] are selected 
to learn interval-value concepts and then compare with the proposed algorithms in this paper. We first compare LVPTC algorithm 
with the CCL approach in static concept learning, and then compare UMVPO and UMVPA algorithms with several CCL algorithms 
[19] from dynamic concept learning.

In order to illustrate the effectiveness of UMVPO and UMVPA algorithms, we divide the datasets into two groups as shown in 
Table 3, where the datasets 1-5 are used to verify the dynamic updating mechanism of algorithm UMVPO, and the datasets 6-10 
are used to validate the dynamic updating mechanism of algorithm UMVPA. For the sake of fairness, the above experiments are 
performed using in MATLAB 2015b on a personal computer with Intel(R) Core(TM) i7-4790 CPU @ 3.6GHz and 16 GB memory.

In the experiment, ten public datasets are downloaded from UCI Machine learning Repository (see https://uci .edu/) which are 
shown in Table 3. In fact, most of the selected datasets are continuous, except for individual attributes that are discrete. For the non-

continuous attributes, the dataset is fuzzified to represent the membership degree belonging to the interval [0, 1] by using 𝑓 (𝑥,𝑎)−𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛

in [6], where 𝑓 (𝑥, 𝑎) means the value of object 𝑥 under attribute 𝑎, and 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 are the maximum and minimum values of all 
objects with attribute 𝑎, respectively. Besides, the lower limit and upper limit of the interval-valued attributes as mentioned in [19]

are constructed as follows:

1. 𝑎𝐿(𝑥) =𝑚𝑎𝑥
(
0, (1 − 𝜀) × 𝑓 (𝑥, 𝑎)

)
;

2. 𝑎𝑈 (𝑥) =𝑚𝑖𝑛
(
1, (1 + 𝜀) × 𝑓 (𝑥, 𝑎)

)
.

where 𝑎𝐿(𝑥) and 𝑎𝑈 (𝑥) represent the lower limit and upper limit of object 𝑥 in attribute 𝑎, respectively. In addition, from Definition 6, 
it is obvious that the different values of parameters 𝛼 and 𝛾 can influence different optimal performance of the proposed algorithms. 
Consequently, we set 𝛼, 𝛾 and 𝜀 to a value between 0.1 and 1.0 in steps of 0.1. The experimental results in the following tables are 
shown with the optimal parameters. For the fairness of the experiment, we conducted ten trials to obtain the average numbers of 
concepts on each dataset.

6.1. Compare the performance of concept learning

In this subsection, to verify the effectiveness of the algorithm LVPTC in static learning, we compare it with OIvA-IvCL in terms of 
numbers of concepts and running time, and then evaluate the ability to produce the knowledge by the two algorithms.

Firstly, to obtain the initial information granule, we randomly select 40%, 60%, 70%, 90% objects of each dataset as its initial 
object subset 𝑋0, and select 40%, 60%, 70%, 90% attributes of each dataset as its initial attribute subset (𝐵0, 𝐶0). Therefore, there exist 
4 × 4 pairs about the number of the initial information granule in each dataset. The evaluation results are represented in Tables 4
17

and 5 and the best results are marked in bold.

https://uci.edu/
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Table 3

Data description.

No. Data sets Objects Attributes Classes

1 Led-display 1000 7 10

2 Turkiye 5820 32 3

3 Nursery 12960 8 3

4 Mushroom 8124 22 2

5 SpliceEW 5000 40 3

6 Pengleuk 72 7070 3

7 Pengnci9 60 9713 9

8 Gene8 96 7129 3

9 Lung-cancer 181 12533 2

10 Gene2 174 12533 11

Fig. 6. Number of three-way concepts varying with 𝛼 and 𝛾 .

The optimal 𝛼 and the numbers of VPO3Cs are recorded in Table 4 on ten datasets. On all datasets, the number of VPO3Cs 
is no more than six in the process of learning knowledge. Furthermore, the numbers of LVPTC are almost more than or equal to 
that of OIvA-IvCL, expect for Mushroom, which reveals the proposed model can mine more rich knowledge. It should be pointed 
out that the numbers of concepts learned by algorithms OIvA-IvCL and LVPTC in datasets 6-10 are approximate. This may be due 
to the high-dimensional attributes of datasets. Additionally, the results in Table 5, which shows that LVPTC is almost better than 
OIvA-IvCL in the average numbers, which reveals the effectiveness of VPO3Cs. As listed as Table 6, it records the time consumption 
of LVPTC compared with OIvA-IvCL in static data. From this table, we demonstrate that the proposed algorithm LVPTC can save 
more time to guarantee the ability to learn concepts. Then the elapsed time increases with the increase of data size, especially in 
large datasets. Therefore, compared with OIvA-IvCL, although the VPO3C introduces negative information to describe objects, the 
number of three-way concepts can be generated by adjusting the thresholds 𝛼 and 𝛾 , which can acquire more knowledge to some 
extent.

In addition, Fig. 6 depicts the number curve of VPO3C varying with parameters 𝛼 and 𝛾 , where they change from 0.1 to 1.0 with 
steps of 0.1. We can clearly see that the number of three-way concepts is relatively stable for most cases. Furthermore, most datasets 
present stability in learning three-way concepts in their respective regions. Therefore, we can select the optimal parameter based on 
the maximum number of three-way concepts from Fig. 6.

6.2. Compare the performance of dynamic concept learning

Dynamic concept learning aims to assess the performance of model to learn knowledge from new data. We have provided a 
detailed theoretical description for dynamic updating in Section 5. Next, we will conduct a performance analysis of dynamic concept 
learning ability on the certain selected datasets. Firstly, with respect to information granules, we randomly select 40% objects and 
30% attributes of each dataset as its object subset 𝑋0 and initial attribute subset (𝐵0, 𝐶0), respectively. To generate dynamic dataset, 
each dataset is divided into initial set and incremental set. Thus, we choose the first 50% of dataset object as the initial object 𝐺0
and the first 30% of dataset attribute as the initial attribute 𝐴0. During incremental process, we divide the remaining objects and 
attributes into ten Batches (i.e., Batch 1, Batch 2, ⋯, Batch 10), and each Batch accounts for 5% of remaining objects and attributes. 
At last, we will implement ten incremental learning processes.

Table 7 records the numbers of concept for dynamic learning and the last column means the average numbers of concept. Next 
18

the optimal parameters 𝜀, 𝛼 and 𝛾 are listed in Table 8. From these results, we know that LVPTC, UMVPO and UMVPA are the same 
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Table 4

Number of three-way concepts with different algorithms.

No.s
Attributes

𝛼, 𝛾
40% 60% 70% 90%

Objects OIvA-IvCL LVPTC OIvA-IvCL LVPTC OIvA-IvCL LVPTC OIvA-IvCL LVPTC

1

40%

𝛼 = 0.4
𝛾 = 1.0

2.5 3.3 2.3 3.0 2.3 2.8 2.2 2.5

60% 2.7 3.4 2.5 3.0 2.4 2.7 2.2 2.3

70% 2.8 3.4 2.5 2.9 2.5 2.7 2.3 2.3

90% 2.9 3.3 2.7 3.0 2.6 2.7 2.5 2.6

2

40%

𝛼 = 0.1
𝛾 = 1.0

3.0 4.6 3.0 4.5 3.0 4.6 3.0 3.9

60% 3.0 4.8 3.0 4.7 3.0 4.6 3.0 3.9

70% 3.0 4.7 3.0 4.8 3.0 4.9 3.0 3.9

90% 3.0 4.9 3.0 4.9 3.0 4.9 3.0 4.2

3

40%

𝛼 = 0.4
𝛾 = 1.0

3.0 3.9 3.0 3.7 3.0 3.8 3.0 3.4

60% 3.0 4.0 3.0 3.8 3.0 3.5 3.0 3.2

70% 3.0 4.0 3.0 3.7 3.0 3.7 3.0 3.5

90% 3.0 4.0 3.0 3.8 3.0 3.8 3.0 3.3

4

40%

𝛼 = 0.6
𝛾 = 0.4

3.0 2.0 2.9 2.0 2.9 2.0 2.8 2.0

60% 2.9 2.1 2.9 2.0 2.8 2.0 2.7 2.0

70% 2.9 2.1 2.8 2.0 2.8 2.1 2.8 2.0

90% 3.0 2.1 2.9 2.2 2.8 2.1 2.8 2.0

5

40%

𝛼 = 0.2
𝛾 = 1.0

4.3 4.6 4.2 4.0 4.1 4.2 4.0 4.2

60% 3.9 4.3 3.8 4.1 3.9 4.0 3.7 4.1

70% 3.7 4.8 3.6 4.2 3.6 4.3 3.5 4.2

90% 3.5 4.5 3.5 4.4 3.4 4.5 3.4 4.2

6

40%

𝛼 = 0.3
𝛾 = 0.6

3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.8

60% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.9

70% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.8

90% 2.8 3.0 3.0 3.0 3.0 3.0 3.0 2.9

7

40%

𝛼 = 0.7
𝛾 = 0.3

3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.6

60% 3.0 3.0 3.0 3.0 3.0 2.8 3.0 2.5

70% 3.0 3.0 3.0 3.0 3.0 2.9 3.0 2.4

90% 2.9 3.0 3.0 3.0 3.0 2.8 3.0 2.3

8

40%

𝛼 = 0.3
𝛾 = 0.1

3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.8

60% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.8

70% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

90% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

9

40%

𝛼 = 0.6
𝛾 = 0.3

3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.8

60% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

70% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.9

90% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

10

40%

𝛼 = 0.7
𝛾 = 0.3

3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.9

60% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

70% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

90% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Table 5

Average number of three-way concepts.

Attributes
Alg 40% 60% 70% 90%

Objects

40%
OIvA-IvCL 3.08 3.04 3.03 3.00

LVPTC 3.34 3.22 3.24 2.99

60%
OIvA-IvCL 3.05 3.02 3.01 2.96

LVPTC 3.36 3.26 3.16 2.97

70%
OIvA-IvCL 3.04 2.99 2.99 2.96

LVPTC 3.40 3.26 3.26 3.00

90%
OIvA-IvCL 3.01 3.01 2.98 2.97

LVPTC 3.38 3.33 3.28 3.05
19
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Table 6

Running time of learning three-way concepts with different algorithm (s).

No.s
Attributes

Alg 40% 60% 70% 90% No.s
Attributes

Alg 40% 60% 70% 90%

Objects Objects

1

40%
OIvA-IvCL 7.03 7.10 7.02 7.03

6

40%
OIvA-IvCL 1404.16 1432.79 1405.95 1403.98

LVPTC 3.96 4.37 4.94 4.82 LVPTC 183.23 208.00 215.71 237.49

60%
OIvA-IvCL 7.26 7.17 7.00 7.08

60%
OIvA-IvCL 1444.84 1401.25 1412.94 1405.16

LVPTC 3.96 4.48 4.61 5.17 LVPTC 184.51 205.43 210.25 236.82

70%
OIvA-IvCL 7.06 7.11 7.15 7.04

70%
OIvA-IvCL 1455.94 1444.99 1427.33 1413.72

LVPTC 4.11 4.56 4.66 4.82 LVPTC 182.01 200.69 208.87 238.99

90%
OIvA-IvCL 7.20 7.20 7.14 7.08

90%
OIvA-IvCL 1507.43 1420.28 1465.86 1413.77

LVPTC 4.30 4.65 4.70 4.94 LVPTC 179.74 196.37 208.82 238.47

2

40%
OIvA-IvCL 58.20 60.46 57.58 57.42

7

40%
OIvA-IvCL 1747.02 1709.89 1676.31 1674.89

LVPTC 49.93 54.39 56.19 70.78 LVPTC 207.69 230.85 250.63 271.73

60%
OIvA-IvCL 57.91 58.49 57.41 59.16

60%
OIvA-IvCL 1695.01 1690.75 1676.99 1674.51

LVPTC 50.28 55.15 57.04 71.56 LVPTC 198.56 228.61 241.93 258.61

70%
OIvA-IvCL 57.29 58.90 57.47 58.23

70%
OIvA-IvCL 1693.01 1680.38 1679.32 1662.08

LVPTC 50.88 55.37 57.32 71.96 LVPTC 197.98 226.92 236.09 260.86

90%
OIvA-IvCL 58.97 58.04 58.34 58.36

90%
OIvA-IvCL 1650.96 1670.01 1678.76 1664.92

LVPTC 53.19 57.62 56.71 74.20 LVPTC 197.23 222.12 234.89 263.39

3

40%
OIvA-IvCL 92.84 88.32 86.35 90.73

8

40%
OIvA-IvCL 1790.60 1791.26 1766.97 1762.07

LVPTC 31.77 33.84 35.01 36.13 LVPTC 234.00 260.32 272.82 304.27

60%
OIvA-IvCL 91.66 88.74 91.54 92.51

60%
OIvA-IvCL 1768.68 1759.22 1739.23 1757.05

LVPTC 33.23 35.51 36.38 37.81 LVPTC 228.24 252.14 269.13 298.47

70%
OIvA-IvCL 90.44 91.33 86.01 90.75

70%
OIvA-IvCL 1835.74 1782.26 1745.52 1742.42

LVPTC 34.55 36.75 37.98 39.23 LVPTC 224.47 251.04 268.91 297.69

90%
OIvA-IvCL 90.23 91.31 92.51 94.21

90%
OIvA-IvCL 1743.04 1736.62 1735.69 1755.41

LVPTC 38.13 40.48 41.67 42.41 LVPTC 232.89 266.48 280.81 310.23

4

40%
OIvA-IvCL 91.34 88.53 90.33 91.04

9

40%
OIvA-IvCL 2722.73 2691.54 2697.47 2692.83

LVPTC 64.95 70.29 72.73 84.99 LVPTC 798.23 882.82 929.36 1040.02

60%
OIvA-IvCL 92.46 92.62 86.48 89.62

60%
OIvA-IvCL 2723.65 2689.36 2679.77 2670.63

LVPTC 66.95 70.29 72.73 84.99 LVPTC 782.46 860.63 915.38 1028.85

70%
OIvA-IvCL 91.61 91.01 90.68 88.79

70%
OIvA-IvCL 2663.37 2667.71 2674.37 2678.89

LVPTC 68.23 72.08 73.86 89.31 LVPTC 778.16 864.01 922.06 1032.59

90%
OIvA-IvCL 89.05 89.53 90.22 89.73

90%
OIvA-IvCL 2637.33 2656.31 2650.19 2647.74

LVPTC 72.31 75.69 77.78 89.67 LVPTC 778.37 880.16 931.94 1003.67

5

40%
OIvA-IvCL 213.77 212.51 211.48 212.36

10

40%
OIvA-IvCL 2632.61 2644.82 2869.48 3047.96

LVPTC 43.00 46.56 48.38 60.24 LVPTC 761.02 856.89 903.85 989.84

60%
OIvA-IvCL 215.36 212.66 210.98 212.17

60%
OIvA-IvCL 2951.24 3008.67 3095.10 3101.52

LVPTC 42.85 46.69 48.46 60.27 LVPTC 751.80 844.13 889.54 962.78

70%
OIvA-IvCL 214.82 212.45 211.56 213.12

70%
OIvA-IvCL 3070.35 2868.61 3112.40 3133.11

LVPTC 42.53 46.54 48.14 59.91 LVPTC 727.64 817.83 880.35 990.97

90%
OIvA-IvCL 217.79 213.87 211.71 211.11

90%
OIvA-IvCL 3106.81 3109.82 3118.40 3110.12

LVPTC 43.76 47.96 49.23 61.12 LVPTC 750.32 850.65 891.00 976.86

with the number of concept generation, which implies that concept learning in a dynamic environment is meaningful. Obviously, the 
numbers of concept of UMVPO and UMVPA are more than OIvA-IvCL on all datasets with the incremental process. Meanwhile, the 
last column in Table 7 shows that the average numbers of generating concepts of UMVPO and UMVPA are excellent on ten datasets, 
which verifies the updating concept learning proposed in this paper is effective.

Table 9 displays the running time of these algorithms for dynamic learning in optimal parameters, in which the time of algorithm 
taking less time is represented in bold. Obviously, UMVPO and UMVPA are the fastest on ten datasets compared with OIvA-IvCL and 
LVPTC. They can calculate the concept updating for dataset Lung-cancer containing 181 objects and 12533 attributes in approxima-

tively 2 mins. As the objects and attributes increase, the running time increases in each dataset. It is evident that the differences of 
time consumption between static and dynamic concept learning are relatively small when the dimensionality of the dataset is small. 
Then the time gap increases with the data size increasing, which indicates that UMVPO and UMVPA have advantages in concept 
learning for big data.

In addition, further experiments are conducted to demonstrate running times varying with parameters 𝛼 and 𝛾 . During the 
experiment, 𝛼 and 𝛾 change from 0.1 to 1.0 with steps of 0.1. The running time of concept updating with 𝛼 and 𝛾 is shown in Fig. 7. 
In fact, we can find that 𝛼 and 𝛾 have a significant impact on the running time. Different values of 𝛼 and 𝛾 imply that the positive 
and negative information is fused from a given fuzzy formal context, respectively. Most of data can effectively save running time in 
large areas. It is obvious that the time consumption is relatively long when 𝛾 is sufficiently large. In practice, we can select more 
approximate parameters based on the characteristics of data.

6.3. Experimental discussion and analysis

In the above subsection, we compare the performance of static concept learning and dynamic concept learning of two-way learning 
20

with other algorithms using ten data sets. Experimental results confirm the effectiveness and efficiency of our proposed algorithms 
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Table 7

Number of three-way concepts for dynamic learning in optimal parameters.

𝐼𝐷 Model Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average

1 OIvA-IvCL 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 2.20

LVPTC 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.00

UMVPO 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.00

2 OIvA-IvCL 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.00

LVPTC 4.1 4.4 4.4 4.5 4.3 4.3 4.2 4.2 4.2 4.2 4.28

UMVPO 4.1 4.4 4.4 4.5 4.3 4.3 4.2 4.2 4.2 4.2 4.28

3 OIvA-IvCL 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.00

LVPTC 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.06

UMVPO 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.06

4 OIvA-IvCL 2.4 2.3 2.0 2.0 3.4 3.0 2.6 2.6 2.0 2.0 2.43

LVPTC 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.11

UMVPO 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.11

5 OIvA-IvCL 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.00

LVPTC 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.1 4.1 4.1 4.14

UMVPO 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.1 4.1 4.1 4.14

6 OIvA-IvCL 2.6 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.1 2.23

LVPTC 2.9 2.5 2.4 2.8 2.8 2.8 2.8 2.8 2.9 2.9 2.76

UMVPA 2.9 2.5 2.4 2.8 2.8 2.8 2.8 2.8 2.9 2.9 2.76

7 OIvA-IvCL 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.00

LVPTC 2.9 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.98

UMVPA 2.9 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.98

8 OIvA-IvCL 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.00

LVPTC 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 3.3 3.06

UMVPA 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 3.3 3.06

9 OIvA-IvCL 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.00

LVPTC 3.8 3.7 3.0 3.2 3.2 3.2 3.1 3.1 3.1 3.1 3.25

UMVPA 3.8 3.7 3.0 3.2 3.2 3.2 3.1 3.1 3.1 3.1 3.25

10 OIvA-IvCL 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.70

LVPTC 3.1 3.7 3.8 4.0 4.2 4.2 4.3 3.8 4.1 4.1 3.93

UMVPA 3.1 3.7 3.8 4.0 4.2 4.2 4.3 3.8 4.1 4.1 3.93

Table 8

Optimal parameters of dy-

namic leaning.

No. 𝜀 𝛼 𝛾

1 0.6 0.5 1.0

2 0.4 0.2 1.0

3 0.5 0.2 1.0

4 0.3 0.1 1.0

5 0.8 0.1 0.9

6 0.2 0.4 0.7

7 0.4 0.6 0.4

8 0.7 0.9 0.5

9 0.5 0.5 0.9

10 0.2 0.8 0.8

from numbers of concept and running time. Specifically, these advantages are reflected in as follows. 1) We could counterpoise the 
sensitivity and specificity of VPO3C to capture rich information by adjusting the threshold, thus facilitating the interpretability and 
understanding of cognitive process. 2) A simple method to learn unknown object from arbitrary information granule, which greatly 
reduce time consumption and reveal the systematic law of the human brain. 3) Dynamic mechanism of VPO3C is updated as time 
changes, which allows the integration of new input information into the current three-way concept to improve the efficiency of 
concept learning. In summary, a novel two-way concept-cognitive learning based on three-way decision is introduced to enhance 
cognition.

We have presented an interpretable two-way concept-cognitive model, but there exist some shortcomings. For instance, in the 
experiment, VPO3Cs might not necessarily have advantage compared with two-way concepts in terms of time because they need 
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more time to acquire positive and negative information. Hence, it is necessary to optimize the operators proposed in this article.
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Table 9

Running time for dynamic learning in optimal parameters (s).
𝐼𝐷 Model Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10

1 OIvA-IvCL 4.83 5.21 5.60 6.00 6.42 6.87 7.37 8.89 8.42 8.98

LVPTC 4.18 4.40 4.64 4.86 5.61 5.87 6.10 6.33 6.56 6.80

UMVPO 2.68 2.90 3.10 3.29 3.50 3.71 3.92 4.12 4.31 4.53

2 OIvA-IvCL 40.56 43.34 46.38 49.72 53.36 57.26 61.25 65.80 70.59 75.59

LVPTC 35.65 37.96 40.53 43.47 46.64 50.09 53.95 57.90 62.11 66.45

UMVPO 30.18 32.17 34.23 36.39 38.94 41.64 44.66 47.94 51.37 54.81

3 OIvA-IvCL 77.20 82.80 88.85 95.30 102.23 109.47 117..51 125.85 134.84 143.89

LVPTC 23.02 24.54 26.30 28.19 30.25 32.46 34.76 37.17 39.88 42.74

UMVPO 20.36 21.80 23.17 24.78 26.48 28.30 30.25 32.38 34.61 37.09

4 OIvA-IvCL 298.56 313.57 330.80 351.34 376.02 405.23 438.39 477.57 523.52 573.51

LVPTC 35.89 38.35 41.16 44.21 47.53 51.09 54.69 58.51 62.55 66.80

UMVPO 29.40 31.57 33.76 36.00 38.53 41.20 44.23 47.13 50.53 53.80

5 OIvA-IvCL 86.67 89.87 94.02 99.45 106.83 115.33 125.85 137.49 151.62 167.39

LVPTC 33.68 36.27 38.89 41.77 44.81 48.04 51.40 54.89 58.54 62.15

UMVPO 28.03 30.11 32.15 34.36 36.75 39.25 41.95 44.81 47.82 50.98

6 OIvA-IvCL 555.86 580.16 612.15 652.74 699.35 754.04 816.38 888.49 975.99 1073.62

LVPTC 35.40 37.60 40.05 42.73 45.65 48.92 52.60 56.78 61.44 66.71

UMVPA 31.48 33.36 35.58 38.05 40.74 43.69 46.81 50.42 54.37 58.66

7 OIvA-IvCL 909.24 949.37 998.46 1058.77 1131.95 1235.82 1342.96 1467.15 1605.81 1759.16

LVPTC 38.32 40.20 42.48 45.17 48.32 52.01 56.24 61.06 66.62 72.84

UMVPA 33.35 35.31 37.45 39.88 42.62 45.75 49.33 53.21 57.56 62.40

8 OIvA-IvCL 769.22 796.82 838.55 889.42 952.13 1035.99 1127.33 1233.51 1354.61 1492.50

LVPTC 36.57 38.51 40.70 43.28 46.27 49.74 53.80 58.37 63.41 69.05

UMVPA 31.69 33.62 35.76 38.02 40.64 43.61 46.95 50.66 54.86 59.53

9 OIvA-IvCL 1353.58 1411.72 1487.09 1579.79 1690.72 1828.93 1990.81 2176.62 2382.41 2612.61

LVPTC 118.32 123.91 130.81 139.17 149.07 160.69 173.89 189.09 206.24 225.73

UMVPA 94.04 98.99 104.84 111.60 119.58 128.56 138.80 150.31 163.24 177.63

10 OIvA-IvCL 1253.45 1307.79 1378.09 1465.97 1566.03 1696.43 1845.50 2015.36 2203.07 2414.03

LVPTC 106.14 111.36 117.81 125.48 134.46 144.82 156.50 169.69 184.67 201.70

UMVPA 84.52 89.08 94.53 100.88 108.14 116.27 125.39 135.55 147.01 159.64

Fig. 7. Running time varying with 𝛼 and 𝛾 .

7. Conclusion

With the rapid development of data, how to learn concepts from the given clue is a crucial issue, which can simulate the human 
brain cognitive process. In fact, some existing two-way learning methods ignore the flexibility of concepts, which make it difficult to 
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choose the suitable concepts by setting thresholds. Thus, this article mainly discussed a novel TCCL based on three-way decision in 
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a fuzzy formal context. Especially, the proposed variable precision object induced three-way concept settled the above problem and 
could achieve a great cognitive concept. The key of two-way learning is to learn more from the given clue through cognitive operators. 
Subsequently, our proposed two-way cognitive learning approach demonstrated the less time-consuming in the process of learning 
concepts from arbitrary information granules. As the updated concept was further learned, the cognitive mechanism integrated past 
experiences into itself for dynamic data and demonstrated that there exist nine methods of updating VPO3Cs from the current state 
𝐹𝑖−1, 𝐻𝑖−1 to 𝐹𝑖, 𝐻𝑖. As a result, the incremental learning mechanism can obtain diverse knowledge. Simultaneously, two dynamic 
updating algorithms UMVPO and UMVPA were proposed to update three-way concepts after adding objects and attributes. Finally, 
the proposed conclusions were demonstrated in comparative experiments on ten public datasets.

In summary, the current article proposes the dynamic updating mechanism of three-way model by considering the addition 
of objects and attributes in dynamic data. Nevertheless, there are still some limitations that need to be considered. For example, in 
comparison of two-way concepts, VPO3C might not necessarily have an advantage in terms of time consumption as they require more 
time to learn three-way information. Hence, to obtain a more efficient and interpretability theory of cognition, we need to consider 
how to optimize cognitive operators. Meanwhile, we mainly focus on continuous data values by setting thresholds, while ignoring 
multi-granularity formal concept analysis, especially in handing data with noise. Besides, two dynamic algorithms UMVPO and 
UMVPA do not consider how to update three-way concepts when objects and attributes are added simultaneously in the information 
granules. Based on the above discussion, our future work will continue to revolve around these themes.
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