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Feature Selection for Unbalanced Distribution Hybrid
Data Based on k-Nearest Neighborhood Rough Set

Weihua Xu , Ziting Yuan, and Zheng Liu

Abstract—Neighborhood rough sets are now widely used to pro-
cess numerical data. Nevertheless, most of the existing neighbor-
hood rough sets are not able to distinguish class mixture samples
well when dealing with classification problems. That is, it cannot
effectively classify categories when dealing with data with an un-
balanced distribution. Because of this, in this article, we propose a
new feature selection method that takes into consideration both het-
erogeneous data and feature interaction. The proposed model well
integrates the ascendancy of δ-neighborhood and k-nearest neigh-
bor. Such heterogeneous data can be handled better than existing
neighborhood models. We utilize information entropy theories such
as mutual information and conditional mutual information and
employ an iterative strategy to define the importance of each feature
in decision making. Furthermore, we design a feature extraction
algorithm based on the above idea. Experimental results display
that the raised algorithm has superior effect than some existing
algorithms, particularly the δ-neighborhood rough set model and
the k-nearest neighborhood rough set model.

Impact Statement—Feature selection is one of the important top-
ics in machine learning and even artificial intelligence. Inaddition,
feature selection using neighborhood rough sets has been proven
to be an effective way. However, the sensitivity of most existing
algorithms to imbalanced data is an important flaw in practical
applications. This paper discusses how to use neighborhood rough
sets to solve the problem of feature extraction when the distribution
of heterogeneous data is unbalanced.Because the distribution of
real-world data is not always uniform, feature selection algorithms
can be applied in a wider range of fields, such as fraud identifi-
cation, recommendation systems, etc. The algorithm for research
on unbalanced data in this paper can enable researchers and even
industry professionals to obtainmore effective results when dealing
with problems in practical applications.

Index Terms—Feature selection, neighborhood mutual
information, neighborhood rough set (NRS), unbalanced
distribution.

I. INTRODUCTION

THE growth rate of data scale far exceeds the ability of
human analysis and application in the era of information

explosion. Rough set theory, as a method in the field of math-
ematics, can play its advantage when dealing with ambiguous
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imprecise data. This theory requires no prior information other
than the original data. Thus, it is more objective when dealing
with uncertain problems. As we all know, attribute reduction
is one of the most widely used neighborhood rough set theo-
ries (NRSTs) in information systems. Attribute reduction can
keep its classification and decision-making ability unchanged
and remove irrelevant and redundant features. In this way, key
attributes are extracted, and the purpose of simplifying the
information system is achieved.

According to the research and discussion of researchers at
home and abroad, many data mining methods have emerged in
recent years. Realistic problem data, such as text voice or image,
usually contain more features, but too much characteristics will
lead to poor interpretability, and the slow calculation model in
fitting problems, such as feature selection, can maintain data
classification under the constant ability to effectively remove
redundancy and unrelated features of the data and, thus, become
an important machine learning pretreatment process of pattern
recognition, data mining, and artificial intelligence.

In 1982, Pawlak [1] proposed the rough set theory first.
Because rough sets can play its advantages in the processing
of fuzzy inaccurate data, the theory has been widely used over
the years, making the rapid development in data mining, pattern
recognition and artificial intelligence, decision support [2], and
other fields. The most obvious difference between rough set
theory and other data processing methods is that it does not
require to offer any prior information other than the original
data being processed, but only needs to deal with object data,
which is more objective when dealing with imprecise and un-
certain problems. However, the classical rough set theory can
only deal with character data in the process of processing data.
Actual samples tend to be mixed and diverse and generally
have numerical attributes. Therefore, we have to discretize it
first. In the process of discretization, data will inevitably be
lost. However, the integrity of the data and the accuracy will
be affected. Lin [3] put forward the concept of neighborhood
rough set (NRS), which can improve this problem. Hu et al. [4]
studied the calculation model of rough set for mixed data
knowledge discovery and proposed a more systematic NRS
model. The NRS puts forward the notion of neighborhood and
granulates the domain of each sample by the distance and neigh-
borhood radius between samples. Thus, it obtains the neigh-
borhood relationship between samples, so as to judge whether
its attributes can effectively process numerical and mixed data.
Meanwhile, it can avoid the problems caused by discretization.
Therefore, extended NRS models were investigated extensively
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Fig. 1. Neighborhoods of a sample in a high-density region.

Fig. 2. Neighborhoods of a sample in a sparse-density region.

in recent years, such as local NRS [5], neighborhood-based
decision-theoretic rough set [6], fuzzy NRS [7], pseudo-label
NRS [7], NRS with nominal metric embedding [8], neighbor-
hood multigranularity rough set [9], [10], [11], etc. Moreover,
NRST-based methods have been applied effectively in related
fields, such as image annotation [12], data classification [13],
[14], [15], gene selection [11], [16], [17], and incremental
learning [8], [18].

In practical applications, in fact, a uniformly distributed
sample space rarely exists. For example, samples may be very
densely or sparsely distributed in certain regions of the sam-
ple space. Under these circumstances, neither of the existing
NRSs, i.e., δ-neighborhood rough set and k-nearest neighbor-
hood rough set (kNNRS), can classify the samples well into the
class to which they belong. For example, in a sample space,
there are two types of samples, positive and negative, which are
marked as “+” and “−,” respectively. The blue circles repre-
sent δ-neighborhood, and the black circles represent k-nearest
neighbor (kNN) of the sample.

As shown in Fig. 1, the sample x1 is located in a densely
distributed area, so three samples of both positive and negative
categories are included in its neighborhood δ(x1). Therefore, ac-
cording to the NRST, the sample x1 is classified to the boundary
area according to the voting principle. Actually, we can better
determine the class label of x1 if we use three nearest neighbors
(3NNs). This is because the nearest-neighbor strategy limits the
number of samples in high-density regions, thus limiting the size
of the neighborhood. Furthermore, it can better guarantee that
the samples in κ(x1) always belong to the same class.

In another case, the kNN model has similar shortcomings
when determining the classification labels in areas with sparse
sample distribution. For example, as shown in Fig. 2, the granule
κ(x2) of the 3NNs of x2 involves three samples, including two
positive class samples that far away from x2 and one negative
class sample that is closer. According to the principle of majority
voting, this may cause x2 to be incorrectly assigned to the

positive class label. However, at this time, the δ(x2) neighbor-
hood can classify x2 into the negative class label well. And the
weakness of the kNN model can be overcome.

In summary, the above two sample distributions show that
the δ-neighborhood model and the kNN model have advantages
and disadvantages in different situations. This leads to poor
classification accuracy of these two models when encountering
imbalanced data.

In another aspect, the theoretical basis of mutual information
standard is information entropy in information theory. Informa-
tion theory has been widely used in feature selection algorithms.
The feature selection algorithm studied in this article is based
on the mutual information criterion, and the theoretical basis of
the proposed new algorithm is information entropy. At present,
many feature selection algorithms based on mutual information
have been proposed. The earliest mention of the concept of
mutual information is the mutual information maximum algo-
rithm [19], which lacks the measurement of the relationship be-
tween features. It only computes the mutual information between
candidate features and class labels to measure the correlation.
This algorithm does not find the existence of redundant fea-
tures. Battiti et al. [20] proposed the mutual information feature
selection algorithm for this problem [19], which introduced
a first-order incremental search algorithm and used a greedy
selection method to select the most relevant k features from an
initial set of n features. Although the algorithm measures the
redundancy that exists between features, the redundancy term
may become large as the number of selected features increases.
Therefore, some extraneous features need to be removed. In
response to this finding, Peng et al. [21] proposed a feature
selection method called minimal redundancy maximal relevance
(mRMR). The mRMR feature selection evaluation criterion uses
the mutual information between candidate features and class
labels to measure the correlation. At the same time, the mutual
information of the candidate features and the selected features is
used to measure the redundancy. The mRMR algorithm prefers
to select candidate features that have as much correlation with
class labels as possible and, at the same time, have as little
redundancy with selected features as possible. The conditional
mutual information maximization algorithm selects those can-
didate features that have the minimum conditional mutual infor-
mation with the class labels given all the selected features [22].
Wan et al. [23] established a neighborhood-mutual-information-
based feature selection algorithm, which considers the charac-
teristic of interaction in the NRS. In summary, many scholars use
the information entropy and its extension as the feature measure
to select feature subset [24], [25], [26].

In addition, unbalanced distribution and mixed data are ubiq-
uitous in model building for practical applications. However,
the existing interactive feature selection methods using mutual
information do not consider these cases. Inspired by this prob-
lem, a feature selection method that considers the interaction of
imbalanced distributed data and mixed data is urgently needed,
which is also the focus of this article.

The main contributions of this article are as follows.
1) To address the problem of imbalanced data, we proposed

a k-nearest model based on neighborhood entropy. At
the same time, the neighborhood information entropy
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Fig. 3. Process of this article.

and neighborhood conditional mutual information are
discussed. Then, the neighborhood conditional mutual
information is used as the measure of attribute importance.

2) Afterward, an attribute reduction algorithm for the kNNRS
based on neighborhood conditional mutual information is
proposed.

3) Using 20 datasets from UCI, four comparative algorithms
are carried out. In addition, the effectiveness and classi-
fication accuracy of the proposed algorithm is confirmed
in the classification accuracy. The effect of neighborhood
granularity parameters ε and k on classification accuracy
is also discussed in the subsequent experiments.

The rest of this article is organized as follows. Section II
retrospects the fundamental concepts of NRSs and presents
information measurement methods for neighborhood decision-
making systems. The neighborhood radius for different fea-
ture types is computed in Section III. Going a step further,
we present an uncertainty measure to address the kNNRS of
data with imbalanced distributions. Section IV details feature
correlation, redundancy, and interactivity under the new neigh-
borhood uncertainty measure. And a feature objective evaluation
function, i.e., k-nearest Max-Relevance min-Redundancy Max-
Interaction (KNMRmRMI), and a corresponding interactive
feature selection algorithm (KNCMI) are constructed using the
new NRS. Experimental comparisons and results are presented
in Section V. Finally, Section VI concludes this article. The
process of this article can be clearly seen from Fig. 3.

II. RELATED WORK AND FOUNDATIONS

In this section, some fundamental concepts are reviewed, such
as NRST and uncertainty measurement.

A. Neighborhood Rough Set Theory

In this section, we review some fundamental concepts related
to δ-neighborhood rough sets, kNNRS, and the information-
measurement-based NRS models. In order to address the issue
that the classical rough set is not convenient for processing the
dataset with numerical attributes, the basis of the NRS model is
that the definition of the neighborhood concept in different ways
will constitute different NRS models.

Regarding NRST, the distance formula is used to evaluate the
similarity between different samples. In terms of distance metric
learning, as introduced in Section II-A, a positive-semidefinite
matrix M(M ≥ 0) is obtained. Then, there is distance metric
on B, which is recorded as dB . For any x, y, z ∈ U , it satisfies
the following:

1) nonnegativity: dB(x, y) ≥ 0, dB(x, x) = 0;
2) symmetry: dB(x, y) = dB(y, x);
3) triangular inequality: dB(x, z) ≤ dB(x, y) + dB(y, z).
As we all know, classical metrics include Manhattan distance

function, Euclidean distance function, and Chebyshev distance
function, among which the Euclidean distance function effec-
tively reflects the basic information of unknown data.

The Euclidean distance is often used to calculate the distance
between samples. Given two random samples with a real-valued
attribute setB, the formula for calculating the Euclidean distance
between two samples is as follows:

dB (xi, xj) =

√∑
a∈B (a (xi)− a (xj))

2.

Here, a(xi) represents the value of xi with respect to the
attribute a.

NRSs are proposed to solve the problem that classical rough
sets are inconvenient to deal with datasets with numerical fea-
tures.

Given a neighborhood decision system NDS =
(U,A,D,Δ, δ), usually written more simply as NDS =
(U,A,D, δ), where U = {x1, x2, . . . , xn} is a sample set
named universe,C = {a1, a2, . . . , am} is a conditional attribute
set that describes the samples, D = {d} is a decision attribute
set that contains one decision attribute, Δ is represented
as the distance over the relation BR, usually using the
Euclidean distance, and δ is a neighborhood parameter with
0 ≤ δ ≤ 1.

Given a neighborhood decision system NDS = (U,A,D, δ)
with B ⊆ A, the similarity relation resulting by B is defined as

NRδ(B) = {(xi, xj) ∈ U × U | ΔB (xi, xj) ≤ δ} .
Given a neighborhood decision system NDS = (U,A,D, δ)

with B ⊆ A, for any x ∈ U , the neighborhood class of x with
respect to B is described as

δB (xi) = {xj ∈ U | ΔB (xi, xj) ≤ δ} .
If the decision values of all the samples in δ(xi) are the same,

thenxi is consistent in the δ-neighborhood; otherwise, it is called
inconsistent sample.

B. k-Nearest-Neighbor Rough Set

Given a neighborhood decision system NDS = (U,A,D, δ)
with B ⊆ A, the kNNs of xi ∈ U in terms of B are defined as

κB (xi) =
{
x1
i , x

2
i , . . . , x

k
i |

dB(xj , xi) > dB
(
xh
i , xi

)
, xj �= xl

i, l, h = 1, 2, . . . , k
}
.

It can be seen that κB(xi) is the set of k samples closest to xi.
This means that the number of samples contained in κB(xi) is
fixed as κ.
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The family of kNN information granules {κB(xi) | xi ∈ U}
can form a coverage of the universe U .

Analogously, we can get a binary relation KB , as follows:

KB = {(xi, xj) ∈ U × U | xj ∈ κB (xi)} .
Clearly, KB is reflexive. However, it is obvious that it does

not satisfy symmetry and transitivity.

C. Information Measurements in the Neighborhood Decision
System

The dataset in the classification issues can be formally defined
as a neighborhood decision system NDS = (U,A,D,Δ, δ).
The decision attribute set is D = {d} in the single decision
attribute classification learning task. Various information en-
tropies have been widely used in attribute reduction [27], [28].
Some information measurements in the NDS are expressed as
follows.

Definition 2.1. (Neighborhood information entropy [29]):
Given an NDS = (U,A,D,Δ, δ), for δ ≥ 0, ∀B ⊆ A, the
neighborhood relation on B is expressed as NRδ

B . Then, the
neighborhood of xi ∈ U obtained fromB isNRδ

B(xi), which is
abbreviated as δB(xi). The neighborhood entropy of the sample
set with respect to B is defined as

NEδ(B) = − 1

|U |
|U |∑
i=1

log2
|δB (xi)|
|U |

where the neighborhood uncertainty of sample xi makes up the
neighborhood entropy (i.e., average uncertainty) of the sample
set, which is expressed as

NExi

δ (B) = −log2
|δB (xi)|
|U | .

Definition 2.2. (Neighborhood joint entropy [29]): Given a
NDS = (U,A,D,Δ, δ), for δ ≥ 0, ∀B,C ∈ A, the neighbor-
hood joint entropy of A and B is defined as

NEδ(B,C) = − 1

|U |
|U |∑
i=1

log2
|δBUC (xi)|
|U | .

Definition 2.3. (Neighborhood conditional entropy [29]): Given
an NDS = (U,A,D,Δ, δ), for δ ≥ 0, ∀B,C ∈ A, under the
condition that B is known, the information entropy of A is
conveyed as the conditional entropy ofAwith regard toB, which
is defined as

NEδ(B | C) = − 1

|U |
|U |∑
i=1

log2
|δB∪C (xi)|
|δC (xi)| .

Proposition 2.1: Given an NDS = (U,A,D,Δ, δ), for δ ≥ 0,
∀B,C ∈ A, then NEδ(B | C) = NEδ(B,C)−NEδ(C).

Proof: From Definitions 2.1 and 2.2, we obtain

NEδ(B,C)−NEδ(C)

= − 1

|U |
|U |∑
i=1

log2
|δBUC (xi)|
|U | +

1

|U |
|U |∑
i=1

log2
|δC (xi)|
|U |

Fig. 4. Relationship between the neighborhood information entropy (NE)
and the mutual information (NMI).

= − 1

|U |
|U |∑
i=1

(
log2
|δBUC (xi)|
|U | − log2

|δC (xi)|
|U |

)

= − 1

|U |
|U |∑
i=1

log2

( |δBUC (xi)|
|U | · |U |

|δC (xi)|
)

= − 1

|U |
|U |∑
i=1

log2
|δBUC (xi)|
|δC (xi)|

= NEδ(B | C).

That is, NEδ(B | C) = NEδ(B,C)−NEδ(C) holds.
It can be seen from the formula that the neighborhood con-

ditional entropy reflects the amount of extra uncertainty in B
after introducing the feature subset C. It can be calculated by
the neighborhood joint entropy provided by B and C and the
neighborhood uncertainty of C.

Definition 2.4. (Neighborhood mutual information [29]):
Given an NDS = (U,A,D,Δ, δ), for δ ≥ 0, ∀B,C ∈ A, the
neighborhood mutual information of B and C is defined as

NMIδ(B;C) = − 1

|U |
|U |∑
i=1

log2
|δB (xi)| · |δC (xi)|
|U ‖ δB∪C (xi)|

where δB(xi) and δC(xi) denote the neighborhoods on B and
C, respectively. And δB∪C(xi) represents the δ-neighborhood
of xi on B ∪ C.

Given the selected feature subset C, neighborhood mutual
information can be used to measure the additional contribution
of the feature subsetB to determine the magnitude of the reduced
classification uncertainty. According to Definitions 2.1−2.4 and
Proposition 2.1, the relationships between uncertainty measures
in the NRS, such as neighborhood entropy, neighborhood con-
ditional entropy, and neighborhood mutual information, can be
obtained, as shown in Proposition 2.2.

Fig. 4 shows the relationship between neighborhood informa-
tion entropy and neighborhood mutual information in informa-
tion theory. Neighborhood information entropy NE represents
the uncertainty degree of a random variable.NMI represents the
interaction between any two random variables. For variable A,
its neighborhood information entropy NE(A) deducts its own
conditional information entropyNE(B|A) under the conditions
of other variables. The value of mutual informationNMI(A;B)
between two variables can be obtained.
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Proposition 2.2: Given an NDS = (U,A,D,Δ, δ), for δ ≥
0, ∀B,C ∈ A, we have the following.

1) NMIδ(B;C) = NMIδ(C;B).
2) NMIδ(B;C) = NEδ(B) +NEδ(C)−NEδ(B,C)
3) NMIδ(B;C) = NEδ(B)−NEδ(B | C) =

NEδ(C)−NEδ(B | C).
Proof:
1) According to Definition 2.4, we have

NMIδ(B;C)

= − 1

|U |
|U |∑
i=1

log2
|δB (xi)| · |δC (xi)|
|U ‖ δB∪C (xi)|

= − 1

|U |
|U |∑
i=1

log2
|δC (xi)| · |δB (xi)|
|U ‖ δC∪B (xi)|

= NMIδ(C;B).

2) From Definitions 2.1 and 2.2, we obtain

NEδ(B) +NEδ(C)−NEδ(B,C)

= − 1

|U |
|U |∑
i=1

log2
|δB(xi)|
|U | − 1

|U |
|U |∑
i=1

log2
|δC(xi)|
|U |

+
1

|U |
|U |∑
i=1

log2
|δBUC(xi)|
|U |

= − 1

|U |
|U |∑
i=1

log2(
|δB(xi)|
|U | · |δC(xi)|

|U | · |U |
|δBUC(xi)| )

= − 1

|U |
|U |∑
i=1

log2
|δB(xi)| · |δC(xi)|
|U ‖ |δB∪C(xi) |

= NMIδ(B;C).

3) According to Definitions 2.1 and 2.3, we have

NEδ(A)−NEδ(A | B)

= − 1

|U |
|U |∑
i=1

log2
|δA (xi)|
|U | +

1

|U |
|U |∑
i=1

log2
|δAUB (xi)|
|δB (xi)|

= − 1

|U |
|U |∑
i=1

log2
|δA (xi)| · |δB (xi)|
|U | |δA∪B (xi)| ,

NEδ(B)−NEδ(B | A)

= − 1

|U |
|U |∑
i=1

log2
|δB (xi)|
|U | +

1

|U |
|U |∑
i=1

log2
|δB∪A (xi)|
|δA (xi)|

= − 1

|U |
|U |∑
i=1

log2
|δB (xi)| · |δA (xi)|
|U | |δB∪A (xi)| .

Therefore, we have NMIδ(B;C) = NEδ(B)−
NEδ(B | C) = NEδ(C)−NEδ(B | C).

Proposition 2.2(1) indicates that the neighborhood mutual
information is symmetric, that is, the information shared by

B and C is the same as that shared by C and B. Proposition
2.2(2) shows that the amount of information shared or duplicated
by B and C can be obtained from the difference between the
information provided by each of B and C and the information
provided by them jointly. In addition to the calculation of the
neighborhood mutual information shown in Proposition 2.2(2),
Proposition 2.2(3) displays the reduction in the uncertainty of
B (or C) under the condition that C (or B) is known.

Definition 2.5 is similar to the introduction of conditional
entropy into information measures in entropy theory. The neigh-
borhood conditional mutual information is also introduced, that
is, the neighborhood mutual information of B and R under the
condition of known C.

Definition 2.5. (Neighborhood conditional mutual infor-
mation [30]): Given an NDS = (U,A,D,Δ, δ), for δ ≥ 0,
∀B,C,R ∈ A, under the condition that C is known, the neigh-
borhood conditional mutual information ofB andR is expressed
as

NCMIδ(B;R | C) =− 1

|U |
|U |∑
i=1

log2
|δB∪C (xi)|·|δR∪C (xi)|
|δC (xi)|·|δB∪C∪R (xi)|

where δC(xi), δB∪C(xi), δR∪C(xi), and δB∪C∪R(xi) represent
the neighborhoods of xi on C,B ∪ C,R ∪ C, and B ∪ C ∪R,
respectively.

The meaning of neighborhood conditional mutual informa-
tion is that when C is known, the uncertainty of B is reduced
due to the knowledge of R.

Proposition 2.3: Given an NDS = (U,A,D,Δ, δ),
for δ ≥ 0, ∀B,C,R ∈ A, we have NCMIδ(B;R | C) =
NEδ(B,C) +NEδ(R,C)−NEδ(B,R,C)−NEδ(C).

Proof: From Definition 2.2, we can deduce that

NEδ (B,R,C) =
1

|U |
|U |∑
i=1

log2
|δB∪R∪C (xi)|

|U | .

According to Definitions 2.1 and 2.2, we have

NEδ(B,C) +NEδ(R,C)−NEδ(B,R,C)−NEδ(C)

= − 1

|U |
|U |∑
i=1

log2
|δBUC (xi)|
|U | − 1

|U |
|U |∑
i=1

log2
|δR∪C (xi)|
|U |

+
1

|U |
|U |∑
i=1

log2
|δB∪R∪C (xi)|

|U | +
1

|U |
|U |∑
i=1

log2
|δC (xi)|
|U |

= − 1

|U |
|U |∑
i=1

log2

( |δB∪C (xi)|
|U | · |δR∪C (xi)|

|U |

· |U |
|δB∪R∪C (xi)| ·

|U |
|δC (xi)|

)

= − 1

|U |
|U |∑
i=1

log2
|δB∪C (xi)| · |δR∪C (xi)|
|δC (xi)| · |δB∪C∪R (xi)| .

Therefore, we have NCMIδ(B;R | C) = NEδ(B,C) +
NEδ(R,C)−NEδ(B,R,C)−NEδ(C).
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Proposition 2.3 expresses that neighborhood conditional mu-
tual information can be obtained by neighborhood joint entropy
and neighborhood entropy.

Proposition 2.4: Given an NDS = (U,A,D,Δ, δ), for δ ≥
0, ∀B,C,R ∈ A, under the condition that B is known, we have

NCMIδ(B;R | C) = NCMIδ(R;B | C).

Proof: It can be proved according to Definition 2.5.
By analogy with the symmetry of neighborhood mutual in-

formation in Proposition 2.2(1), given a feature subset C, the
information quantity of B obtained from R is equivalent to that
of R obtained from B, that is, the information provided by them
is mutual.

Proposition 2.5: Given an NDS = (U,A,D,Δ, δ), for δ ≥
0, ∀B,C,R ∈ A, under the condition that B is known, if A and
R are independent of each other, then NCMIδ(B;R | C) = 0.

Proof: If B and R are independent of each other, it can be
calculated from Definition 2.5 that NCMIδ(B;R | C) = 0.

Similar to mutual information in information theory, when
B and R are independent under the condition of known at-
tribute set C, the value of neighborhood conditional mutual
information is 0.

III. KNNRS FOR UNBALANCED HYBRID DATA

In this section, the processing method of hybrid data is intro-
duced in Section III-A. Section III-B explains the disadvantages
of rough sets with different neighborhoods in handling unbal-
anced data. The solution to this problem is shown in Section
III-C.

A. Hybrid Data Processing

Data in practical applications usually include numerical, cate-
gorical [31], and hybrid data [32]. The heterogeneous Euclidean
overlap metric [4], [33] is introduced to deal with the mixed
form of data. Similarly, the heterogeneous Chebyshev overlap
metric (HCOM) is defined to realize the intersection operation
in neighborhood relations.

Definition 3.1. (Hybrid distance function in the NRS): For
different types of data, the HCOM distance function is computed
by

HCOMA(x, y) =

|A|∑
j=1

(
dτ{aj}(x, y)

) 1
τ

where

d{aj}(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣a(xi)−a(xj)
σa

∣∣∣ , if a is a numerical feature;

1, if fj is a categorical feature

and a (xi) �= a (xj) ;

0, if fj is a categorical feature

and a (xi) = a (xj) ;

1, if the feature value of x or y

is unknown with respect to a.

Fig. 5. Classification results of different granules.

Specially, if aj is a numerical feature, the above formula can
be reduced toHCOMA(x, y) = ΔA(x, y), τ = +∞ according
to the distance function shown in Section II-A.

Thus, given a neighborhood decision system NDS =
(U,A,D, δ)withB ⊆ A, for anyx ∈ U , the neighborhood class
of x with respect to B is described as

δB (xi) = {xj ∈ U |HCOMB (xi, xj) ≤ δ} .
In a classification task, we expect the differences between

samples belonging to the same class to be as small as possible,
while the differences between samples belonging to different
classes should be large enough. This makes it easier for us to
classify. The features that describe the samples determine how
easy it is to distinguish between different classes of samples. We
perform feature selection on those features that make samples
of different classes easily distinguishable. However, for some
complex classification problems, there will always be some
undistinguishable samples [34]. We would incorrectly classify
these samples into the same class. They consist of samples
belonging to different classes but with small differences in
eigenvalues.

The size of the neighborhood δ in NRS reflects the tolerance
of noise data in its sample space, that is, the degree of allowable
quantization error. Fig. 5 visually depicts the inconsistency of
classification under different radius granules.

For example, the meanings of the two types of samples
marked “+” and “−” are the same as in Fig. 5. In a binary
classification problem, given two observation problems with
different granularities δ1 and δ2, δ1 < l < δ2, it can be seen from
Fig. 5 that the classification of sample x under the granularity
δ1 is consistent, but the classification under the granularity
δ2 with larger error tolerance is inconsistent. Neighborhoods
with different granularities determine whether the classification
results of the samples are consistent. Therefore, the choice of
granularity also has a great impact on the performance of the
model.

B. k-Nearest Neighborhood Rough Set

Given a k-nearest neighborhood decision system KNDS =
(U,A,D,Δ, δ,K), usually written more simply as KNDS =
(U,A,D, δ,K), where U = {x1, x2, . . . , xn} is a sample set
named universe,C = {a1, a2, . . . , am} is a conditional attribute
set that describes the samples, D = {d} is a decision attribute
set that contains only one decision attribute, Δ is represented
as the distance over the relation R, usually using the Euclidean
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distance, and δ is a neighborhood parameter with 0 ≤ δ ≤ 1.
The parameter K means taking the K samples closest to xi. The
optimal parameter K is obtained experimentally. The proposed
new NRS can better handle the problems caused by imbalanced
data.

Definition 3.2. (kNN [35]): Given a k-nearest neighborhood
decision system KNDS = (U,A,D, δ,K) with B ⊆ A, the
kNN of xi ∈ U in terms of B is defined as

τB (xi) = {xj ∈ U | xj ∈ δB (xi) ∩ κB (xi)} .
The kNN τB(xi) means taking the intersection of δB(xi) and

κB(xi). Therefore, the kNN τB(xi) can overcome the weakness
of δ-neighborhood and kNN for describing the classification
of samples in a sample space where the sample density is not
uniform, as shown in Figs. 1 and 2.

Definition 3.3. (kNN information entropy): Given a
KNDS = (U,A,D, δ,K), ∀B ⊆ A, the neighborhood rela-
tion on B is expressed as NRτ

B . Then, the neighborhood of
xi ∈ U obtained from B is NRτ

B(xi), which is abbreviated as
τB(xi). The neighborhood entropy of the sample set with respect
to B is defined as

NEτ (B) = − 1

|U |
|U |∑
i=1

log2
|τB (xi)|
|U | .

Definition 3.4. (kNN joint entropy): Given a KNDS =
(U,A,D, δ,K), ∀B,C ∈ A, the neighborhood joint entropy of
B and C is defined as

NEτ (B,C) = − 1

|U |
|U |∑
i=1

log2
|τBUC (xi)|
|U | .

Definition 3.5. (kNN conditional entropy): Given a KNDS =
(U,A,D, δ,K), ∀B,C ∈ A, under the condition that C is
known, the information entropy of B is expressed as the condi-
tional entropy of B with respect to C, which is defined as

NEτ (B | C) = − 1

|U |
|U |∑
i=1

log2
|τB∪C (xi)|
|τC (xi)| .

Proposition 3.1: Given a KNDS = (U,A,D, δ,K), ∀B,C ∈
A, NEτ (B | C) = NEτ (B,C)−NEτ (C).

Proof: It can be proved using Definitions 3.3 and 3.4.
Neighborhood conditional entropy can be calculated by the

neighborhood joint entropy provided by B and C and the neigh-
borhood uncertainty of C.

Definition 3.6. (kNN mutual information): Given aKNDS =
(U,A,D, δ,K), ∀B,C ∈ A, the neighborhood mutual informa-
tion of B and C is defined as

NMIτ (B;C) = − 1

|U |
|U |∑
i=1

log2
|τB (xi)| · |τC (xi)|
|U ‖ τB∪C (xi)|

where τB(xi) and τC(xi) denote the neighborhoods on B and
C, respectively; δB∪C(xi) represents the τ neighborhood of xi

on B ∪ C.
According to Definitions 3.3–3.6 and Proposition 3.1, the

relationships between uncertainty measures in the NRS, such as
neighborhood entropy, neighborhood conditional entropy, and

neighborhood mutual information, can be obtained, as shown in
Proposition 3.2.

Proposition 3.2: Given a KNDS = (U,A,D, δ,K),
∀B,C ∈ A, we have the following:

1) NMIτ (B;C) = NMIτ (C;B);
2) NMIτ (B;C) = NEτ (B) +NEτ (C)−NEτ (B,C);
3) NMIτ (B;C) = NEτ (B)−NEτ (B | C) =

NEτ (C)−NEτ (B | C).
Proof: It can be proved using Definitions 3.3–3.6.
Definition 3.7. (kNN conditional mutual information): Given a

KNDS = (U,A,D, δ,K), ∀B,C,R ∈ A, under the condition
of known C, the neighborhood conditional mutual information
of B and R is defined as

NCMIτ (B;R | C)=− 1

|U |
|U |∑
i=1

log2
|τB∪C (xi)|·|τR∪C (xi)|
|τC (xi)|·|τB∪C∪R (xi)|

where τC(xi), τB∪C(xi), τR∪C(xi), and τB∪C∪R(xi) represent
the neighborhoods of xi on C, B ∪ C,R ∪ C, and B ∪ C ∪R,
respectively.

Proposition 3.3: Given a KNDS = (U,A,D, δ,K),
∀B,C,R ∈ A, we have
NCMIτ (B;R | C) = NEδ(B,C) +NEτ (R,C)−

NEτ (B,R,C)−NEτ (C).
Proof: It is obviously true according to Proposition items (1)

and (2) and the definition of the boundary region.
Proposition 3.4: Given a KNDS = (U,A,D, δ,K),
∀B,C,R ∈ A, under the condition that C is known, we have

NCMIτ (B;R | C) = NCMIτ (R;B | C).

Proof: It can be proved according to Definition 3.7.
By analogy with the symmetry of neighborhood mutual in-

formation in Proposition 3.2(1), given a feature subset C, the
information quantity of B obtained from R is equivalent to that
of R obtained from B, that is, the information provided by them
is mutual.

Proposition 3.5: Given a KNDS = (U,A,D, δ,K),
∀B,C,R ∈ A, under the condition that C is known, if B and R
are independent of each other, then NCMIτ (B;R | C) = 0.

Proof: If B and R are independent of each other, it can be
calculated from Definition 3.7 that NCMIτ (B;R | C) = 0.

IV. EVALUATION OF FEATURE SIGNIFICANCE BASED ON THE

KNNRS

In this section, a feature selection method that considers
imbalanced data and feature interactions is proposed in the
framework of kNNRSs. The relevance between features and
classes and the redundancy and interaction between features are
comprehensively explored and redefined in Section IV-A–IV-C.
Based on these defined feature correlations, a new feature ob-
jective evaluation function, i.e., KNMRmRMI, is constructed in
Section IV-D. Section IV-D also proposes a new neighborhood-
conditional-mutual-information-based interaction feature selec-
tion algorithm.

The information metric in the NRS in Section III is used
to describe the relationship between features, including the
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relevance between features and classes, the redundancy between
features, and the pairwise interactions between features.

A. Feature Relevance Measure

Many researchers use relevance between features and classes
as a criterion for evaluating feature importance [21], [36], [37].
The core connotation is that the stronger the correlation between
the feature and the class, the stronger the ability of the feature
to distinguish samples.

Features that have greater relevance to classes provide more
distinguishable information for class division in information
theory. The aforementioned mutual information has been widely
used to measure the correlation between features and classes.

Definition 4.1. (Relevance, Rel): Given a KNDS =
(U,A,D, δ,K), U = {xi | i ∈ {1, . . . , n}}, A = {aj | j
∈ {1, . . . ,m}}, Red ⊆ A is the selected feature subset,
aAj ∈ A−Red is the current candidate feature, and
the relevance between aAj and the decision class d is
defined as

Rel
(
aAj , d

)
= NMIτ

(
aAj ; d

)

= − 1

|U |
|U |∑
i=1

log2

∣∣∣τAaj
(xi)

∣∣∣ · |τd (xi)|
|U |
∣∣∣τ{aA

j }∪{d} (xi)
∣∣∣

where τaA
j
(xi) and τd(xi) denote the neighborhood of xi on aAj

and d respectively, and τ{aA
j }∪{d}(xi) represents the neighbor-

hood of xi on {aAj } ∪ {d}.
We choose features that have the largest neighborhood mutual

information between features and classes. The selected feature is
called the feature with the greatest relevance. This feature selec-
tion method is called the maximum-relevance (Max-Relevance,
MR) criterion [38], [39]. And the MR criterion is formalized as

max
aA
j ∈A−Red

Rel
(
aAj , d

)
.

By using the MR criterion to pick features, we can acquire
a descending order sorted by the magnitude of the correlation
between each feature and the class. In the first step of feature
selection, we select the most relevant feature in the ranking as
the first selected feature.

B. Feature Redundancy Measure

The above ranking-based methods only consider selecting
the features most relevant to the class. But the redundancy
between the features and the selected features is ignored, which
reduces the classification performance to a certain extent. Thus,
the neighborhood mutual information can be a good measure
of the class-independent redundancy between the feature and
the selected feature. Some researchers consider eliminating the
redundancy between features to improve the classification per-
formance of the algorithm [36], [40], [41].

Definition 4.2. (Redundancy, Rdd): Given a KNDS =
(U,A,D, δ,K), aAj ∈ A−Red is the current candidate feature,
as ∈ Red is the selected feature, the pairwise redundancy of

class independence between aFj and as is defined as

sRdd
(
aAj , as

)
= NMIτ

(
aAj ; as

)

= − 1

|U |
|U |∑
i=1

log2

∣∣∣τaA
j
(xi)

∣∣∣ · |τas
(xi)|

|U |
∣∣∣τ{aA

j }∪as} (xi)
∣∣∣

where τaA
j
(xi) and τas

(xi) denote the neighborhood ofxi on aAj
and as, respectively, and τ{aA

j }∪{as}(xi) represents the neighbor-

hood of xi on {aAj } ∪ {as}.
In the second step of feature extraction, in order to reduce

the redundancy in the selected feature subset, the minimum-
redundancy criterion [38] is defined as

min
aA
j ∈A−Red,as∈Red

Rdd
(
aAj , as

)
.

C. Feature Interaction Measure

The goal of most feature selection methods is to select the
subset of features with the greatest correlation to the category
and least redundancy with the selected features while preserving
the categorical information. So far, little has been done to study
the interactions between features. Then, the ubiquitous inter-
actions between features are ignored, which would change the
final reduction set. Going a step further, the final classification
accuracy will be affected. Some scholars proposed to use a single
neighborhood to solve the interaction between features [23],
[42]. Therefore, in this subsection, we explore the interactions
between features and seek suitable measures in KNDS.

When solving classification tasks, there are multiple interac-
tions due to the differences between individual features or the
different discriminative abilities of different features for the final
classification. Depending on the different interacting object, the
interaction between features can be divided into two situations:
1) the interaction between the current candidate feature and
the feature selected according to the aforementioned criteria
(measured as Definition 4.3) and 2) the current candidate feature
and the remaining candidates’ interactions between features
(measured as Definition 4.4).

From an information theory perspective, the interaction be-
tween the current candidate feature and the selected features
can be expressed as the amount of information contributed by
adding a new feature to classification when a feature is known.
According to Definition 3.7, the conditional mutual information
provides a good way to measure these situations. The two
interaction situations are defined as follows.

Definition 4.3. (Interaction of selected features, ItrS): Given
a KNDS = (U,A,D, δ,K), under the condition that the se-
lected feature as is known, the neighborhood conditional mutual
information of the current candidate feature aAj and the decision
class d is defined as

ItrS
(
aAj , as, d

)
= NCMIτ

(
aAj ; d | as

)

= − 1

|U |
|U |∑
i=1

log2

∣∣∣τ{aA
j }∪{d} (xi)

∣∣∣ · ∣∣τ{as}∪{d} (xi)
∣∣

|τas
(xi)| ·

∣∣∣τ{aA
j }∪{as}∪{d} (xi)

∣∣∣
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where τas
(xi), τ{aA

j }∪{d}(xi), τ{as}∪{d}(xi), and τ{aA
j }∪{as}∪{d}

(xi) represent the neighborhood of xi on as, {aAj } ∪ {d},
{as} ∪ {d}, and {aAj } ∪ {as} ∪ {d}, respectively.

Definition 4.3 is used to measure how much the uncertainty
of classification can be reduced by the current candidate feature
aAj when the selected feature as is known, that is, the current
contribution of this feature.

Definition 4.4. (Interaction of candidate features, ItrC):
Given a KNDS = (U,A,D, δ,K), aAj ∈ A−Red is the cur-
rent candidate feature, and aA

′
j ∈ A−Red− {aAj } is feature in

the remaining candidate feature subset, under the condition that
aAj is known, the interaction of class dependence between aA

′
j

and the decision class d is defined as

ItrC

(
aAj , a

A′
j , d

)
= NCMIτ

(
aA

′
j ; d | aAj

)

= − 1

|U |
|U |∑
i=1

log2

∣∣∣τ{aA′
j }∪{d} (xi)

∣∣∣ · ∣∣∣τ{aA
j }∪{d} (xi)

∣∣∣∣∣∣τaA
j
(xi)

∣∣∣ · ∣∣∣τ{aA′
j }∪aA

j }∪{d} (xi)
∣∣∣

where τaA
j
(xi), τ{aA′

j }∪{d}(xi), τ{aA
j }∪{d}(xi), and

τ{aA′
j }∪aA

j }∪{d}
(xi) represent the neighborhood of xi on aAj , {aA′j } ∪ {d},
{aAj } ∪ {d}, and {aA′j } ∪ {aAj } ∪ {d}, respectively.

Definition 4.4 can be used to measure the contribution of the
feature aA

′
j to the final classification in the remaining subset of

candidate features given that aAj is known.
The third step in measuring the importance of features is that

we pick the feature with the maximum interaction with the re-
maining candidate features. The maximum-interaction criterion
is formalized as follows:

max
aA
j ∈A−Red,aA′

j ∈A−Red−{aA
j }

Itrc

(
aAj , a

A′
j , d

)
.

D. Original Feature Selection Algorithm Based on kNN
Conditional Mutual Information

The detailed descriptions of the heuristic feature selection
algorithm for KNDS are given as algorithm KNCMI. Con-
sequently, based on the discussions of feature correlations in
Sections IV-A–IV-C, an original feature objective evaluation
function LKNCMI for KNMRmRMI is set up as follows:

LKNCMI = arg max
aA
j ∈A−Red

Jsig
(
aAj
)

where

Jsig
(
aAj
)

= NMIτ
(
aAj ; d

)− 1

|Red|
∑

as∈Red

NMIτ
(
aAj ; as

)

+
1

|A−Red|−1
∑

aA′
j ∈A−Red−{aA

j }
NCMIτ

(
aA

′
j ; d | aAj

)
.

In this function for evaluating feature importance, the neigh-
borhood mutual information is used to measure the relevance

Algorithm 1: Feature Selection Algorithm Based on kNN
Conditional Mutual Information.

Input: A KNDS = (U,A,D, δ,K) with
U = {x1, x2, . . . , xn} and A = {a1, a2, . . . , am}; The
neighborhood adjustment parameter ε (its value range is
[0.5, 1.0] in steps of 0.1); neighborhood adjustment
parameter k (its value range is [0.01N , 0.1N ] in steps of
0.01N ), N is the number of samples.

Output: A reduct feature subset Redbest.
1: for j ← 1 : m do
2: Compute ℵτA; // Referring to Definition 3.1 and 3.2,

the radius of the δ-neighborhood and k-nearest
neighborhood is obtained.

3: end for
4: for each aAj ∈ A do
5: Compute Rel(aAj ,d); // Compute the relevance

between the current candidate feature aAj and the
class d.

6: end for
7: The feature as with the maximum relevance is selected

according to the MR criterion;
8: Red← {as};
9: A← A\{as};

10: for each aAj ∈ A do
11: for each as ∈ Red do
12: Compute Rdd(aAj , as); // Compute the redundancy

between the current candidate feature aAj and the
selected feature as.//

13: end for
14: for each aA

′
j ∈ A−Red− {AA

j } do
15: calculate ItrA(a

A
j , a

A′
j , d); // Compute the

interaction between the current candidate feature
aAj and the feature aA

′
j in the remaining candidate

feature subset with regard to the class d.//
16: end for
17: Compute Jsig (aAj ); // Compute the significance of

the current candidate feature aAj according to feature
objective evaluation function.//

18: Select the feature a with the greatest
importance(Referring to Jsig (aAj ));

19: Update Red← Red ∪ {a};
20: A← A\{a};
21: end for
22: The best feature subset Redbest is selected by using

the different classifiers; // The Redbest contains fewer
features and has higher classification accuracy. //

23: returnRedbest

between features and classes (Rel(aAj , d); see Definition 4.1)
and the redundancy between the feature and the selected fea-
tures (Rdd(aAj , as); see Definition 4.2). Similarly, the neighbor-
hood conditional mutual information is adopted to characterize
the interaction between the feature and the candidate features
(ItrC(aAj , a

A′
j , d); see Definition 4.4).

Authorized licensed use limited to: Southwest University. Downloaded on March 15,2024 at 10:07:11 UTC from IEEE Xplore.  Restrictions apply. 



238 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 5, NO. 1, JANUARY 2024

TABLE I
DESCRIPTION OF THE 20 DATASETS

The KNMRmRMI feature evaluation function can be applied
to measure the effectiveness of a feature or a subset of features
for classification, that is to say, the amount of information contri-
bution. It can also be understood as the discriminative power of
a feature or a subset of features to distinguish different classes.
The greater the information contribution of a feature, the more
important this feature is. The purpose of this function is to make
the final selected subset of features the most representative and
informative and to achieve a tradeoff of relevance, redundancy,
and interactivity.

The algorithm mainly includes the following three steps. In
the first stage, according to the distributions of attribute values,
the kNN of the samples under different features is calculated
(steps 1–3). In the second phase, the neighborhood mutual
information is employed to measure the relevance between
features and classes (steps 4–6) and pairwise redundancy of
class independence between the feature and the selected features
(steps 11–13). Neighborhood conditional mutual information is
adopted to measure the interaction of class dependence between
the feature and the candidate features (steps 14–16). Moreover,
the significance of features is calculated by the feature objec-
tive evaluation function (KNMRmRMI), and the feature with
greatest classification performance is selected in order (steps
17–20). In the final step, the best reduct feature subset with
the highest amount of information and distinguishing ability
is selected via using the wrapper feature selection algorithm
(step 22).

Next, we will further analyze the time and space complexity
of the KNCMI algorithm. In the first “for” loop (steps 1–3),
the computation of object’s δ-neighborhood and kNN radius
sets has the linear complexity O(2m). And the computational
complexity of the neighborhood relation matrix is O(2mn2).
For each feature, in the second “for” loop (steps 4–6), the
computational complexity of the relevance between the current
candidate feature and the class isO(m). In the next double “for”
loop (steps 10–21), the computational complexity is O(m3). In
general, the number of samples is larger than the number of
features. To sum up, the time complexity of the algorithm is
O(2mn2) and the space complexity is O(n2).

V. EXPERIMENTAL ANALYSIS

In this section, a series of comparative experiments are per-
formed. This part uses the KNCMI algorithm to select the ap-
propriate neighborhood radius for different datasets and designs
different comparative experiments to prove the efficiency of the
KNCMI algorithm in feature selection.

A. Experimental Introduction

To verify the efficiency of the KNCMI algorithm in feature
selection, this experiment selects 20 datasets with different
dimensions as the experimental objects. The 20 datasets are
selected from UCI Machine Learning Repository, including
three categorical datasets, 11 numerical datasets, and six hybrid
datasets. The descriptions of 20 datasets are shown in Table I.

In order to evaluate the effectiveness and robustness of NMD,
the proposed feature selection algorithm KNCMI is compared
with existing feature selection algorithms, which will be clear
shortly. The comparing algorithm includes some information-
theory-based feature selection algorithms and some naive for-
ward feature selection based on NRS, kNNRS. Here we give a
brief description of each comparing method.

1) δ-neighborhood rough set [4]: This attribute reduction
algorithm proposed on NRST works well to reduce numer-
ical and categorical trees in a large number of conditional
attributes.

2) kNNRS [35]: Focusing on the intersection of the δ-
neighborhood and kNN [43], the algorithm has better
extraction and classification ability when the feature is
heterogeneous data.

3) An interaction feature selection algorithm based on
neighborhood conditional mutual information (NCMI _
IFS) [23]: The NCMI _ IFS algorithm combines the ad-
vantages of the NRS to deal with hybrid and uncertain data
and information theory to measure feature correlations,
which can achieve higher and more stable classification
performance.

4) Hybrid kernel-based fuzzy complementary mutual infor-
mation (HKCMI) [39]: Focusing on fuzzy complementary
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TABLE II
NUMBER OF ATTRIBUTES SELECTED UNDER EACH CLASSIFIER AND THE ORDER IN WHICH THE ATTRIBUTES ARE SELECTED

TABLE III
COMPARISONS OF AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) OF THE KNN CLASSIFIER ON 20 DATASETS

mutual information, HKCMI is suitable for the attribute
reduction of multiple attribute types on clustering tasks.

Assess the quality of feature selection results by using the av-
erage classification accuracy of three widely used machine learn-
ing classifiers, namely, kNN, support vector machine (SVM),
and naive Bayes (NB). We used fivefold cross validation in
evaluation. First, the fivefold crossover is to randomly divide
the original dataset into five subsets, four of which are used as
the training set, and the remaining one is used as the test set.
The experiment can be performed five times each time with
a different subset as the test set. Next, a classifier is trained
on the training set using the features selected by the feature
selection algorithm. Finally, the performance of the classifier
trained on the selected features is evaluated on the test set.
We use the average of five test sets as the final classification
performance.

B. Experimental Results on Real-World Datasets

Classification performance is considered to be one of the most
efficient and straightforward methods to examine the quality

of the feature selection algorithm, in which the classification
accuracy is usually utilized to measure the classification perfor-
mance. To avoid the experimental results from being affected
by the rareness of data and the randomness of computation, the
classification accuracies of the same feature selection algorithm
on different datasets are averaged, which is displayed in the row
labeled as Avg. After fivefold cross validation in evaluation, the
average classification accuracies of the original data on three
different classifiers are used as the benchmarks for experimen-
tal comparisons. The best classification performance result is
highlighted in boldface.

In this section, we conducted a total of two experiments.
In first experiment, the five feature selection comparison algo-
rithms and the average classification accuracy of this algorithm
on the three classifiers are shown in Tables III–V. Specifically,
for these comparison feature selection algorithms, in the light of
the range of the parameters offered in the original articles, we
revise the homologous parameters to select the highest average
classification accuracy as the final evaluation result in the table.
The parameters for KNCMI algorithms in the three average
classification accuracy tables are set as follows: the parameter ε
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TABLE IV
COMPARISONS OF AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) OF THE SVM CLASSIFIER ON 20 DATASETS

TABLE V
COMPARISONS OF AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STD. DEV. %) OF THE NB CLASSIFIER ON 20 DATASETS

is set on 0.6 and the parameterK is set on 0.05N , whereN is the
number of samples. In the second experiment, we study the effect
of the size of the two parameters on the classification accuracy.
The different values of the parameter ε and the different values
of the parameter K will lead to the different classification
performance.

As can be seen from Table II, several attributes are finally
selected by each classifier in each dataset. Moreover, the order
of feature selection is also given together. We can find that
the least features are selected on average under the kNN algo-
rithm, probably due to the unique categorical nature of the kNN
algorithm.

From Tables III–V, we make the following observations.
Compared with the original data, the classification performance
of the KNCMI algorithm is improved well. The average classi-
fication accuracies of the proposed algorithm are improved by
13.39%, 7.89%, and 9.50% than the original data, respectively,
on the kNN, SVM, and NB classifiers.

Overall, the proposed KNCMI algorithm outperforms other
feature selection algorithms on most datasets. For example,

when NB is used as a classifier for testing (as shown in Ta-
ble V), the KNCMI algorithm achieves the best classification
performance on 15 datasets. Moreover, when kNN is used as
a classifier for testing (as shown in Table III), the KNCMI
algorithm achieves the best classification performance on 17
datasets. Although the classification performance of the pro-
posed algorithm on some datasets is not as good as that of the
NCMI _ IFS (such as on Glass, derm, Iono, and SGC datasets)
and HKCMI (such as on Divorce, Soy, Sonar, Glass, Wdbc, and
SGC datasets) algorithms, it achieves the maximum value of the
average classification accuracy.

We can discover that for the kNN, SVM, and NB classifiers,
the proposed feature selection algorithm performs better than
the other four common feature selection algorithms in most
datasets. Furthermore, of the 60 comparisons on the three clas-
sifiers, 48 outperformed the other algorithms. When using dif-
ferent classifiers to test the performance of the feature selection
algorithm, the results of classification accuracies are slightly
different. And they also present different test results on different
datasets.
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Fig. 6. K-means classification accuracy variations with parameter ε on four hybrid datasets versus the variations with parameter K. (a) derm. (b) heart. (c) SGC.
(d) Tae.

For stability analysis, it can be measured by the standard
deviation of the accuracy under each classifier. It can be ob-
served that the average standard deviation of the KNCMI al-
gorithm under the kNN classifier is the smallest, which is
1.14%. This shows that the algorithm has strong robustness
on the kNN classifier. However, the standard deviation of the
SVM and NB classifiers is large, and the stability effect is not
good.

To further search the efficiency of our algorithm, Figs. 6 and
7 depict heatmaps of classification accuracy as a function of
parameters ε and K on mixed datasets and some representative
numerical datasets, respectively. The heatmap results are based
on the K-means classifier. The x-axis is the parameter K for
the radius of kNNRS. The y-axis is the parameter ε for the
δ-neighborhood rough sets, and the z-axis is the classification
accuracy of K-means different classifiers.

The values of parameter ε are set from 0.5 to 1.0 in steps of 0.1.
The different values of the parameter ε and the different values
of the parameter K will lead to the different classification per-
formance. It shows the effectiveness of the proposed algorithm
in terms of different values of the parameter.

The changes of values of the parameter ε would relatively
impact the classification performances on most datasets, which
are shown in Figs. 6 and 7. However, for some datasets, such
as Glass, the influences of the parameter K on the classification
performances for the K-means classifiers is relatively small,
which can be seen from Fig. 7(b).

When the parameters ε andK take different values, the highest
classification accuracy corresponding to the K-means classifier
is different. For instance, in the derm dataset [see Fig. 6(a)],

when the parameter ε is set to 0.9 and the parameter K is set
to 0.05N , the classification accuracy reaches the maximum. In
addition, in the Wdbc dataset [see Fig. 7(f)], when the parameter
ε is set to 0.6 and the parameter K is set to 0.05N , the classifi-
cation accuracy reaches the maximum. Especially, for the Glass
datasets [see Fig. 7(b)], the value of parameter K basically does
not affect the classification accuracy.

C. Statistical Testing and Analysis of Algorithms

In order to further compare the experimental results of differ-
ent algorithms, two statistical test methods, i.e., Friedman test
and Nemenyi test, were selected to verify the validity of the
algorithm comparison.

The Friedman test is a nonparametric statistical test method;
its null hypothesis is that all the experimental algorithms have
comparable classification performance. The formula is defined
as

FF =
(T − 1)χ2

F

T (s− 1)− χ2
F

χ2
F =

12T

s(s+ 1)

(
s∑

i=1

R2
i −

s(s+ 1)2

4

)

where T and s are the number of experimental datasets and
experimental algorithms, respectively, and Ri represents the
average ranking value of the classification accuracy results of
algorithm i on different classifiers.

Table VI represents the five comparison algorithms of the
algorithm and the average ranking of the classification accuracy
results of the algorithm KNCMI on the kNN, SVM, and NB
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Fig. 7. K-means classification accuracy variations with parameter ε on five numerical and a categorical datasets versus the variations with parameter K.
(a) Divorce. (b) Glass. (c) Iris. (d) Sonar. (e) Tic-Tac-Toe. (f) Wdbc.

TABLE VI
AVERAGE RANK OF THE CLASSIFICATION ACCURACY OF THE SIX ALGORITHMS

TABLE VII
FRIEDMAN TEST STATISTICS

classifiers. It can be seen that the ranking of the algorithm in this
article is obviously better than that of the comparison algorithm,
which shows the superiority of the algorithm in this article.

Table VII shows the chi-square value of the Friedman test and
the corresponding P value. It can be seen from Table VII that
the test P values on the three classifiers are all less than 0.05, so
the null hypothesis is rejected. That is, we believe that there are
significant differences between these six algorithms.

VI. CONCLUSION AND FUTURE WORK

NRSs are one of the most important feature selection methods
today. Aiming at the two major problems of mixed data and
feature interaction, this article proposes a novel feature selection
method of NRSs. The proposed KNCMI algorithm can not
only solve the problem of imbalanced data distribution, but also
consider the role of feature interaction when calculating feature

importance. This method can greatly improve the accuracy of
feature selection and help us filter out really important features.
In the experiment, the accuracy of each classifier and the number
of feature selections are compared. The experimental results
show that the performance of the algorithm is significantly better
than that of the comparison algorithm. Finally, a hypothesis test
is carried out, and the experimental results also show that there
are obvious differences between the algorithms.

In the following work, we can consider how to improve the
existing algorithm to solve the dynamic mixed data problem.
This will also be the focus of future development.
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