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Abstract—The fuzzy concept serves as a crucial tool for
describing phenomena and constitutes the fundamental unit of
human cognition. Fuzzy concepts are characterized by their
extent and intent, with the latter being comprised of contin-
uous membership degrees. Given that human cognition often
progresses from vagueness to precision, it is imperative that
the form of intent not be confined to a singular continuous
value; rather, an interval possesses superior flexibility in this
regard. Initial cognitive processes lack comprehensiveness in
acquiring knowledge, necessitating subsequent cognitions to more
accurately delineate the intended scope of a concept. Motivated
by this insight, we proposed an interval-intent fuzzy concept
re-cognition learning model (IFCRL). Firstly, this model trans-
forms fuzzy concept intent from a single continuous value into
an interval-based representation which describes the range of
attribute values for all objects within the given interval. Secondly,
in order to simulate secondary cognitive processes akin to
those exhibited by humans towards phenomena, we present
a concept re-cognition learning method capable of effectively
scaling intervals within reasonable bounds. Thirdly, aiming to
overcome cognitive barriers and emulate imaginative processes
observed in human brains, we introduce a concept clustering
approach based on intent similarity which significantly reduces
concept complexity while enhancing cognitive efficiency. Finally,
we evaluate our classification performance using 12 datasets and
experimental results demonstrate that IFCRL outperforms 14
other classification algorithms both feasibly and effectively.

Index Terms—Concept-cognitive learning, Concept clustering,
Granular computing, Interval-intent, Object classification.

I. INTRODUCTION

COGNITIVE informatics is an emerging interdisciplinary
research field that integrates various domains, including

modern informatics, artificial intelligence, cybernetics, cogni-
tive science, neuropsychology, medical science, philosophy,
linguistics, life sciences and others [1]. In the realm of
cognitive informatics, relations are recognized as information.
The connections between objects can be established through
object-object relationships, attribute-object relationships or
attribute-attribute relationships [2]. As the fundamental unit
of human cognition, concepts encompass the relationship
between objects and attributes. The extent of a concept refers
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to the set of all objects or instances that the concept represents,
while the intent of a concept pertains to the set of attributes
or properties that it implies [3]. Investigating the relationship
between entities through the integration of concepts with
mathematical, psychological, and other methodologies has
emerged as a prominent research direction. Moreover, concept
learning has expanded into various interconnected research
domains including granular computing [4], [5], [6], [7], rough
set [8], [9], [10], formal concept analysis [11], [12], [13], [14],
among others.

The field of concept-cognitive learning encompasses the
study of cognition and the acquisition of knowledge through
conceptual frameworks [15]. In recent years, many different
types of concept learning models have been proposed, such
as abstract concept [16], Wille’s formal concept [17], object-
oriented concept [18], fuzzy concept [19], [20], [21], [22],
three-way concept [23], [24], two-way concept [25], [26],
[27]. In terms of basic theory, the framework of concept
learning was investigated by Yao [28], taking into account
both cognitive science and granular computing. Zhang et al.
[29] analyzed the sufficient and necessary between attributes
and objects, and combined intuition and reasoning to establish
a rigorous mathematical model to simulate human cognitive
processes. Based on this, Xu et al. [30] extensively discussed
the theory of transforming arbitrary information granules into
necessary and sufficient information granules. Zhang et al.
[31] proposed a two-way concept-cognitive learning model
based on three-way decision under fuzzy context, which can
directly learn sufficient and necessary concepts from arbitrary
information granules. Additionally, Xu et al. [25] proposed a
two-way dynamic concept-cognitive learning model within a
fuzzy context.

The theoretical system of two-way concept-cognitive learn-
ing has been gradually complete. At the same time, the
model combining concept-cognitive with machine learning has
developed rapidly in recent years. A perspective on machine
learning was presented by Mi et al. [32], introducing a
comprehensive approach to cognitive learning. For application
to classification problems, many concept-cognitive learning
models [33], [34], [35], [36] have been proposed. Shi et al.
[33] proposed a concept cognitive learning model that is good
at incremental learning to implement static and dynamic clas-
sification tasks. Mi et al. [34] proposed a concept clustering
method considering object information in fuzzy context and
applied it to the problem of concept generation. Niu et al. [37]
proposed a classification model based on fuzzy rules, which
realizes granularity reduction and dynamic update in fuzzy
environment. Liu et al. [38] proposed a stochastic incremental
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incomplete concept-cognitive learning method that is not influ-
enced by the cognitive sequence of attributes, and employed
a stochastic strategy for cognition. Hu et al. [39] explored
concept learning models in the interval-valued context. Zhang
et al. [40] proposed a incremental weight concept-cognitive
learning algorithm based on fuzzy entropy to solve individual
cognitive limitation.

The existing concept-cognitive learning still holds immense
potential for development. However, the current classification
learning models fail to consider interval-valued formal con-
cepts in a fuzzy context. Each granular concept is learned
only once, resulting in relatively shallow acquired knowledge.
Additionally, the existing concept cognitive learning models
restrict cognitive thinking and create cognitive barriers by
considering object information as the basis for participation
in clustering processes (concepts can only be clustered if
their extent intersect). To delve deeper into knowledge, obtain
more accurate concepts, and break down cognitive barriers, we
propose an interval-intent fuzzy concept re-cognition learning
model under a fuzzy context. The primary contributions of this
paper are as follows:

1) We introduce new mapping operators that form the basis
of a novel concept definition method called interval-intent
fuzzy concept. We also discuss the fundamental properties of
interval-intent fuzzy concepts and define two types of interval-
intent fuzzy granular concepts based on granular computing to
represent data from different perspectives.

2) Building upon these new granular concepts, we propose a
concept re-cognition process that effectively reduces cognitive
errors caused by noise data (mainly refers to extreme value
cases) and closely mimics human secondary cognition.

3) Furthermore, the proposed clustering algorithm is based
on intent similarity, effectively overcoming the cognitive bar-
rier (concepts can only be clustered if their extent intersect).
This approach significantly reduces the concept space and
enhances classification efficiency.

4) Finally, we compare IFCRL with fourteen different
classification algorithms using twelve datasets from UCI and
KEEL databases. Moreover, we analyze how parameters in-
fluence both the size and accuracy of the clustering space.
Our results demonstrate that IFCRL achieves superior average
accuracy compared to other methods.

Compared to precise fuzzy values, interval values offer
greater flexibility and comprehensibility in our cognitive pro-
cess. The concept’s intent shifts from fuzzy values to in-
terval values, allowing for a reasonable summarization of
the attribute membership degrees of all objects within the
scope. The re-cognition process emulates humans’ second
understanding of things, eliminating cognitive errors caused
by noise and enabling a more accurate comprehension of
the concept’s intent. Clustering based on intent similarity
transcends cognitive boundaries and presents new possibilities
for cognition (even extent-disjoint concepts can be clustered).

The subsequent sections of this paper are structured as
follows: Section II introduces the interval set correlation oper-
ations used in this study along with basic definitions of fuzzy
concepts while discussing the motivation behind this research.
Section III proposes a model for interval-intent fuzzy concept

re-cognition learning. Extensive experiments are conducted in
Section IV to validate the feasibility of the proposed model.
Finally, we conclude this work and provide suggestions for
future research.

II. RELATED WORK

This section mainly introduces the related operations of
interval sets and the relevant knowledge of fuzzy concept-
cognitive learning.

A. Interval Set

Let U stands for the unit closed interval from 0 to 1, and
[U ] denote the set of all closed intervals on the interval [0,1].
If M be a nonempty set, we call the mapping B̃ : M → [U ]
an interval set on M . And all interval sets on M are denoted
as I(M).

For ∀B̃ ∈ I(M), let B̃±(c) = [B̃−(c), B̃+(c)], c ∈ M .
We define ordinary fuzzy sets B̃−, B̃+ : M → U as
lower-interval sets and upper-interval sets of M , respectively.
For convenience, B̃± is used to represent an interval set
[B̃−, B̃+]∀c in this paper. B̃− and B̃+ denote the ordered
set consisting of all lower and upper bounds of the interval
set B̃±.

The four representations of interval sets in this paper are as
follows:

B̃± = [B̃−, B̃+]∀c

= [{B̃−(c1), · · · , B̃−(c|M |)}, {B̃+(c1), · · · , B̃+(c|M |)}]∀c
= {[B̃−(c1), B̃

+(c1)], · · · , [B̃−(c|M |), B̃
+(c|M |)]}

The interval inclusion relationship consistent with human
cognition is defined as B̃±

1 ⊆ B̃±
2 if ∀c ∈ M, B̃−

1 (c) ≥
B̃−

2 (c) and B̃+
1 (c) ≤ B̃+

2 (c). We call two interval sets B̃±
1

and B̃±
2 are intersected if the following conditions are satisfied:

∃ai ∈ U , B̃−
1 (ci) ≤ ai ≤ B̃+

1 (ci) and B̃−
2 (ci) ≤ ai ≤

B̃+
2 (ci), i =1, 2, · · · , |M |.

Definition 1. Given two interval sets B̃±
1 and B̃±

2 which
are intersected, their intersection and union operations are
described as the following formula:

B̃±
1 ∩ B̃±

2 =[{max(B̃−
1 (ci), B̃

−
2 (ci)) | i = 1, 2, · · · , |M |},

{min(B̃+
1 (ci), B̃

+
2 (ci)) | i = 1, 2, · · · , |M |}]∀c;

B̃±
1 ∪ B̃±

2 =[{min(B̃−
1 (ci), B̃

−
2 (ci)) | i = 1, 2, · · · , |M |},

{max(B̃+
1 (ci), B̃

+
2 (ci)) | i = 1, 2, · · · , |M |}]∀c.

We define the number multiplication and addition operations
of the interval set as follows:

a · B̃±
1 (c) = [a · B̃−

1 (c), a · B̃+
1 (c)]∀c

B̃±
1 (c) + B̃±

2 (c) = [B̃−
1 (c) + B̃−

2 (c), B̃+
1 (c) + B̃+

2 (c)]∀c

B. Fuzzy Concept-cognitive Learning

Fuzzy formal context (G,M, Ĩ) is a triple, where G rep-
resents the object set, M represents the attribute set, and Ĩ
represents the fuzzy relationship between the object and the
attribute. The membership degree Ĩ(x, c) between object x and
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TABLE I
A FUZZY FORMAL DECISION CONTEXT.

G c1 c2 d G c1 c2 d
x1 0.32 0.63 1 x7 0.80 0.70 2
x2 0.36 0.52 1 x8 0.81 0.66 2
x3 0.48 0.83 1 x9 0.77 0.60 2
x4 0.38 0.48 1 x10 0.91 0.55 2
x5 0.40 0.60 1 x11 0.72 0.45 2
x6 0.41 0.76 1 x12 0.58 0.61 2

attribute c in Ĩ satisfied Ĩ(x, c) ∈ [0, 1]. We call the quintuple
(G,M, Ĩ,D, J) fuzzy-classical decision formal context, where
Ĩ : G×M → [0, 1] and J : G×D → {0, 1}.

Let (G,M, Ĩ) be a fuzzy formal context. For X ⊆ G and
B̃ ∈ I(M), the two mapping operators L̃ and N are defined
as follows [41], [42]:

L̃(X) = {
∧
x∈X

Ĩ(x, ci)|i = 1, 2, · · · , |M |},

N(B̃) = {x ∈ G|∀ci ∈M, B̃(ci) ≤ Ĩ(x, ci)}.

We call a pair (X, B̃) the fuzzy concept if L̃(X) = B̃
and N(B̃) = X . And we call X the extent of the concept
and B̃ the intent of the concept. Generally speaking, the
learning process is complicated due to the large number of
fuzzy concepts. Therefore, the idea of particle computing is
introduced to simplify it into fuzzy granular concept. The
fuzzy conditional granular concept derived from any object
x is defined as (NL̃(x), L̃(x)).

Example 1. The table I represents a fuzzy formal decision
context consisting of twelve objects and two condition
attributes, where X1 = {x1, x2, x3, x4, x5, x6} and
X2 = {x7, x8, x9, x10, x11, x12}. For the case of decision
d = 1, the classical fuzzy conditional granular concepts are
({x1, x3, x6}, {0.32, 0.63}), ({x2, x3, x5, x6}, {0.36, 0.52}),
({x3}, {0.48, 0.83}), ({x3, x4, x5, x6}, {0.38, 0.48}),
({x3, x5, x6}, {0.4, 0.6}), ({x3, x6}, {0.41, 0.76}).

C. Motivation

The classical formal concepts primarily pertains to the
depiction of the association between discrete data objects and
their attributes. However, many real-world datasets are not
binary or discrete, resulting in significant information loss
during processing. Fuzzy concepts offer a viable solution to
these issues. Nevertheless, existing fuzzy concepts typically
represent a single value that accurately describes the lower
bound of a concept’s membership degree. Human perception
often relies on a two-way scope for defining things rather than
a one-way approach. For instance, gray is considered as being
between black and white without being darker than white or
whiter than black.

The unidirectional nature of fuzzy concepts fails to ade-
quately describe objects with membership degrees close to
the intent (slightly higher or slightly lower). To address this
limitation, this paper proposes an interval-intent fuzzy concept
that expands upon the intent of fuzzy concepts by adopting an
interval form. This effectively characterizes concepts with two
boundaries instead of just one boundary as seen in traditional

fuzzy concepts. An interval inherently possesses upper and
lower bounds, which aligns with the notion of considering con-
cepts from both directions simultaneously. Moreover, intervals
correspond well with human cognitive habits since attribute
values tend to cluster among similar entities.

III. INTERVAL-INTENT FUZZY CONCEPT RE-COGNITION
LEARNING MODEL

In this section, we introduce the definition and related
properties of a new interval-intent fuzzy concept, and propose
the process of concept re-cognition and a new method of
concept clustering.

A. Interval-intent Fuzzy Concept

Definition 2. For a fuzzy formal context (G,M, Ĩ), we define
four mapping operators F̃−, F̃+ : 2G → [LM ] and H−, H+ :
[LM ]→ 2G as follows:

F̃−(X) = {[
∧
x∈X

Ĩ(x, ci), 1]|i = 1, 2, · · · , |M |},

F̃+(X) = {[0,
∨
x∈X

Ĩ(x, ci)]|i = 1, 2, · · · , |M |},

H−(B̃±) = {x ∈ G|B̃−(c) ≤ Ĩ(x, c),∀c ∈M},

H+(B̃±) = {x ∈ G|B̃+(c) ≥ Ĩ(x, c),∀c ∈M}.

where 2G represents the power set of the object set and [LM ]
represents the power set of the attribute interval set.

According to the theory of the previous section, it is easy to
prove F̃−(X) and F̃+(X) are intersected. It is feasible and
concise to merge the four mapping operators defined above
into two.

Definition 3. Given the four mapping operators in Definition
2, we define the two merged mapping operators F̃± : 2G →
[LM ], H± : [LM ]→ 2G as follows:

F̃±(X) = F̃−(X) ∩ F̃+(X)

= {[
∧
x∈X

Ĩ(x, ci),
∨
x∈X

Ĩ(x, ci)]|i = 1, 2, · · · , |M |},

H±(B̃±) = H+(B̃±) ∩H−(B̃±)

= {x ∈ G|B̃−(c) ≤ Ĩ(x, c) ≤ B̃+(c),∀c ∈M}.

If F̃±(X) = B̃± and H±(B̃±) = X , we call an ordered
pair (X, B̃±) an interval-intent fuzzy concept. We call a super-
concept (X2, B̃

±
2 ) and a subconcept (X1, B̃

±
1 ) have the order

relation (X1, B̃
±
1 ) ≤ (X2, B̃

±
2 ) if X1 ⊆ X2 (or B̃±

1 ⊆ B̃±
2 ). If

there is no confusion, we will rewrite the first merged mapping
to form F̃±(X) = [

∧
x∈X Ĩ(x, c),

∨
x∈X Ĩ(x, c)]∀c.

Property 1. Let X,X1, X2 ⊆ G, B̃±, B̃±
1 , B±

2 ⊆ [LM ], then
we have:

(1) F̃±(X1) ⊆ F̃±(X2) if X1 ⊆ X2, H±(B̃±
1 ) ⊆

H±(B̃±
2 ) if B̃±

1 ⊆ B̃±
2 ;

(2) X ⊆ H±F̃±(X), B̃± ⊇ F̃±H±(B̃±);
(3) F̃±(X) = F̃±H±F̃±(X) and H±(B̃±) =

H±F̃±H±(B̃±).

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2024.3376569

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southwest University. Downloaded on March 21,2024 at 01:33:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL.*, NO.*, * 4

Proof. (1) According to the definition of the
object to property mapping operator, we have
F̃±(X1) = [

∧
x∈X1

Ĩ(x, c),
∨

x∈X1
Ĩ(x, c)]∀c and

F̃±(X2) = [
∧

x∈X2
Ĩ(x, c),

∨
x∈X2

Ĩ(x, c)]∀c. Because
X1 ⊆ X2,

∧
x∈X1

Ĩ(x, c) ≥
∧

x∈X2
Ĩ(x, c) and∨

x∈X1
Ĩ(x, c) ≤

∨
x∈X2

Ĩ(x, c), then F̃±(X1) ⊆ F̃±(X2)

holds. In addition, for B̃±
1 ⊆ B̃±

2 , H±(B̃±
1 ) =

{x ∈ G|B̃−
1 (c) ≤ Ĩ(x, c) ≤ B̃+

1 (c),∀c ∈ M} and
H±(B̃±

2 ) = {x ∈ G|B̃−
2 (c) ≤ Ĩ(x, c) ≤ B̃+

2 (c),∀c ∈ M},
then we have H±(B̃±

1 ) ⊆ H±(B̃±
2 ) since B̃−

1 (c) ≥ B̃−
2 (c)

and B̃+
1 (c) ≤ B̃+

2 (c) for each c ∈M .
(2) For any xa ∈ X , there must be

∧
x∈X Ĩ(x, c) ≤

Ĩ(xa, c) ≤
∨

x∈X Ĩ(x, c) (∀c ∈ M). Then we have
xa ∈ H±F̃±(X). Thus, X ⊆ H±F̃±(X). Also, for
any B̃±

a ⊆ F̃±H±(B̃±), which is equal to B̃±
a ⊆

[
∧

x∈H±(B̃±) Ĩ(x, c),
∨

x∈H±(B̃±) Ĩ(x, c)]. Then we have
B̃−

a (c) ≥
∧

x∈H±(B̃±) Ĩ(x, c) and B̃+
a ≤

∨
x∈H±(B̃±) Ĩ(x, c)

for any c ∈ M . Because
∧

x∈H±(B̃±) Ĩ(x, c) ≥ B̃−(c) and∨
x∈H±(B̃±) Ĩ(x, c) ≤ B̃+(c), we get B̃−

a (c) ≥ B̃−(c) and
B̃+

a (c) ≤ B̃+(c) for any c ∈M . Thus, B̃± ⊇ F̃±H±(B̃±) is
obtained.

(3) According to (2), we know X ⊆ H±F̃±(X). Then
we have F̃±(X) ⊆ F̃±H±F̃±(X) by (1). Since F̃ (X) =
B̃±, and B̃± ⊇ F̃±H±(B̃±). Further, we obtain F̃±(X) ⊇
F̃±H±F̃±(X). Meanwhile, F̃±(X) = F̃±H±F̃±(X) holds.
And it is easy to prove that H±(B̃±) = H±F̃±H±(B̃±) as
above.

The above mapping clearly satisfies the order-preserving
Galois connection relation. In classical fuzzy concept-
cognitive learning, the reverse order Galois link is conve-
nient to represent the properties common to all objects. The
sequence-preserving Galois link in this article shows that more
objects have a larger range of properties. When considering
multiple objects, the boundaries between them are better
understood and exploring similarities among them becomes
easier.

Property 2. Given a regular fuzzy-classical formal decision
context (G,M, Ĩ,D, J) and four mappings in Definition 2.
For any object x, (H−F̃−(x), F̃−(x) ∩ F̃+H−F̃−(x)) and
(H+F̃+(x), F̃−H+F̃+(x) ∩ F̃+(x)) are both interval-intent
fuzzy concepts.

Proof. We only need to demonstrate (1)
F̃±(H−F̃−(x)) = F̃−(x) ∩ F̃+H−F̃−(x) and (2)
H±(F̃−(x) ∩ F̃+H−F̃−(x)) = H−F̃−(x). The same
goes for another concept.

(1) Note that F̃±(H−F̃−(x)) = F̃−(H−F̃−(x)) ∩
F̃+(H−F̃−(x)) by Definition 3. According to Property
1, it is easy to obtain F̃−H−F̃−(x) = F̃−(x). Thus,
F̃±(H−F̃−(x)) = F̃−(x) ∩ F̃+H−F̃−(x).

(2) According to Definition 2, we can get
F̃−(x) ∩ F̃+H−F̃−(x) = [Ĩ(x, c),

∨
xi∈H−F̃−(x) Ĩ(xi, c)]∀c.

And H−F̃−(x) = {xt ∈ G|Ĩ(xt, c) ≥ Ĩ(x, c),∀c ∈ M}.
Obviously, we have H±(F̃−(x) ∩ F̃+H−F̃−(x)) =
H±([Ĩ(x, c),

∨
xi∈H−F̃−(x) Ĩ(xi, c)]∀c) = {xm ∈

G|Ĩ(x, c) ≤ Ĩ(xm, c) ≤
∨

xi∈H−F̃−(x) Ĩ(xi, c),∀c ∈
M} = {xt ∈ G|Ĩ(xt, c) ≥ Ĩ(x, c),∀c ∈M} = H−F̃−(x).

In conclusion, there are F̃±(H−F̃−(x)) =
F̃−(x) ∩ F̃+H−F̃−(x) and H±(F̃−(x) ∩ F̃+H−F̃−(x)) =
H−F̃−(x), thus (H−F̃−(x), F̃−(x) ∩ F̃+H−F̃−(x)) is an
interval-intent fuzzy concept.

Definition 4. Let G/D = {Gdk |k = 1, 2, · · · , |D|} represent
the partition of the object set based on their respective labels.
For any object x ∈ Gdk , (H−F̃−(x), F̃−(x)∩F̃+H−F̃−(x))
and (H+F̃+(x), F̃−H+F̃+(x) ∩ F̃+(x)) are upper-interval-
intent fuzzy granular concept (short for UFGC and denote
it by (X+, B̃±,u)) and lower-interval-intent fuzzy granular
concept (short for LFGC and denote it by (X−, B̃±,l)),
respectively. The interval-intent fuzzy granular concept spaces
(under decision dk) introduced by UFGC and LFGC are as
follows:

GCSdk,u = {(H−F̃−(x), F̃−(x)∩F̃+H−F̃−(x))|x ∈ Gdk},

GCSdk,l = {(H+F̃+(x), F̃−H+F̃+(x)∩ F̃+(x))|x ∈ Gdk}.

Obviously, UFGC and LFGC both are granular concepts
derived from the same object whose attribute membership
serves as the lower and upper bounds of the two interval-
intent concepts, respectively. The concept space under each
decision is combined into the overall concept space, which are
defined as GCSd,u = {GCSd1,u, GCSd2,u, · · · , GCSd|D|,u}
and GCSd,l = {GCSd1,l, GCSd2,l, · · · , GCSd|D|,l}.

Algorithm 1: Construction of interval-intent fuzzy
concept space

Input: A quintuple (G,M, Ĩ, J,D).
Output: The interval-intent fuzzy granular concept

spaces GCSd,u and GCSd,l.
1 According to the label, the object set G is divided and

denoted as G/D = {Gd1 , Gd2 , · · · , Gd|D|};
2 for each Gdk ∈ G/D do
3 for each xj ∈ Gdk do
4 Construct an UFGC (X+, B̃±,u);
5 GCSdk,u ← (X+, B̃±,u);
6 Construct a LFGC (X−, B̃±,l);
7 GCSdk,l ← (X−, B̃±,l);
8 end
9 GCSd,u ← GCSdk,u, GCSd,l ← GCSdk,l;

10 end
11 return GCSd,u and GCSd,l

Example 2. According to Definition 4, the four interval-intent
fuzzy granular concept spaces in Table I can be derived as
follows:
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GCSd1,u = {({x1, x3, x6}, {[0.32, 0.48], [0.63, 0.83]}),
({x2, x3, x5, x6}, {[0.36, 0.48], [0.52, 0.83]}),
({x3}, {[0.48, 0.48], [0.83, 0.83]}),
({x3, x4, x5, x6}, {[0.38, 0.48], [0.48, 0.83]}),
({x3, x5, x6}, {[0.4, 0.48], [0.6, 0.83]}),
({x3, x6}, {[0.41, 0.48], [0.76, 0.83]})}

GCSd1,l = {({x1}, {[0.32, 0.32], [0.63, 0.63]}),
({x2}, {[0.36, 0.36], [0.52, 0.52]}),
({x1, x2, x3, x4, x5, x6}, {[0.32, 0.48], [0.48, 0.83]}),
({x4}, {[0.38, 0.38], [0.48, 0.48]}),
({x2, x4, x5}, {[0.36, 0.4], [0.48, 0.6]}),
({x1, x2, x4, x5, x6}, {[0.32, 0.41], [0.48, 0.76]})}

GCSd2,u = {({x7}, {[0.8, 0.8], [0.7, 0.7]}),
({x8}, {[0.81, 0.81], [0.66, 0.66]}),
({x7, x8, x9}, {[0.77, 0.81], [0.6, 0.7]}),
({x10}, {[0.91, 0.91], [0.55, 0.55]}),
({x7, x8, x9, x10, x11}, {[0.72, 0.91], [0.45, 0.7]}),
({x7, x8, x12}, {[0.58, 0.81], [0.61, 0.7]})}

GCSd2,l = {({x7, x9, x11, x12}, {[0.58, 0.8], [0.45, 0.7]}),
({x8, x9, x11, x12}, {[0.58, 0.81], [0.45, 0.66]}),
({x9, x11}, {[0.72, 0.77], [0.45, 0.6]}),
({x10, x11}, {[0.72, 0.91], [0.45, 0.55]}),
({x11}, {[0.72, 0.72], [0.45, 0.45]}),
({x12}, {[0.58, 0.58], [0.61, 0.61]})}

B. Concept Re-cognition Process

Concept cognition is a process of starting from an object
to find attributes and returning to find objects again. In the
process of human cognition, there are often deviations or
inaccuracies in the first cognition. Therefore, it is necessary
to constantly update knowledge (concepts). The re-cognition
process proposed in this paper can simulate the human think-
ing process to a certain extent, and find more accurate concept
representation in complex and variable data.

Definition 5. Given the two interval-intent fuzzy concepts
(X+

j , B̃±,u
j ) = (X+

j , [B̃−,u
j , B̃+,u

j ]∀c) and (X−
j , B̃±,l

j ) =

(X−
j , [B̃−,l

j , B̃+,l
j ]∀c) induced by xj , the definition of pseudo-

intent in the re-cognition concept is as follows:

B̃±,p
j = {[B̃+,l

j (ci)− (1− er(xj)) · (B̃+,l
j (ci)− B̃−,l

j (ci)),

B̃−,u
j (ci) + er(xj) · (B̃+,u

j (ci)− B̃−,u
j (ci))]|i = 1, 2, · · · , |M |}.

where er(xj) =
|X+

j |
|X+

j |+|X−
j |

.

The parameter er(xj) in the above definition is defined in
terms of the extent ratio of UFGC and LFGC. Essentially to
measure the magnitude of the fluctuation of the attribute value
based on the number of objects in the extent. For example, if

UFGC has a large number of extent, it means that for object
xj , there are more objects in the data set that are larger than
its attribute value. Therefore, in the process of re-cognition,
we give more tolerance to the larger attribute values, allowing
the larger attribute values to be more retained.

The concept re-cognition process is divided into the follow-
ing steps:

1. Find the two interval-intent fuzzy concepts induced by
xj , and compute the extent ratio er(xj).

2. Get the pseudo-intent B̃±,p
j of the re-cognition concept

by Definition 5.
3. The pseudo-intent is used as the clue in the process of re-

cognition, and the new concept (H±(B±,p
j ), F±H±(B±,p

j ))
is obtained by Definition 3.

4. Repeat the above steps until every object in the space is
re-recognized.

We call the concept newly learned from xj the re-
cognition concept, which denoted by (Xr

j , B̃
±,r
j ) =

(H±(B±,p
j ), F±H±(B±,p

j )). And newly obtained concept
space a re-cognition concept space, denoted by RCS. Ac-
cording to Definition 3, it is easy to prove that the re-
cognition concept is also an interval-intent fuzzy concept. At
this time, the intent of the re-cognition concept is a subset
of the pseudo-intent generated in the cognitive process, and
the concept is more accurately depicted. We call other objects
other than the primary original object in the extent of the
re-cognition concept as approximate objects, and they have
higher similarity with the original object.

Algorithm 2: Concept re-cognition process

Input: The set G/D = {Gd1 , Gd2 , · · · , Gd|D|} of
objects partitioned by labels, the set of extent
ratio ER = {er(x1), er(x2), · · · , er(x|G|)}, the
concept spaces under each decision GCSd,l

and GCSd,u.
Output: Re-cognition concept space RCS.

1 for each Gdk ∈ G/D do
2 for each xj ∈ Gdk do
3 Find the two interval-intent fuzzy concepts

(X+
j , B̃±,u

j ) = (X+
j , [B̃−,u

j , B̃+,u
j ]∀c) and

(X−
j , B̃±,l

j ) = (X−
j , [B̃−,l

j , B̃+,l
j ]∀c) induced

by xj in GCSdk,u and GCSdk,l;
4 B̃±,p

j = {[B̃+,l
j (ci)− (1− er(xj) · (B̃+,l

j (ci)−
B̃−,l

j (ci)), B̃
−,u
j (ci) + er(xj) · (B̃+,u

j (ci)−
B̃−,u

j (ci))]|i = 1, 2, · · · , |M |};
5 Get a re-cognition concept

(Xr
j , B̃

±,r
j ) = (H±(B±,p

j ), F±H±(B±,p
j ))

according to the mapping in Definition 3;
6 RCSdk ← (Xr

j , B̃
±,r
j )

7 end
8 RCS ← RCSdk

9 end
10 return RCS

Example 3. Object x5 is taken as an example to illus-
trate the process of concept re-cognition. First, we ob-
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tain the ratio er(x5) = |{x3,x5,x6}|
|{x3,x5,x6}|+|{x2,x4,x5}| = 0.5

with the number of extent of the upper-interval-intent
fuzzy granular concept and lower-interval-intent fuzzy gran-
ular concept. According to Definition 5, the pseudo-intent
is B̃±,p

5 = {[0.38, 0.44], [0.54, 0.715]}. The re-cognition
concept (Xr

5 , B̃
±,r
5 ) = (H±(B±,p

5 ), F±H±(B±,p
5 )) =

({x5}, {[0.4, 0.4], [0.6, 0.6]}) is learned from the learning op-
erator in Definition 3. After re-cognition of each object, we
have the following re-cognition concept space:

RCSd1 = {({x1, x6}, {[0.32, 0.41], [0.63, 0.76]}),
({x2, x5, x6}, {[0.36, 0.41], [0.52, 0.76]}),
({x3, x5, x6}, {[0.4, 0.48], [0.6, 0.83]}),
({x4, x5, x6}, {[0.38, 0.41], [0.48, 0.76]}),
({x5}, {[0.4, 0.4], [0.6, 0.6]}),
({x5, x6}, {[0.4, 0.41], [0.6, 0.76]})},

RCSd2 = {({x7, x9}, {[0.77, 0.8], [0.6, 0.7]}),
({x8, x9}, {[0.77, 0.81], [0.6, 0.66]}),
({x9}, {[0.77, 0.77], [0.6, 0.6]}),
({x10}, {[0.91, 0.91], [0.55, 0.55]}),
({x9, x11}, {[0.72, 0.77], [0.45, 0.6]}),
({x12}, {[0.58, 0.58], [0.61, 0.61]})}.

The process of concept re-cognition can be considered as
the endeavor to identify objects based on their attributes,
which essentially involves a rational expansion of the range of
attribute values associated with a single object. In comparison
to the preceding two interval granular concepts, re-cognition
concept possesses the ability to mitigate the impact of noise
to some extent. Simultaneously, it aligns with humans’ second
cognitive logic that individuals tend to associate with others
who share similar characteristics.

C. Concept Clustering

In the previous section, we explored the re-cognition
concepts which are typically numerous in quantity. Human
memory is limited and can only retain the more significant
concepts, necessitating compression and prioritization. During
concept learning, a multitude of similar concepts with slight
variations in attribute values may arise. However, precision at
this level is not always essential; for instance, identifying a
duck in a river without specifying its exact species suffices. In
other words, people often treat such highly similar entities as
belonging to the same concept. Building upon these notions,
we introduce concept clustering into our proposed model.

Concept clustering is different from unsupervised cluster-
ing in machine learning. It aims to aggregate two or more
supervised concepts into pseudo-concepts and reduce the size
of concept space to improve classification efficiency. Concept
clustering can be viewed as a compressed processing technique
for labeled concepts.

1) Clustering Related Parameters:

Definition 6. Let (Xi, B̃
±
i ) and (Xj , B̃

±
j ) be two interval-

intent fuzzy concepts, then the extent similarity is defined as
follows:

δ(Xi, Xj) =
|Xi

⋂
Xj |

|Xi

⋃
Xj |

. (1)

Definition 7. Let (Xi, B̃
±
i ) and (Xj , B̃

±
j ) be two interval-

intent fuzzy concepts, then the intent similarity is defined as
follows:

φ(B̃±
i , B̃±

j ) = 1−∑
c

(∣∣∣B̃−
i (c)− B̃−

j (c)
∣∣∣+ ∣∣∣B̃+

i (c)− B̃+
j (c)

∣∣∣)
2 |M |+

∑
c

(∣∣∣B̃+
i (c)− B̃−

i (c)
∣∣∣+ ∣∣∣B̃+

j (c)− B̃−
j (c)

∣∣∣) ,
(2)

where |M | represents the number of attributes.

Property 3. For two concepts (Xi, B̃
±
i ) and (Xj , B̃

±
j ), we

have:
(1) 0 ≤ δ(Xi, Xj) ≤ 1
(2) 0 ≤ φ(B̃±

i , B̃±
j ) ≤ 1

Proof. (1) It is immediate from Definition 6.
(2) Obviously, 0 ≤

∣∣∣B̃−
i (c)− B̃−

j (c)
∣∣∣ ≤ 1,

0 ≤
∣∣∣B̃+

i (c)− B̃+
j (c)

∣∣∣ ≤ 1. We get 0 ≤∑
c

(∣∣∣B̃−
i (c)− B̃−

j (c)
∣∣∣+ ∣∣∣B̃+

i (c)− B̃+
j (c)

∣∣∣) ≤ 2 · |M |. Then

we have 0 < φ(B̃±
i , B̃±

j ) ≤ 1. Notice that φ(B̃±
i , B̃±

j ) = 0

if and only if for ∀c ∈ M , B̃+
i (c) = B̃−

i (c) = 0 and
B̃+

j (c) = B̃−
j (c) = 1 (or the two sets of values are reversed).

Thus, 0 ≤ φ(B̃±
i , B̃±

j ) ≤ 1.

According to Definition 7, a higher degree of intent sim-
ilarity indicates a greater level of similarity between two
concepts. It is reasonable to assess this based on the distance
between the boundaries of the concepts and the size of
their respective intervals. A larger interval suggests that a
concept has extensive intent coverage and is distinct from other
concepts, thus indicating a high degree of similarity. However,
existing concept-cognitive learning [34], [40] approaches only
consider extent similarity (as defined in Definition 6) for
clustering, overlooking the significance of attribute similarity.
This approach fails to recognize that concepts with overlapping
extents may not necessarily share similar intents. For instance,
when making decisions about watermelons, large and small
watermelons’ concept extent are likely to intersect due to their
inclusion relationship in terms of size. However, clustering
them into the same concept would be misleading. Therefore,
it is crucial to consider intent relationships when defining
similarities.

2) Clustering Process: Based on the similarity of intent,
this study integrates two or more concepts with high intent
similarity to generate a novel concept. We refer to this new
concept as a pseudo-concept, as its extent and intent are not
strictly bound by the proposed mapping relationship. Within
the concept space, we partition the blocks based on intent sim-
ilarity. Concepts exhibiting an intent similarity exceeding the
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Algorithm 3: Concept clustering
Input: Re-cognition concept space

RCS = {RCSd1 , RCSd2 , · · · , RCSd|D|} and
parameter γ.

Output: The pseudo-concept space
PCγ = {PCd1

γ , PCd2
γ , · · · , PC

d|D|
γ }.

1 for RCSdk ∈ RCS do
2 PCdk

γ = ∅;
3 for a concept (Xr

i , B̃
±,r
i ) ∈ RCSdk do

4 Cdk
i = ∅;

5 Calculate the intent similarity between each
concept by Definition 7;

6 Find the concept (Xr
j , B̃

±,r
j ) ∈ RCSdk with

the most intent similarity;
7 if φ(B̃±,r

i , B̃±,r
j ) > γ then

8 Cdk
i ← (Xr

j , B̃
±,r
j )

9 end
10 if RCSdk = ∅ then
11 End the clustering process under this label;
12 end
13 Cluster Cdk

i as pseudo-concept (Xp
i , B̃

±,p
i )

according to definition 8;
14 PCdk

γ ← (Xp
i , B̃

±,p
i );

15 Remove all the clustered concepts from
RCSdk ;

16 end
17 PCγ ← PCdk

γ ;
18 end
19 return PCγ

threshold γ are grouped together and referred to as cluster C. It
is evident that the re-cognition conceptual space comprises nu-
merous clusters denoted by RCSdk = {Cdk

1 , Cdk
2 , · · · , Cdk

n }.

Definition 8. For a cluster origin (Xr
i1
, B̃±,r

i1
) and all of its

intent similarity in order from the largest to the smallest con-
cept (Xr

i2
, B̃±,r

i2
), (Xr

i3
, B̃±,r

i3
), · · · , (Xr

im
, B̃±,r

im
) ∈ Cdk

i , the
extent and intent of the pseudo-concept (Xp

i , B̃
±,p
i ) derived

from the cluster Cdk
i are defined as follows:

Xp
i = Xr

i1 ∪Xr
i2 ∪ · · · ∪Xr

im ,

B̃±,p
i (c) =

1

2m−1
(B̃±,r

i1
(c) + B̃±,r

i2
(c) + 2 · B̃±,r

i3
(c)+

· · ·+ 2m−2 · B̃±,r
im

(c)), c ∈M.

The pseudo-concept intent in definition 8 shows that the
re-cognition concept that is clustered first will have more
influence on the pseudo-concept. Therefore, we prioritize
the participation of concepts with higher intent similarity in
clustering, while concepts with lower intent similarity are
involved later. Using pseudo-concepts can effectively reduce
the size of the concept space. At the same time, the limitation
of individual cognition is eliminated to a certain extent.
Algorithm 3 shows the concrete process of concept clustering.

D. Object Classification Based on Intent Similarity

Since the new object to be classified will not be in the
extent of any existing concept, the label judgment can only be
made by the distance between the intent. Intent similarity in
definition 7 can be seen as a distance measure. The object to
be classified is regarded as an interval-intent fuzzy concept,
whose interval-intent is composed of a single value of the
membership degree of each attribute. Therefore, the formula
in definition 7 is deformed to obtain the following distance
definition:

Definition 9. Given a concept ({xnew}, B̃±
new) to be classified

derived from a new object xnew, its similarity distance with
the pseudo-concept (Xp, B̃±,p) is defined as follows:

S(xnew, X
p)

=

∑
c

(∣∣∣B̃−
new(c)− B̃−,p

j (c)
∣∣∣+ ∣∣∣B̃+

new(c)− B̃+,p
j (c)

∣∣∣)
2 · |M |+

∑
c

(∣∣∣B̃+,p
j (c)− B̃−,p

j (c)
∣∣∣) ,

(3)

where |M | represents the number of attributes.

It can be seen that similarity distance and intent similarity
are inversely proportional. The greater the intent similarity,
the smaller the similarity distance. We obtain the pseudo-
concept of the minimum similarity distance to determine the
decision of the new object. The specific steps are represented
in Algorithm 4.

Algorithm 4: New object label prediction
Input: The pseudo-concept space PCγ and new object

∆x in the test set.
Output: The predict label dm of ∆x.

1 H = ∅;
2 for each PCdk

γ ∈ PCγ do
3 for each (Xp, B̃±,p) ∈ PCdk

γ do
4 Compute S(∆x,Xp) according to fomula (3);
5 H ← S(∆x,Xp)
6 end
7 end
8 Get the minimum distance s = min(H) and

corresponding minimum distance concept;
9 Find the label dm for the minimum distance concept;

10 return Predict label dm

E. Overall Procedure and Complexity Analysis

The overall flowchart of IFCRL is shown in Fig. 1. The
model consists of three stages: 1) concept-cognitive process;
2) concept re-cognition process; 3) concept clustering and
classification. For a fuzzy formal context with three deci-
sions, the first concept learning is performed according to the
mapping proposed in Definition 2, and two related concept
spaces are obtained. Then, for each object, the extent ratio of
their concepts in different concept spaces is calculated, so as
to obtain the pseudo-intent used for re-cognition according
to Definition 5. The pseudo-intent is learned to obtain the
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Fig. 1. General flow chart of IFCRL (1st and 2rd in the legend represent the concept-cognitive process and the concept re-cognition process, respectively).

re-cognition concept. Finally, the pseudo-concept space is
obtained by concept clustering. According to Formula 3, the
nearest concept to the newly added object is obtained to
determine the label.

According to the aforementioned discussion, the time com-
plexity of Algorithm 1 for constructing the initial concept
space is O(|G|2|M |). The time complexity of re-cognition
process is related to the number of objects. In the process of
re-cognition of each object, it does not need to go through all
the objects again, only need to search the objects in the extent
union of UFGC and LFGC derived from the corresponding
object. Assuming that the average number of objects in the
extent union of two concepts (UFGC and LFGC) in two
concept spaces is a, the time complexity of Algorithm 2 is
O(a|G||M |). In the process of clustering, the complexity of
computing intent similarity is O(|M |). Concepts that have
already been clustered will not participate in the subsequent
clustering process, so the number of concepts that need to be
considered for clustering concepts will be gradually reduced
each time. The choice of threshold γ is positively related to
the complexity: a higher threshold will make the space more
refined, thus increasing the total number of comparisons for
intent similarity. The best case is that every concept in the
space is clustered together at once, and the worst case is
that no concept can be clustered with the others. Therefore,
the time complexities of Algorithm 3 in the best and worst
cases are O(|G||M |), O(|G|2|M |), respectively. Obviously,
when predicting the label, it is necessary to compare the
new object with each pseudo-concepts. Therefore, Algorithm
4 takes O(|PCγ ||M |). The overall complexity of IFCRL is
O(|G|2|M |).

TABLE II
DETAILS OF THE EXPERIMENTAL DATASETS.

ID Dataset Object Attribute Class

1 Appenditicis 100 7 2
2 Parkinsons 197 22 2
3 Wine 198 33 3
4 Wpbc 200 33 2
5 Glass 214 9 6
6 Heart 270 13 2
7 Tic tac toe 958 9 2
8 Wine red 1518 11 3
9 Segmentation 2310 19 7

10 Phoneme 5404 5 2
11 Mushroom 8124 22 2
12 Magic 19020 10 2

IV. EXPERIMENTS

In this section, we examine the rationality and effectiveness
of the IFCRL algorithm proposed in a fuzzy context. We
compare its classification accuracy with 14 algorithms and
verify the effectiveness of the re-cognition method through ab-
lation experiments. Additionally, we assess the importance of
clustering by evaluating the rate at which space is compressed,
and further explore how parameter γ affects clustering. The
datasets utilized in this experiment are sourced from UCI and
KEEL, with detailed information provided in Table II.

A. Experimental Setting

In order to adapt to the fuzzy environment in this paper, all
datasets are normalized according to the following formula:

Ĩ(xi, cj) =
v(xi, cj)−min(v(cj))

max(v(cj))−min(v(cj))
(4)
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TABLE III
COMPARISON OF ACCURACY (MEAN ± STANDARD DEVIATION%) AMONG IFCRL AND SEVEN CLASSIC CLASSIFICATION ALGORITHMS.

ID γ IFCRL KNN SVM DT NB LR LDA Bagging

1 0.99 90.50 ± 4.71 82.00 ± 4.00 84.50 ± 5.22 77.50 ± 6.42 83.50 ± 5.02 83.50 ± 7.08 84.50 ± 6.50 78.50 ± 5.50
2 1.00 94.87 ± 3.44 90.77 ± 4.47 86.15 ± 2.61 84.10 ± 4.70 70.51 ± 4.62 82.82 ± 3.25 87.18 ± 3.24 79.74 ± 8.22
3 0.92 97.94 ± 1.88 95.58 ± 2.37 95.59 ± 3.01 90.29 ± 4.37 97.65 ± 2.88 96.18 ± 3.49 97.65 ± 2.88 93.82 ± 3.59
4 0.96 78.00 ± 5.67 75.25 ± 6.84 77.75 ± 7.20 69.75 ± 5.75 67.75 ± 6.56 78.00 ± 7.42 76.50 ± 6.91 64.75 ± 7.25
5 1.00 73.49 ± 5.00 66.98 ± 8.43 58.37 ± 7.16 66.51 ± 5.52 47.67 ± 8.27 54.88 ± 5.81 61.16 ± 3.46 24.42 ± 5.01
6 0.92 85.37 ± 4.17 80.83 ± 5.65 82.92 ± 4.82 72.08 ± 5.03 83.95 ± 5.67 82.50 ± 5.53 81.04 ± 3.11 72.41 ± 5.94
7 0.89 100.00 ± 0.00 100.00 ± 0.00 97.97 ± 0.59 94.64 ± 1.38 70.21 ± 1.85 95.10 ± 0.94 97.97 ± 0.59 90.83 ± 2.56
8 1.00 64.84 ± 3.52 61.87 ± 2.08 60.82 ± 2.66 66.41 ± 2.75 60.39 ± 2.64 62.43 ± 2.88 63.72 ± 2.39 52.11 ± 2.41
9 0.99 95.86 ± 1.19 94.55 ± 1.45 91.98 ± 1.42 96.24 ± 0.77 70.71 ± 1.60 90.45 ± 1.35 89.33 ± 1.59 85.79 ± 1.86

10 1.00 85.03 ± 0.45 87.75 ± 1.24 77.01 ± 1.28 87.20 ± 0.85 76.04 ± 1.39 75.04 ± 1.04 75.44 ± 0.71 72.53 ± 1.05
11 0.98 100.00 ± 0.00 99.98 ± 0.03 94.83 ± 1.13 100.00 ± 0.00 91.72 ± 0.31 94.70 ± 0.26 94.39 ± 0.34 93.67 ± 0.63
12 0.99 84.34 ± 0.69 82.92 ± 0.49 79.35 ± 0.57 81.31 ± 0.58 72.62 ± 0.52 79.07 ± 0.35 78.61 ± 0.56 77.83 ± 0.35

Average 87.5200 84.8733 82.2700 82.1692 74.3933 81.2225 82.2908 73.8667

TABLE IV
COMPARISON OF ACCURACY (MEAN ± STANDARD DEVIATION%) AMONG IFCRL AND SEVEN FUZZY-BASED CLASSIFICATION ALGORITHMS.

ID γ IFCRL FCLM FRNN PFKNN GAFuzzyKNN IF-KNN CFKNN FuzzyKNN

1 0.99 90.50 ± 4.71 85.00 ± 6.12 76.00 ± 7.00 84.50 ± 4.15 84.50 ± 5.22 87.00 ± 5.57 72.00 ± 12.08 84.00 ± 7.68
2 1.00 94.87 ± 3.44 94.62 ± 3.53 76.67 ± 4.36 73.08 ± 6.90 89.23 ± 3.94 93.33 ± 2.05 88.72 ± 6.90 90.77 ± 5.15
3 0.92 97.94 ± 1.88 96.47 ± 2.20 95.88 ± 2.35 93.82 ± 3.59 93.53 ± 3.67 96.18 ± 3.96 94.71 ± 3.90 95.59 ± 2.71
4 0.96 78.00 ± 5.65 70.00 ± 6.80 73.00 ± 8.05 69.25 ± 6.62 72.75 ± 4.10 75.00 ± 7.83 56.50 ± 8.89 74.50 ± 7.57
5 1.00 73.49 ± 5.00 67.44 ± 3.82 53.26 ± 8.02 41.86 ± 5.60 61.40 ± 8.20 65.58 ± 7.77 62.79 ± 5.88 66.51 ± 4.67
6 0.92 85.37 ± 4.17 76.67 ± 3.81 80.83 ± 4.35 77.92 ± 4.08 79.58 ± 4.82 78.70 ± 4.92 70.00 ± 6.13 80.00 ± 6.19
7 0.89 100.00 ± 0.00 100.00 ± 0.00 66.61 ± 3.85 63.65 ± 2.04 99.84 ± 0.33 100.00 ± 0.00 92.29 ± 1.54 100.00 ± 0.00
8 1.00 64.84 ± 3.52 59.63 ± 1.55 56.63 ± 2.93 52.34 ± 2.33 61.15 ± 3.55 63.78 ± 2.53 56.18 ± 2.14 62.24 ± 4.44
9 0.99 95.86 ± 1.19 94.76 ± 1.28 82.86 ± 1.29 82.98 ± 0.92 93.98 ± 0.84 94.71 ± 0.77 92.57 ± 1.20 95.24 ± 0.72

10 1.00 85.03 ± 0.45 85.77 ± 1.01 70.61 ± 0.97 73.18 ± 1.41 86.93 ± 1.08 87.76 ± 1.12 82.54 ± 0.95 88.27 ± 0.63
11 0.98 100.00 ± 0.00 98.95 ± 1.02 94.09 ± 0.65 87.93 ± 0.48 100.00 ± 0.00 99.99 ± 0.02 99.95 ± 0.08 99.98 ± 0.03
12 0.99 84.34 ± 0.69 80.28 ± 0.88 64.97 ± 0.74 76.57 ± 1.05 83.04 ± 0.45 83.09 ± 0.75 76.23 ± 0.54 82.44 ± 0.41

Average 87.5200 84.1325 73.9508 73.0900 83.8275 85.4267 78.7067 84.9617
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Fig. 2. Bar chart comparison of classification accuracy.

where v(xi, cj) represents the value of xi under attribute cj
in the original dataset, min(v(cj)) and max(v(cj)) represents,
respectively, the minimum and maximum value of attribute cj
in the original data. The normalized value Ĩ(xi, cj) is regarded
as the fuzzy membership degree of object xi under cj .

In this paper, the experiment compares IFCRL with seven
classical machine learning classification algorithms (KNN
[43], SVM [44], DT [45], NB [46], LR [47], LDA [48],

Bagging [49]) and seven fuzzy-based classification algorithms
(FCLM [34], FRNN [50], PFKNN [51], GAFuzzyKNN [52],
IF-KNN [53], CFKNN [54], FuzzyKNN [55]) where FCLM
is a fuzzy concept-cognitive learning algorithm. 80 % and 20
% of each dataset serve as the training set and the test set, re-
spectively. The dataset was executed 10 times with randomized
data partitions and the results were averaged to assess each
classification method. To ensure fairness, the aforementioned
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experiments were conducted using Python 3.10 on a personal
computer equipped with an Intel(R) Core(TM) i5-10300H
CPU @ 2.50GHz and 16 GB of memory.

B. Comparative Experimental Analysis

The accuracy of classic machine learning classification al-
gorithms and the selected parameter γ by IFCRL are recorded
in Table III. The average accuracy of IFCRL on 12 datasets
is observed to be 87.52%. As depicted in Table III, it can be
observed that LR performs well on one dataset, KNN performs
well on two datasets, DT outperforms other algorithms on
three datasets, while IFCRL demonstrates superior perfor-
mance on nine datasets. Notably, IFCRL achieves the highest
accuracy for both dataset 7 and dataset 11. Additionally, it
exhibits lower standard deviation compared to other algorithms
in four datasets(Wine, Tic tac toe, Phoneme, Mushroom).

Table IV shows the comparison of classification efficiency
with fuzzy-based classification algorithm. The results show
that IFCRL performs well on eleven datasets. It shows that
we have the best classification performance and exhibits strong
generalization capabilities among the selected fuzzy classifiers.
Compared with FCLM algorithm based on fuzzy concept cog-
nitive learning, IFCRL has better classification performance.
The gap can be visualized more intuitively by creating a bar
chart, as shown in Fig. 2.

C. Ablation Experiment

The proposed re-cognition process in this paper aims to
acquire more precise knowledge. To validate the effectiveness
of re-cognition, we initially learn UFGC and LGFC separately
and conduct cognitive learning on them to obtain re-cognition
concepts (RC). The aforementioned three types of concepts are
individually tested through clustering experiments and classi-
fication accuracy assessments. In the experiment, clustering
parameter γ was set as 1.00, 0.99, and 0.95 respectively for
RC, UFGC, and LFGC which were each run ten times to
calculate the average classification accuracy. The results are
presented in Table V with the last column indicating the opti-
mal accuracy score ratio for each round of experiments. And
the experimental results demonstrate a strong resemblance
between the classification effect of RC and UFGC on certain
datasets (Wpbc, Glass, Mushroom). It can be observed that the
final composite score ratio of these three concepts is 28:19:10.
The overall impact of re-cognition is generally positive on the
classification performance of most datasets, thus rendering the
re-cognition process highly effective.

D. Theoretical Discussion and Parametric Analysis

In order to evaluate the clustering effect, the space com-
pression rate is used to characterize the reduction degree of
the spatial size after clustering, which is denoted by:

scr =
|RCS| − |PC|
|RCS|

, (5)

where |RCS| denotes the cardinality of concepts in the re-
cognition space, and |PC| denotes the cardinality of concepts

TABLE V
RE-COGNITION LEARNING ABLATION EXPERIMENT.

ID γ RC UFGC LFGC Score

1
1.00 91.50 ± 6.34 90.00 ± 5.47 89.50 ± 4.71

3:0:00.99 90.00 ± 6.32 87.50 ± 6.42 87.50 ± 7.15
0.95 89.00 ± 5.39 88.00 ± 6.00 87.00 ± 6.00

2
1.00 94.61 ± 2.12 94.61 ± 2.12 95.12 ± 1.38

0:0:30.99 92.30 ± 5.25 92.30 ± 5.25 93.07 ± 5.38
0.95 87.69 ± 3.20 87.69 ± 3.20 87.95 ± 3.98

3
1.00 95.88 ± 3.27 95.58 ± 3.28 95.58 ± 3.28

3:2:10.99 97.06 ± 1.86 97.06 ± 1.86 97.06 ± 2.27
0.95 96.17 ± 3.49 96.17 ± 3.49 95.58 ± 3.17

4
1.00 76.75 ± 4.75 76.75 ± 4.75 72.00 ± 6.10

3:3:00.99 77.75 ± 7.02 77.75 ± 7.02 69.00 ± 6.53
0.95 78.00 ± 5.67 78.00 ± 5.67 66.49 ± 5.38

5
1.00 69.30 ± 3.86 69.30 ± 3.86 69.30 ± 3.86

3:3:30.99 71.16 ± 4.43 71.16 ± 4.43 71.16 ± 4.43
0.95 58.83 ± 10.13 58.83 ± 10.13 58.83 ± 10.13

6
1.00 82.22 ± 4.98 82.22 ± 4.98 80.92 ± 6.85

2:2:10.99 78.89 ± 3.87 78.89 ± 3.87 79.44 ± 2.22
0.95 80.37 ± 5.69 80.37 ± 5.69 80.19 ± 4.30

7
1.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

3:2:20.99 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
0.95 100.00 ± 0.00 99.90 ± 0.31 99.90 ± 0.31

8
1.00 64.47 ± 1.35 62.28 ± 1.35 61.95 ± 0.94

3:0:00.99 63.92 ± 0.86 63.59 ± 1.78 60.20 ± 0.97
0.95 59.32 ± 0.94 57.64 ± 0.82 57.01 ± 1.02

9
1.00 95.44 ± 1.07 94.20 ± 0.88 92.62 ± 0.70

3:0:00.99 96.35 ± 0.40 96.11 ± 0.62 93.70 ± 0.96
0.95 88.25 ± 1.46 87.86 ± 0.19 86.98 ± 1.48

10
1.00 84.21 ± 1.15 88.47 ± 0.43 77.06 ± 2.11

1:2:00.99 82.91 ± 0.68 87.29 ± 1.49 75.67 ± 2.81
0.95 80.20 ± 0.63 79.12 ± 1.20 74.56 ± 3.09

11
1.00 100.00 ± 0.00 100.00 ± 0.00 99.87 ± 0.23

3:3:00.99 100.00 ± 0.00 100.00 ± 0.00 99.81 ± 0.25
0.95 100.00 ± 0.00 100.00 ± 0.00 99.79 ± 0.30

12
1.00 83.51 ± 0.66 83.86 ± 0.74 80.39 ± 0.90

1:2:00.99 84.17 ± 0.61 83.68 ± 0.60 80.76 ± 0.83
0.95 83.29 ± 0.77 83.45 ± 0.43 80.11 ± 1.01
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Fig. 3. The relationship between the space compression rate and the parameter
γ on 12 datasets.

in the clustered space. The purpose of concept clustering is
to reduce the concept space. Fig. 3 shows the relationship be-
tween the space compression rate and parameter γ. Obviously,
the relationship between the two is inversely proportional. The
smaller the γ, the greater the space compression rate. For
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TABLE VI
RANKING OF THE FOURTEEN CLASSIFICATION ALGORITHMS.

ID IFCRL KNN SVM DT NB LR LDA Bagging FCLM FRNN PFKNN GAFuzzyKNN IF-KNN CFKN FuzzyKNN

1 1.0 10.0 4.5 12.0 8.5 8.5 4.5 11.0 12.0 13.0 4.5 4.5 2.0 14.0 7.0
2 1.0 4.5 9.0 10.0 15.0 11.0 8.0 12.0 2.0 13.0 14.0 6.0 3.0 7.0 4.5
3 1.0 10.0 8.5 15.0 2.5 5.5 2.5 12.5 4.0 7.0 12.5 14.0 5.5 11.0 8.5
4 1.5 5.0 3.0 10.0 12.0 1.5 4.0 13.0 10.0 8.0 11.0 9.0 6.0 14.0 7.0
5 1.0 2.0 9.0 3.5 12.0 10.0 8.0 14.0 2.0 11.0 13.0 7.0 5.0 6.0 3.5
6 1.0 6.5 3.0 13.0 2.0 4.0 5.0 12.0 12.0 6.5 11.0 9.0 10.0 14.0 8.0
7 3.0 3.0 7.5 10.0 13.0 9.0 7.5 12.0 3.0 14.0 15.0 6.0 3.0 11.0 3.0
8 2.0 7.0 9.0 1.0 10.0 5.0 4.0 14.0 11.0 12.0 13.0 8.0 3.0 11.0 6.0
9 2.0 6.0 9.0 1.0 15.0 10.0 11.0 12.0 4.0 14.0 13.0 7.0 5.0 8.0 3.0
10 6.0 3.0 8.0 4.0 9.0 11.0 10.0 13.0 6.0 14.0 12.0 5.0 2.0 7.0 1.0
11 2.0 5.5 8.0 2.0 13.0 9.0 10.0 12.0 8.0 11.0 14.0 2.0 4.0 7.0 5.5
12 1.0 4.0 7.0 6.0 13.0 8.0 9.0 10.0 7.0 14.0 11.0 3.0 2.0 12.0 5.0

Average 1.96 4.96 8.00 7.00 11.21 8.13 7.71 12.42 6.75 10.96 13.29 6.88 4.58 10.83 5.33

datasets with a small number of objects, the space compression
rate decreases evenly with the increase of γ. For datasets
with a large number of objects, the image drops off a cliff
when γ ∈ [0.95, 1]. The image of dataset 7 plummets around
γ = 0.88, indicating that the intent similarity between con-
cepts is relatively concentrated. Therefore, concept clustering
is reasonable and efficient.
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Fig. 4. The relationship between the parameter γ and classification accuracy
of IFCRL on 12 datasets.

Combined with algorithm 3, we know that the classification
accuracy of IFCRL is closely related to parameter γ. There-
fore, it is necessary to discuss the effect of parameter γ on
classification accuracy. For different datasets, it is necessary
to choose the appropriate threshold γ in order to achieve
the optimal accuracy. According to Fig. 3, when γ = 0.81,
the compression ratio in space is all higher than 80%, and
some even reach 95%. Thus the discussion of the parameter
γ is in the range [0.81,1]. We set the step size to 0.01
and test the parameter within the range [0.81,1], that is,
γ ∈ {0.81, 0.82, · · · , 1}. And for the same parameter, 10
experiments were conducted and the average accuracy was
calculated. The specific change trend is shown in Fig. 4.
We can observe that most classification accuracy presents a
gradual upward trend, and individual data sets have a state of
first increase and then decrease. The validity of clustering is
substantiated to a certain extent.

E. Statistical Significance Analysis

The Friedman test is a rank-based statistical method used to
determine whether there are significant differences in the aver-
age performance of multiple models across multiple datasets.
The accuracy of all classification algorithms on the 12 datasets
is ranked and represented in Table VI. The Friedman statistic
is calculated as follows:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

∼ F (k − 1,(k − 1)(N − 1)), (6)

where χ2
F = 12N

k(k+1) (
k∑

i=1

R2
i −

k(k+1)2

4 ), k and N are the

number of different algorithms and datasets, respectively.

Ri =
1
N

N∑
j=1

rij indicates the average rank of i-th algorithm on

all the datasets, and rij indicates the rank of i-th algorithm on
j-th dataset. We assume that there is no significant difference
between all algorithms, and if FF > F (k−1,(k−1)(N −1))
then reject the null hypothesis. According to the number of
datasets and the number of algorithms in this paper, χ2

F =
68.93 is obtained. We plug this into formula (6) to obtain
FF = 8.71 > 1.79 = F (13, 143) in α = 0.05. Therefore,
the null hypothesis does not hold and there is a significant
difference between all algorithms.

The Friedman test can only be used to determine whether
there is a significant difference between the measurements
of multiple models, but it cannot know whether there is
a difference between any two models, which is what the
Nimenyi test aims to solve. The critical range CD formula for
the difference between the average order values is calculated
from the Nemenyi test as follows:

CD = qα

√
k(k + 1)

6N
, (7)

where qα is the critical value corresponding to the significance
level, k and N are the number of different algorithms and
datasets, respectively. In this paper, qα is determined to be
3.383 based on the degrees of freedom and significance level
of the test. We plot the average ranking and critical difference
(CD) of the algorithms in Fig. 5. The results indicate that
when α = 0.05, there are statistically significant distinctions
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between IFCRL and CFKNN as well as the other four classi-
fication methods.

Fig. 5. CD plot of all classification methods used in the experiment.

V. CONCLUSION

In this paper, we propose a novel interval-intent fuzzy
concept re-cognition learning model called IFCRL. Firstly,
we provide the definition of an interval-intent fuzzy concept,
where the intent of classical fuzzy concepts is transformed
from single-valued to interval-valued form. Based on this, we
introduce a concept re-cognition process that keeps the value
of the property within a reasonable range. This process serves
as a secondary learning mechanism on the data and effectively
mitigates the impact of extreme value noise. Furthermore, the
introduction of concept clustering based on intent similarity
not only simplifies the concept space but also overcomes
the cognitive limitations encountered in previous clustering
processes. Finally, extensive experiments are conducted on 12
datasets from UCI and KEEL databases to demonstrate our
method’s advanced classification ability.

This work presents a novel perspective on concept learn-
ing, expanding the boundaries of cognitive understanding
beyond unidirectional limitations and providing more precise
descriptions of cognitive outcomes. The issue of the high
similarity between the RC and UFGC, however, still needs
to be addressed. It is imperative to explore a more rational re-
cognition process in order to tackle the problem of ineffective
re-cognition. And it is important to acknowledge that human
cognition is an intricate process, which goes beyond simple set
intersection operations when considering secondary or multi-
ple cognitions. Additionally, there are deeper issues such as
conceptual reasoning, associative memory, selective forgetting,
etc., that warrant further investigation in future research.
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