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With the development of Rough Set Theory (RST), many improved theories based on RST have 
emerged. Some of these theories have been applied in the field of feature selection, significantly 
improving its efficiency. However, they have not yet been widely used in multi-source information 
domains. This paper proposes a multi-source information fusion method based on Granular

Rectangular Neighborhood Rough Set (GRNRS) and graph theory. First, an improved algorithm 
based on GRNRS is proposed to evaluate the contribution of each information source to a 
classification task under a specific attribute. In this process, we provided rigorous theoretical 
proofs for the concepts and mechanisms used in the improved GRNRS. Meanwhile, the Pearson 
Correlation Coefficient (PCC) is used to assess the linear relationship between information sources. 
Then, by integrating the results of the improved GRNRS algorithm and PCC, the adjacency matrix 
of a graph is constructed. Finally, the preference value of each information source under a specific 
attribute is calculated based on the adjacency matrix. Information fusion under a specific attribute 
is achieved by selecting the information source with the highest preference value. Extensive 
experiments are conducted to analyze the impact of the algorithm’s parameters on its final 
performance. Meanwhile, our method is compared with seven other information fusion algorithms 
using three metrics: classification accuracy, Average Quality (AQ), and runtime. Friedman and 
Nemenyi tests are conducted on the comparison results under the classification accuracy and AQ 
metrics, demonstrating that there are significant differences among the algorithms. The results 
demonstrate that the proposed algorithm is both time-e�icient and effective.

1. Introduction

The advent of the information age has highlighted the increasing significance of data in daily life. With the development of 
the internet, information transmission has become faster, and the channels for obtaining information have become more diverse. 
Consequently, extracting useful information from vast sources has become a critical challenge. In the late 1970s, the concept of 
multi-source information fusion emerged. This concept refers to the process of integrating information from multiple sources into 
a single, unified dataset. Following its introduction, numerous theories and algorithms have been developed. After 2010, research 
in this field began to grow exponentially, and today, multi-source information fusion has become a highly popular research area. 
Multi-source information fusion has applications in various fields, such as health [21][20], economy [11][35], social networks [5][7], 
pattern recognition [43][17][29] and so on. Next, we will review the relevant theories in this field in detail.
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Some classical fusion strategies used by multi-source information fusion are listed below. The first category includes probability 
model-based fusion methods. This type of method primarily evaluates the quality of each information source through probabilistic 
models. Most approaches use Bayesian probabilistic models for the evaluation. For example, Cheng [4] proposed a multi-source data 
fusion method based on Bayesian inference (BIF), which constructs a likelihood function using two error models. The second category 
consists of methods based on Belief Function Theory (BFT). Two classic examples of this theory are Dempster-Shafer Theory (DST) and 
Dezert-Smarandache Theory (DSmT). For example, Fei [9] has established a thorough assessment indicator system and proposed an 
innovative evaluation framework. This framework incorporates a BPA model, a new BPA generation method for observed values, and 
sophisticated hierarchical weighting and fusion techniques. Yaghoubi [32] introduces a novel metric as the basis for a preprocessing 
technique designed to assess and reduce the conflict among the evidences. Dong [6] develops a new sensor fusion strategy for HAR 
in BSNs using DSmT, which significantly enhances recognition accuracy. Boumediene [2] presents a DSmT-based evidential data 
association method that highlights crucial information and filters out unreliable data. This kind of method also includes [8][13]. Some 
methods are based on the Fuzzy Set Theory (FST). FST breaks through the binary limitation of belonging or not belonging in classical 
set theory. In this framework, an element can belong to a set with a certain probability, which greatly enhances the flexibility of the 
information source evaluation system. For example, Cai [3] constructs fuzzy similarity relations using Kullback–Leibler divergence 
and develops a fuzzy decision-making model, introducing fuzzy approximate conditional entropy and an entropy fusion model. Mao 
[15] represents the Pythagorean fuzzy set (PFS) within a belief structure framework and quantifies its uncertainty using fractal-based 
belief (FB) entropy. Zhou [42] proposes a novel approach using the Intuitive Fuzzy Cloud Model (IFCM) to generate more precise 
BPAs by comprehensively quantifying information uncertainty. There are also many information fusion algorithms based on fuzzy 
set theory (FST), such as [23][22]. The fourth kind of strategy is Rough Set Theory (RST). RST was proposed by Pawlak [16] in 1998 
and has been widely applied in the field of multi-source information fusion. Zhang [38] and Wei [26] summarize methods based on 
RST for multi-source data of different types. Zhang [37] overviews the neutrosophic fusion method based on RST.

Next, we will elaborate on the information fusion methods based on RST. In RST, various methods for generating rough sets and 
evaluating information sources using these rough sets lead to different information fusion approaches. For example, Li [12] calculates 
a threshold using the variance and mean of all sample values in the attributes, then generates a rough set based on this threshold 
and derives information entropy to achieve multi-source information fusion. With the development of RST-based information fusion 
methods, some multi-source information fusion approaches have integrated RST with other methods, significantly improving the effi
ciency of information fusion. For instance, Sang [18] applies the Fuzzy Rough Set theory for information fusion, which combines FST 
and RST. This approach improves RST in aspects such as rough set construction, equivalence class computation, and the calculation 
of upper and lower approximation sets, making it applicable to fuzzy sets and enhancing the efficiency of information fusion. There 
are more methods apply RST to information fusion task, such as [14][36][33].

With the development of RST, various improvements to the theory itself have emerged to expand its applicability and enhance its 
efficiency. Wang [25] proposes the local neighborhood rough set, which integrates neighborhood and local rough sets to effectively 
handle large-scale data with limited labels. Al-shami [1] introduce the subset neighborhood under an arbitrary binary relation and 
define corresponding approximations, accuracy, and roughness measures. Some theories have applied the improved RST to feature 
selection tasks. A Weighted Neighborhood Rough Set model is proposed by Hu [10] using weighted neighborhood relations, with a 
dependency measure to assess attribute significance and a greedy algorithm for attribute selection. To address noise sensitivity in 
neighborhood rough sets, the Weighted 𝑘-Nearest Neighborhood Rough Set model is proposed by Wang [24], incorporating class label 
standard deviation to weight neighbor samples and evaluate sample quality. There are also many papers on using rough set theory for 
feature selection tasks, such as [34][19][41]. These theories have significantly improved the efficiency of feature selection. However, 
most of the improved RST theories have not been applied to the field of information fusion. So we apply the Granular-Rectangular 
Neighborhood Rough Set (GRNRS) [28], which is one of the improvements of RST, for the field of information fusion and propose 
an optimization method based on GRNRS. Considering that most information fusion algorithms do not account for the relationships 
between different information sources, we introduce correlation coefficients to evaluate the relationships among them. To obtain a 
more accurate assessment of the relationships between the quality of different information sources, we incorporate graph theory. By 
constructing a graph, we can comprehensively consider the relationships between each pair of information sources and derive the 
overall quality relationship. The contributions of this paper are listed below:

∙ We integrate RST and GRNRS theories to propose a model for evaluating the role of each information source in a classification 
task under a single attribute. First, we use a partition binary tree to generate a neighborhood set. Then, we evaluate the contribution 
of each information source to the classification task using neighborhood approximate accuracy, which can be calculated by the 
lower approximation set. In this process, we propose an improved theory based on GRNRS to enhance computational efficiency. This 
improved theory has less runtime and provides a partial reference for the information fusion in subsequent processes.

∙ We evaluate the linear correlation between two information sources using the Pearson Correlation Coefficient (PCC). Then, 
based on the results of PCC and the improved GRNRS, we construct the adjacency matrix of the graph. This approach considers both 
the contribution of each information source to the classification task and the correlation between information sources. This graph 
adjacency matrix will serve as the basis for evaluating the quality of each information source under specific attributes.

∙ To more effectively extract information from the graph adjacency matrix, we proposed a method for calculating the preference 
value vector based on graph theory. It allows us to select the information source with the highest preference value as the output 
under a specific attribute. In this process, we propose an estimation algorithm for computing the preference value, which improves 
computational efficiency while ensuring result accuracy.

∙ We conducted experiments to analyze the impact of all parameters in our proposed method on the final algorithm performance, 
as well as experiments to explore the effectiveness and time efficiency of our proposed method. Friedman and Nemenyi tests are 
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Table 1
An example of MSDIS.

𝑓 1
𝑎1

𝑓 1
𝑎2

𝑓 1
𝑎3

𝑓 1
𝑎4

𝑓 2
𝑎1

𝑓 2
𝑎2

𝑓 2
𝑎3

𝑓 2
𝑎4

𝑓 3
𝑎1

𝑓 3
𝑎2

𝑓 3
𝑎3

𝑓 3
𝑎4

𝑓𝑑

𝑥1 5.1 3.5 1.4 0.2 5.2 3.3 1.6 0.1 5.4 3.6 1 0 1 
𝑥2 4.9 3 1.4 0.2 5 3.4 1.1 0.3 5.2 2.6 1.8 0.5 1 
𝑥3 4.7 3.2 1.3 0.2 4.9 3.1 1.1 0.4 5.1 3.1 0.9 0 1 
𝑥4 7 3.2 4.7 1.4 7.2 2.9 4.7 1.3 7.1 3.4 4.4 0.9 2 
𝑥5 6.4 3.2 4.5 1.5 6 3.4 4.5 1.1 6.2 2.8 4.7 1.3 2 
𝑥6 6.9 3.1 4.9 1.5 6.8 2.6 5.3 1.5 6.5 3.1 4.9 1.9 2 
𝑥7 6.3 3.3 6 2.5 6.6 2.8 6.4 2.2 6.1 3.3 5.6 2.9 3 
𝑥8 5.8 2.7 5.1 1.9 5.9 2.5 5.4 1.6 5.4 3.1 4.9 2.1 3 
𝑥9 7.1 3 5.9 2.1 7 2.7 6 2 7.2 3.3 6.1 2 3 

conducted on the comparison results under the classification and AQ metrics, demonstrating that there are significant differences 
among the algorithm. At the same time, we conducted an in-depth analysis of the experimental results to derive conclusions regarding 
parameter selection and the advantages and disadvantages of our proposed method.

Our proposed method also has certain limitations that require further research and improvement.
∙ Our algorithm performs poorly on datasets with many attributes but few samples. To address this issue, it is necessary to improve 

the evaluation metrics for information sources within the algorithm, thereby enhancing its adaptability to such data scenarios.
∙ Our algorithm is currently limited to handling single-valued multi-source information systems. However, there are other types 

of multi-source information systems, such as interval-valued and multi-scale systems. To extend the applicability of our algorithm 
to these different types, it is necessary to modify the evaluation method for information sources, enabling the algorithm to adapt to 
various forms of multi-source data.

Next, we provide a brief introduction to the overall structure of the paper. In section 2, we review relevant knowledge on multi
source decision information systems, RST and GRNRS, PCC, and graph theory. In section 3, we propose the information fusion method 
based on GRNRS and graph theory. Additionally, we present a schematic diagram and a pseudo-algorithm of the proposed method in 
this section. In section 4, we provide details on datasets, computational hardware configurations, and experimental design, followed 
by an analysis of the experimental results. In section 5, we summarize the proposed method and the conclusions drawn from the 
experiments. We also discuss the limitations of our method and suggest directions for future research.

2. Preliminaries

In this section, we will briefly review the conception of MSDIS, granular-rectangular neighborhood rough sets and graph theory. 
At the same time, we also introduce the relationships between the conceptions and their roles in the theory we propose.

2.1. Multi-source decision information system

Before introducing MSDIS, let’s first introduce the basic unit that makes up MSDIS, which is DIS. DIS is an information system that 
records the values of various samples under different attributes. We refer to the collection of these samples as 𝑈 , and the collection 
of attributes as 𝐴. Each sample corresponds to a value under each attribute, and these values form a set of values 𝑉 . The mapping 
relationship between samples and attributes that generates the values is called 𝑓𝐴 ∶ 𝑈 ×𝐴→ 𝑉 . These elements form an IS, but the 
difference between DIS and IS is that DIS not only has an attribute set 𝐴 but also has a decision attribute 𝑑. Thus, we provide the 
mathematical definition of DIS and MSDIS.

Definition 1. 𝐷𝐼𝑆 = (𝑈,𝐴,𝑑,𝑓𝐴,𝑉𝐴,𝑓𝑑 , 𝑉𝑑 ), where 𝑈 , 𝐴, 𝑑 separately represent sample set, attribute set, decision attribute. 𝑉𝐴
represents the value set of attribute set 𝐴. 𝑉𝑑 represents the value set of decision attribute 𝑑. 𝑓𝐴 =𝑈 ×𝐴→ 𝑉𝐴 and 𝑓𝑑 =𝑈 ×𝑑→ 𝑉𝑑 . 
MSDIS is a collection of multiple DIS, representing data collected from multiple information sources for these samples. 𝑀𝑆𝐷𝐼𝑆 =
{𝐷𝐼𝑆𝑘|𝐷𝐼𝑆𝑘 = (𝑈,𝐴,𝑑,𝑓𝑘

𝐴
,𝑉 𝑘
𝐴
,𝑓𝑘
𝑑
, 𝑉 𝑘
𝑑
), 𝑘 = 1,2, ..., 𝑙}. An example of MSDIS is shown in Table 1.

2.2. Rough set theory and granular-rectangular neighborhood rough set

Rough set theory is proposed by Pawlak [16], this theory is used to measure whether an attribute column in a DIS is suitable for 
classification tasks in this paper. Mathematically, we define any subset 𝑅 of the product of the domain 𝑈 ×𝑈 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈𝑈} as a 
relation. If the relation 𝑅 satisfies the following three conditions, then 𝑅 is an equivalence relation.

∙ For any 𝑎∈𝑈 , (𝑎, 𝑎) ∈𝑅.
∙ If (𝑎, 𝑏) ∈𝑅, then (𝑏, 𝑎) ∈𝑅.
∙ If (𝑎, 𝑏) ∈𝑅 and (𝑏, 𝑐) ∈𝑅, then (𝑎, 𝑐) ∈𝑅.
For any 𝑎 ∈ 𝑈 , we define the set of all elements that are equivalent to 𝑎 as an equivalence class [𝑎]𝑅 = {𝑏 ∈ 𝑈 |(𝑎, 𝑏) ∈𝑅}. These 

equivalence classes form a partition of 𝑈 , denoted as 𝑈∕𝑅. An equivalence relation 𝑅 can form exactly one partition in 𝑈 . If the 
set 𝑋 can be represented as the union of several sets from the partition 𝑈∕𝑅, then 𝑋 is called a precise set; otherwise, it is called a 
rough set. Rough set theory is developed to address a series of issues related to rough sets.
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To define the roughness of a set 𝑋, rough set theory defines the upper approximation set and the lower approximation set. For a 
set 𝑋, the formulas for the upper and lower approximation sets under the partition 𝑈∕𝑅 are as follows:

𝑅(𝑋) = ∪{𝑌 ∈𝑈∕𝑅|𝑌 ⊆𝑋} (1)

𝑅(𝑋) = ∪{𝑌 ∈𝑈∕𝑅|𝑌 ∩𝑋 ≠ ∅}. (2)

Subsequently, we can calculate the roughness of a set using the approximation accuracy, which is defined as follows:

𝐴𝑃𝑈∕𝑅(𝑋) =
|𝑅(𝑋)|
|𝑅(𝑋)| , (3)

where |*| represent the amount of unit in the set. This accuracy lies between 0 and 1. The greater the accuracy of set 𝑋, the more 
precise the set is; Conversely, the lower the accuracy, the rougher the set is. If the accuracy of set 𝑋 is 1, then 𝑋 is called a precise 
set; Otherwise, it is called a rough set.

Next, we introduce the neighborhood rough set. This theory is an extension of rough set theory, continuing the idea of calculating 
the roughness of set 𝑋 through the upper and lower approximation sets. However, it abandons the original method of constructing a 
partition of the entire universe 𝑈 using equivalence relations, and instead introduces the concept of neighborhood. Next, we provide 
the definition of a neighborhood 𝑆𝑡 in the context of a decision information system.

Definition 2. For a 𝐷𝐼𝑆 = (𝑈,𝐴,𝑑,𝑓𝐴,𝑉𝐴,𝑓𝑑 , 𝑉𝑑 ), neighborhood set 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑡, ..., 𝑆𝑞}, where 𝑆𝑡 ⊆ 𝑈, 𝑡 = 1,2, ..., 𝑞. A neigh
borhood 𝑆𝑡 contains elements that are similar to each other within 𝑈 .

The difference between a neighborhood 𝑆𝑡 and the sets in the rough set partition 𝑈∕𝑅 is that elements within a neighborhood 
can be repeated, while in rough set theory, for any 𝑋,𝑌 ∈ 𝑈∕𝑅, there are no repeated elements between 𝑋 and 𝑌 . There are many 
different methods for generating neighborhoods, which has led to various derivative approaches in different directions.

Granular-Ball Neighborhood Rough Set (GBNRS) [27] method is one of these approaches. GBNRS uses granular balls to represent 
both upper and lower approximations, achieving a unified approach for handling both discrete and continuous data. A granular ball is 
composed of a set of sample points, with each ball having a center and radius. This method provides multi-scale learning capabilities 
and offers stronger robustness and adaptability when processing data.

However, this method can be time-consuming. To reduce the computation time, the Granular-Rectangular Neighborhood Rough 
Set (GRNRS) [28] is proposed. This method introduces a binary tree to generate neighborhoods, with the binary tree storing neigh
borhoods of different scales. By calculating the distances between nodes in the binary tree, the final neighborhood set is obtained. 
This approach not only reduces computation time but also ensures robustness and adaptability, while also providing a unified ap
proach for handling both discrete and continuous data. GRNRS method is used to determine whether each DIS in the input MSDIS is 
suitable for classification data. It will be part of evaluating the quality of a specific source. This method will be discussed in detail in 
subsection 3.1 and subsection 3.2.

2.3. Pearson correlation coefficient

To evaluate the correlation between two sources, we introduce the Pearson Correlation Coefficient (PCC). The PCC is used to 
calculate the linear correlation between two variables. Below is the definition of the PCC.

Given two variables 𝑋 and 𝑌 , the PCC is defined as the ratio of the covariance between the two variables to the product of their 
respective standard deviations, its formula is shown as follows:

𝑟 = 𝑐𝑜𝑣(𝑋,𝑌 )
𝜌𝑋𝜌𝑌

=
𝑛
∑
𝑥𝑖𝑦𝑖 −

∑
𝑥𝑖
∑
𝑦𝑖√

(𝑛
∑
𝑥2
𝑖
− (

∑
𝑥𝑖)2)

√
(𝑛
∑
𝑦2
𝑖
− (

∑
𝑦𝑖)2)

, (4)

where 𝑐𝑜𝑣(𝑋,𝑌 ) represents the covariance between 𝑋 and 𝑌 , 𝜌𝑋 and 𝜌𝑌 separately denote respective standard deviations of 𝑋 and 
𝑌 , 𝑛 is the number of samples in the variable, 𝑥𝑖 and 𝑦𝑖 separately mean the value of i-th sample in 𝑋 and 𝑌 .

The value of the PCC ranges from -1 to 1. The closer the absolute value is to 1, the stronger the linear correlation between the 
two variables. If the absolute value is 1, it indicates that the values of the two variables’ corresponding samples lie on a straight line. 
Compared with Spearman Correlation Coefficient (SCC), it can not only spend less time for discarding the procedure of calculating 
rank of every sample in the variable, but also achieve the same effect in the information fusion task. If a information source has a 
higher linear correlation with other sources in terms of a specific attribute, it means that the source can better represent the other 
sources in that attribute. Therefore, we choose the PCC as part of the evaluation of the quality of a source. The specific application 
method will be explained in detail in subsection 3.3.

2.4. Graph theory

To select the best information source based on the preference values between any two information sources, we use graph theory 
methods. In this section, we will review the graph theory.
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Definition 3. An undirected graph 𝐺 can be mathematically represented as an ordered pair < 𝑉 ,𝐸 >, where 𝑉 is the set of vertices, 
and the elements in this set are the vertices of the graph. 𝐸 is the set of edges, and the elements in this set are pairs from 𝑉 × 𝑉 , 
representing the binary relationships between vertices. If every vertex in an undirected graph 𝐺 is adjacent to all other vertices, then 
𝐺 is called a complete undirected graph. If each edge 𝑒 in the edge set 𝐸 of the graph 𝐺 has an associated weight 𝑤(𝑒), then the 
graph 𝐺 is called a weighted graph.

For a complete undirected weighted graph, it can be represented by a matrix 𝐴, where each element 𝐴[𝑖][𝑗] represents the weight of 
the edge between vertex 𝑖 and vertex 𝑗. This matrix is typically symmetric because the graph is undirected, meaning 𝐴[𝑖][𝑗] =𝐴[𝑗][𝑖]. 
In graph theory, a path is a sequence of vertices such that each adjacent pair of vertices in the sequence is connected by an edge in 
the graph. Formally, a path can be represented as: Γ = 𝑣0𝑣1𝑣2…𝑣𝑘, where for every 𝑖 = 0,1,… , 𝑘 − 1, there exists an edge (𝑣𝑖, 𝑣𝑖+1)
in the graph. The method for selecting the best source using the adjacency matrix will be explained in detail in subsection 3.4.

3. Information fusion method based on GRNRS and graph theory

In this section, we will provide a detailed introduction to the granular-rectangle neighborhood rough sets theory and its application 
in information fusion. Additionally, we will introduce the application of graph theory in information fusion.

3.1. Neighborhood set

In this subsection, we will introduce the method of generating neighborhood set using GRNRS. In MSDIS, for each attribute 𝑎 in 
every 𝐷𝐼𝑆𝑘, a neighborhood set 𝑆𝑎

𝑘
can be generated. This will be used later to evaluate the effect of each DIS under specific attribute 

𝑎 to classification task. Now given a 𝐷𝐼𝑆𝑘 ∈𝑀𝑆𝐷𝐼𝑆 and an attribute 𝑎 ∈ 𝐴, we need to firstly sort each sample 𝑢 in ascending 
order based on the value of its attribute 𝑎 under the 𝐷𝐼𝑆𝑘. After that, a partition binary tree will be generated based on the sorted 
sample set 𝑈𝑠𝑜𝑟𝑡𝑒𝑑 .

Definition 4. A partition binary tree 𝑇 𝑎
𝑘

is a special type of binary tree in which each node stores a set of elements. The root node 
stores the entire initial set 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛}, and each internal node divides its stored set into two parts. Defining the first half 𝑈𝑙
and the second half 𝑈𝑟 of the set 𝑈 as follows:

If 𝑛 is even, let 𝑛 = 2𝑚, then:

𝑈𝑙 = {𝑢𝑖 ∣ 1 ≤ 𝑖 ≤𝑚}, 𝑈𝑟 = {𝑢𝑖 ∣𝑚+ 1 ≤ 𝑖 ≤ 𝑛}. (5)

If 𝑛 is odd, let 𝑛 = 2𝑚+ 1, then:

𝑈𝑙 = {𝑢𝑖 ∣ 1 ≤ 𝑖 ≤𝑚}, 𝑈𝑟 = {𝑢𝑖 ∣𝑚+ 1 ≤ 𝑖 ≤ 𝑛}. (6)

Next, storing 𝑈𝑙 and 𝑈𝑟 in its left and right child nodes. This partitioning process is recursively applied to the child nodes until all 
leaf nodes contain only a single element. Leaf nodes store individual elements from the set and are not further subdivided.

Through Definition 4, we can generate a partition binary tree 𝑇 𝑎
𝑘

with a sorted sample set 𝑈𝑠𝑜𝑟𝑡𝑒𝑑 . The partition binary tree defined 
in Definition 4 has some properties which will be stated in Proposition 2.

Proposition 1. Any partition binary tree 𝑇 𝑎
𝑘

is a balanced binary tree, meaning that the height difference between the left and right subtrees 
of any node is no greater than 1.

Proof 1. For any node storing a set 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑛}, the set is divided into two subsets 𝑈𝑙 and 𝑈𝑟. If 𝑛 is even, 𝑛 = 2𝑚, then 
the subsets are defined as 𝑈𝑙 = {𝑢𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚} and 𝑈𝑟 = {𝑢𝑖 ∣ 𝑚 + 1 ≤ 𝑖 ≤ 𝑛}. If 𝑛 is odd, 𝑛 = 2𝑚 + 1, then 𝑈𝑙 = {𝑢𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚} and 
𝑈𝑟 = {𝑢𝑖 ∣𝑚+1 ≤ 𝑖 ≤ 𝑛}. In both cases, the sizes of 𝑈𝑙 and 𝑈𝑟 differ by at most one. This partitioning process is applied recursively to 
each subset, creating left and right child nodes, until each leaf node contains a single element. As each division maintains nearly equal 
subset sizes, the resulting binary tree ensures that the height difference between the left and right subtrees of any node is at most 1. 
This meets the requirement for a balanced binary tree, such as an AVL tree, and guarantees that the tree maintains a logarithmic 
height structure.

Proposition 2. For any node 𝑁 in the partition binary tree 𝑇 𝑎
𝑘

, the height of its subtree 𝑇𝑠𝑢𝑏 satisfies ℎ𝑒𝑖𝑔ℎ𝑡(𝑇𝑠𝑢𝑏) = ⌈log2(𝑛)⌉+1, where ⌈𝑥⌉
represents the ceiling function, returning the smallest integer greater than or equal to 𝑥. 𝑛 means the number of elements in the set contained 
in the node 𝑁 .

Proof 2. From the properties of a binary tree, we can deduce that for a full binary tree of height ℎ, the number of leaf nodes is 2(ℎ−1) . 
According to Definition 4, the number of elements 𝑛 in any node 𝑁 corresponds to the number of leaf nodes in its subtree 𝑇𝑠𝑢𝑏. Thus, for 
a full partition binary tree, we have 𝑛 = 2(ℎ−1), where 𝑛 is the number of elements in the root node. Now, consider a partition binary tree 
of height ℎ, whose number of nodes lies between a full partition binary tree of height ℎ−1 and height ℎ, we have 2(ℎ−2) < 𝑛 ≤ 2(ℎ−1). 
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Fig. 1. (a) The illustration of the binary partition tree and neighborhood radius. (b) The example of binary partition tree. 

Taking the natural logarithm on both sides, we get ℎ−2 < log2(𝑛) ≤ ℎ−1, which leads to log2(𝑛) ≤ ℎ−1 < log2(𝑛) + 1. Since ℎ−1 is 
an integer, we obtain ℎ− 1 = ⌈log2(𝑛)⌉. Thus, solving for ℎ = ⌈log2(𝑛)⌉+ 1.

After that, the concept of neighborhood radius 𝑟 is introduced to generate the neighborhood set. The neighborhood radius describes 
the size of a neighborhood. The larger the value of 𝑟, the more elements the neighborhood contains.

Definition 5. For a leaf node 𝑙 in a partition binary tree, when the neighborhood radius 𝑟 = 𝑝, its neighborhood is defined as the 
value of the ancestor node at the 𝑝-th level upward along the tree. It can be represented as the neighborhood 𝑆𝑡 = 𝑣𝑎𝑙𝑢𝑒(𝑃𝑎𝑟𝑒𝑛𝑡𝑟(𝑙)), 
where 𝑣𝑎𝑙𝑢𝑒(∗) means the value of node ∗.

Using Definition 5, we can calculate a neighborhood 𝑆𝑡 with a leaf node 𝑙. The neighborhood set 𝑆𝑎
𝑘

is the collection of neigh
borhoods generated by all leaf nodes of the partition binary tree 𝑇 𝑎

𝑘
based on the neighborhood radius. An illustration of the binary 

partition tree and the neighborhood radius is shown in Fig. 1(a). All nodes with a neighborhood radius of 𝑟 share common properties, 
which we will describe in Proposition 3.

Proposition 3. For any node 𝑁 in a partition binary tree 𝑇 𝑎
𝑘

that contains a neighborhood 𝑆𝑡 = {𝑥0, 𝑥1,… , 𝑥𝑛} with a neighborhood radius 
of 𝑟, it must satisfy one of the following two conditions:

1. ⌈log2(𝑛)⌉ = 𝑟
2. ⌈log2(𝑛)⌉ = 𝑟+ 1 and log2(𝑛) is not an integer.

Proof 3. According to Definition 5, we can conclude that a node with a neighborhood radius of 𝑟 is the 𝑟th parent of a leaf node. 
Consequently, the height of its subtree 𝑇𝑠𝑢𝑏 is at least 𝑟 + 1. For a full partition binary tree’s subtree 𝑇𝑠𝑢𝑏 with height 𝑟 + 1, all its 
leaf nodes are distributed at the bottom level. Thus, for all leaf nodes, the root node of this tree stores a neighborhood that satisfies 
the neighborhood radius condition of 𝑟. Otherwise, subtree 𝑇𝑠𝑢𝑏’s leaf nodes are distributed across the last two levels. For all the leaf 
nodes at the bottom level, the root node of this tree stores a neighborhood satisfying the neighborhood radius condition of 𝑟. For the 
leaf nodes in the second-to-last level, the parent node of the root stores a neighborhood satisfying the neighborhood radius condition 
of 𝑟. Therefore, we conclude that a node 𝑁 storing a neighborhood radius of 𝑟 must satisfy one of the following two conditions in its 
subtree 𝑇𝑠𝑢𝑏: ℎ = 𝑟+ 1; ℎ= 𝑟+ 2 and the tree is not full, where ℎ means the height of subtree 𝑇𝑠𝑢𝑏. For the first condition, according 
to Proposition 2, the height of the subtree rooted at node 𝑁 is ⌈log2(𝑛)⌉+ 1. Therefore, we have the equation ⌈log2(𝑛)⌉+ 1 = 𝑟+ 1. 
Simplifying this, we obtain ⌈log2(𝑛)⌉ = 𝑟. For the second condition, since a full partition binary tree always satisfies 𝑛 = 2𝑚 for some 
integer 𝑚, to ensure that 𝑇𝑠𝑢𝑏 is not a full partition binary tree, we only need to guarantee that for any integer 𝑚, 𝑛 ≠ 2𝑚. This 
condition can be simplified as: log2(𝑛) is not an integer. Following the same reasoning as in the first condition for subtree height, we 
get ⌈log2(𝑛)⌉+ 1 = 𝑟+ 2, which simplifies to ⌈log2(𝑛)⌉ = 𝑟+ 1.

By applying the above method, we can generate a neighborhood set 𝑆𝑎
𝑘

for each 𝐷𝐼𝑆𝑘 under a specific attribute 𝑎. To make the 
computation of the neighborhood set easier to understand, we provide a relevant example in Example 3.1.

Example 3.1. In the example, we use a subset of the Iris data from the UCI dataset, as shown in Table 1. Taking 𝑎1 of the 𝐷𝐼𝑆1
as an example, we first need to sort the samples in ascending order based on their attribute values. The resulting sample order is: 
𝑥3 < 𝑥2 < 𝑥1 < 𝑥8 < 𝑥7 < 𝑥5 < 𝑥6 < 𝑥4 < 𝑥9. Afterward, we generate a binary partition tree based on this sequence. The generated 
binary partition tree is shown in Fig. 1(b). Suppose we need to determine the neighborhood set composed of all neighborhoods with 
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a neighborhood radius 𝑟 = 1. We perform a depthfirst traversal and select the neighborhoods from the nodes that satisfy the two 
conditions specified in Proposition 3. These neighborhoods collectively form the neighborhood set 𝑆 . Let’s start from the root of the 
tree, ⌈log2(𝑛)⌉ = ⌈log2(9)⌉ = 4 ≠ 𝑟. Next, we examine the left child of the root node, ⌈log2(𝑛)⌉ = ⌈log2(4)⌉ = 2 = 𝑟+ 1, but log2(4) = 2
is an integer. We then continue to examine its left child, ⌈log2(𝑛)⌉ = ⌈log2(2)⌉ = 𝑟. Thus, we add the neighborhood {𝑥2, 𝑥3} stored 
in that node to the neighborhood set 𝑆 . By continuing the depthfirst traversal of the binary partition tree, we can obtain the final 
neighborhood set 𝑆 = {{𝑥2, 𝑥3},{𝑥1, 𝑥8},{𝑥5, 𝑥7},{𝑥4, 𝑥6, 𝑥9},{𝑥4, 𝑥9}}.

The algorithm for generating a neighborhood set 𝑆 using a constructed partition binary tree 𝑇 𝑎
𝑘

is presented in Algorithm 1. The 
time complexity of the algorithm is 𝑂(𝑚), where 𝑚 denotes the number of samples. Next, we will introduce how to evaluate the effect 
of each 𝐷𝐼𝑆𝑘 under specific attribute 𝑎 to classification task.

Algorithm 1: The algorithm for generating neighborhood set using a constructed partition binary tree.

1 Function FindNeighborhood (𝑁 , 𝑟, 𝑆)

Input: Node 𝑁 , Neighborhood radius 𝑟, Neighborhood set 𝑆
Output: Neighborhood set 𝑆

2 if |𝑁.𝑣𝑎𝑙𝑢𝑒| = 1 then

3 return 𝑆
4 end 
5 else if ⌈log2(|𝑁.𝑣𝑎𝑙𝑢𝑒|)⌉ = 𝑟 then

6 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑎𝑙𝑢𝑒(𝑁))
7 return 𝑆
8 end 
9 else if ⌈log2(|𝑁.𝑣𝑎𝑙𝑢𝑒|)⌉ = 𝑟+ 1 and log2(|𝑁.𝑣𝑎𝑙𝑢𝑒|) is not an integer then

10 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑎𝑙𝑢𝑒(𝑁))
11 𝐹 𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑁.𝑙𝑒𝑓𝑡, 𝑟,𝑆)
12 𝐹 𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑁.𝑟𝑖𝑔ℎ𝑡, 𝑟,𝑆)
13 end 
14 else

15 𝐹 𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑁.𝑙𝑒𝑓𝑡, 𝑟,𝑆)
16 𝐹 𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑁.𝑟𝑖𝑔ℎ𝑡, 𝑟,𝑆)
17 end 
18 End Function

19

20 Function Main (𝑇 𝑎
𝑘

, 𝑟)
Input: Partition binary tree 𝑇 𝑎

𝑘
, Neighborhood radius 𝑟

Output: Neighborhood set 𝑆
21 𝑁 ← 𝑇 𝑎

𝑘
.𝑟𝑜𝑜𝑡

22 𝑆← ∅
23 return FindNeighborhood (𝑁 , 𝑟, 𝑆)

24 End Function

3.2. Neighborhood approximate accuracy

In this subsection, we will introduce a method to evaluate each 𝐷𝐼𝑆𝑘 under a specific attribute 𝑎. For an MSDIS, we can 
divide the samples into multiple sets based on their categories, forming a partition in the universal set 𝑈 , denoted as 𝑈∕𝑑 =
{𝑋1,𝑋2,… ,𝑋ℎ,… ,𝑋𝑝}, where 𝑝 represents the number of categories. According to Equation (1), we define the lower approximation 
of set 𝑋ℎ under neighborhood set 𝑆𝑎

𝑘
as follows:

𝑁𝑅𝑎
𝑘
(𝑋ℎ) = ∪{𝑌 ∈ 𝑆𝑎

𝑘
|𝑌 ⊆𝑋ℎ}. (7)

Using Equation (7), we can compute the lower approximation set for each category’s sample set. To account for all categories, we 
need to merge the lower approximation sets of all category samples. Then, we have

𝐺𝑁𝑅𝑎
𝑘
(𝑈 ) = ∪𝑁𝑅𝑎

𝑘
(𝑋ℎ), ℎ = 1,… , 𝑝. (8)

Thus, we present the calculation formula for neighborhood approximate accuracy as follows:

𝑁𝐴𝑃𝑎(𝐷𝐼𝑆𝑘) =
|𝐺𝑁𝑅𝑎

𝑘
(𝑈 )|

|𝑈 | , (9)

where | ∗ | is the amount of unit in the set ∗. The value of 𝑁𝐴𝑃 (𝐷𝐼𝑆𝑘) is between 0 and 1. The larger the value, the more significant 
the role of the source 𝐷𝐼𝑆𝑘 in the classification task under attribute 𝑎. To better understand the calculation process of neighborhood 
approximate accuracy, we provide a relevant example in Example 3.2.
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Example 3.2. Following Example 3.1, we firstly compute 𝑁𝑅1
1(𝑋ℎ) of 𝐷𝐼𝑆1 under attribute 𝑎1. Based on the data in Table 1, we 

can compute 𝑈∕𝑑 = {{𝑥1, 𝑥2, 𝑥3},{𝑥4, 𝑥5, 𝑥6},{𝑥7, 𝑥8, 𝑥9}}. At this point, 𝑋1 = {𝑥1, 𝑥2, 𝑥3}, and 𝑁𝑅1
1(𝑋1) = {𝑥2, 𝑥3}. Similarly, we 

obtain 𝑁𝑅1
1(𝑋2) = ∅, and 𝑁𝑅1

1(𝑋3) = ∅. Then, we can compute 𝐺𝑁𝑅1
1(𝑈 ) = 𝑁𝑅1

1(𝑋1) ∪𝑁𝑅1
1(𝑋2) ∪𝑁𝑅1

1(𝑋3) = {𝑥2, 𝑥3}. Then, 

neighborhood approximate accuracy 𝑁𝐴𝑃 1(𝐷𝐼𝑆1) =
|𝐺𝑁𝑅1

1(𝑈 )|
|𝑈 | = 2

9 ≈ 0.22.

3.3. Construction of graph

To fully consider the role of each source in the classification task and the linear correlation between sources, we construct a graph 
where the node set 𝑉 consists of all sources, and the edge set 𝐸 represents the connections between sources. The edge weights 𝑤(𝑒)
are determined by comprehensively considering the contribution of both sources to the classification task and their linear relationship. 
Thus, we can define the values of the elements in the adjacency matrix 𝑊 𝑎 of the graph. For each 𝑊 𝑎

𝑖𝑗
in adjacency matrix 𝑊 𝑎, we 

have

𝑊 𝑎
𝑖𝑗 = 𝛼𝑁

𝑎
𝑖𝑗 + (1 − 𝛼)𝑅𝑎𝑖𝑗 , (10)

where 𝑖 and 𝑗 separately mean 𝑖-th and 𝑗-th DIS in MSDIS, 𝛼 is a parameter set between 0 and 1. The value of 𝑊 𝑎
𝑖𝑗

ranges from 0 
to 1. The higher 𝑊 𝑎

𝑖𝑗
is, the better the pair of 𝐷𝐼𝑆𝑖 and 𝐷𝐼𝑆𝑗 is. 𝑁𝑎

𝑖𝑗
represents the role of i-th and j-th DIS in classification under 

attribute 𝑎. It can be calculated as follows:

𝑁𝑎
𝑖𝑗 =max(𝑁𝐴𝑃𝑎(𝐷𝐼𝑆𝑖),𝑁𝐴𝑃 𝑎(𝐷𝐼𝑆𝑗 )), (11)

where 𝐷𝐼𝑆𝑖 and 𝐷𝐼𝑆𝑗 separately mean i-th and j-th DIS in MSDIS. 𝑁𝑎
𝑖𝑗

ranges from 0 to 1. The pair of 𝐷𝐼𝑆𝑖 and 𝐷𝐼𝑆𝑗 become more 
efficient for the classification task when 𝑁𝑎

𝑖𝑗
is larger. 𝑅𝑎

𝑖𝑗
represents the linear relationship between i-th and j-th DIS under attribute 

𝑎. According to Equation (4), we define the formula for 𝑅𝑎
𝑖𝑗

as follows:

𝑅𝑎𝑖𝑗 = | 𝑛
∑
𝑥𝑝𝑦𝑝 −

∑
𝑥𝑝

∑
𝑦𝑝√

(𝑛
∑
𝑥2𝑝 − (

∑
𝑥𝑝)2)

√
(𝑛
∑
𝑦2𝑝 − (

∑
𝑦𝑝)2)

|, (12)

where 𝑥𝑝 and 𝑦𝑝 respectively represent the value of p-th sample 𝑢𝑝 ∈𝑈 in 𝐷𝐼𝑆𝑖 and 𝐷𝐼𝑆𝑗 under attribute 𝑎, 𝑛 represents the number 
of sample in MSDIS, | ∗ | is the absolute value of ∗. 𝑁𝑎

𝑖𝑗
ranges from 0 to 1. When 𝑁𝑎

𝑖𝑗
becomes larger, there is more linear correlation 

between 𝐷𝐼𝑆𝑖 and 𝐷𝐼𝑆𝑗 . We constructed a graph using the above method. To better understand the process of graph construction, 
we provide a numerical example in Example 3.3.

Example 3.3. In this example, we calculate the element 𝑊 1
12 in the adjacency matrix 𝑊 1 for attribute 𝑎1. Similar to the calculation of 

𝑁𝐴𝑃 1(𝐷𝐼𝑆1) in Example 3.2, we also obtain 𝑁𝐴𝑃 1(𝐷𝐼𝑆2) ≈ 0.22. Thus, 𝑁1
12 = max(𝑁𝐴𝑃 1(𝐷𝐼𝑆1),𝑁𝐴𝑃 1(𝐷𝐼𝑆2)) = 0.22. At the 

same time, we compute 𝑅1
12 ≈ 0.9743 with Equation (12). When the parameter 𝛼 = 0.5, we get 𝑊 1

12 = 0.5 ×𝑁1
12 + 0.5 ×𝑅1

12 ≈ 0.5983. 
Using the same method, we obtain the graph adjacency matrix 𝑊 1 for attribute 𝑎1 as follows:

𝑊 1 =
⎡⎢⎢⎣
0.6111 0.5983 0.5856
0.5983 0.6111 0.5791
0.5856 0.5791 0.6111

⎤⎥⎥⎦ .

Next, we will use a specific approach to select the optimal information source based on this graph as the final data for attribute 𝑎
in DIS.

3.4. Source choosing process

In this subsection, we will introduce a method for selecting the optimal information source under feature 𝑎 using the adjacency 
matrix 𝑊 𝑎. For the convenience of formula representation, we use 𝑊 to denote the adjacency matrix 𝑊 𝑎 under attribute 𝑎 in this 
chapter. According the definition of path in subsection 2.4, given a path Γ = 𝑣1𝑣2…𝑣𝑡 in the graph 𝐺, the overall weight of path Γ
is defined as follows:

ΩΓ =
𝑡 ∏
𝑞=1 

𝑊 (𝑣𝑞, 𝑣𝑞+1). (13)

If there are multiple paths of length 𝑡 from vertex 𝑣𝑖 to vertex 𝑣𝑗 , where 𝑖 and 𝑗 separately mean 𝑖-th and 𝑗-th DIS in MSDIS, these 
paths form a set 𝜂𝑡

𝑖𝑗
. We define the total weight of this path set between the two vertices as follows:

Θ𝑡(𝑖, 𝑗) =
∑
Γ∈𝜂𝑡

𝑖𝑗

ΩΓ. (14)
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Since we have already constructed the adjacency matrix 𝑊 of the graph, we can transform Equation (13) and Equation (14) into 
operations on the adjacency matrix. Thus, the total weight of the path set 𝜂𝑡

𝑖𝑗
is calculated as follows:

Θ𝑡 = (𝑊 )𝑡, (15)

where the (∗)𝑡 represents the 𝑡th power of the matrix ∗. The element in the 𝑖-th row and 𝑗-th column of the matrix Θ𝑡
𝑖𝑗

represents 
the total weight of the path set 𝜂𝑡

𝑖𝑗
. In the case where the path length is 𝑡, to evaluate the quality of a given node 𝑣𝑖 , we have the 

preference value of 𝐷𝐼𝑆𝑖 under the path length 𝑡 as follows:

𝜑𝑡(𝑖) =
𝑙∑
𝑗=1 

Θ𝑡(𝑖, 𝑗), (16)

where 𝑙 represents the number of DIS in MSDIS, which is the number of nodes in the graph. If the 𝜑𝑡 (i) is larger, it indicates that the 
corresponding DIS of the node is better under the path length 𝑡. To consider all path lengths, we need to sum the 𝜑𝑡(𝑖) obtained for 
all path lengths, which gives:

𝜑(𝑖) =
∞ ∑
𝑡=1 
𝜑𝑡(𝑖). (17)

The larger 𝜑(𝑖) is, the better the DIS corresponding to the node. By calculating 𝜑(𝑖) for all DIS, we can select the information source 
with the highest value as the final result under attribute 𝑎. The step of Equation (16) and Equation (17) can also be represented using 
matrix operations as follows:

𝜑⃗ =
∞ ∑
𝑡=1 

(Θ𝑡𝛽) = (
∞ ∑
𝑡=1 

(𝑊 )𝑡)𝛽, (18)

where 𝛽 represents a unit column vector with 𝑙 dimensions. 𝑙 is the number of DIS in MSDIS. The 𝑖-th element in the vector 𝜑⃗
represents the preference value of 𝐷𝐼𝑆𝑖. Since Equation (18) involves an infinite series, its convergence cannot be guaranteed, and 
the computational complexity is also high. Therefore, we need to transform Equation (18) to guarantee its convergence and make it 
easier to implement. Thus, we introduce Proposition 4.

Proposition 4. For an adjacency matrix 𝑊 of a graph, if the constant 𝑐 satisfies 0 < 𝑐 < 1 
𝜌(𝑊 ) , we can use 

∑∞
𝑡=1(𝑐𝑊 )𝑡 to approximate 

the calculation of the infinite series 
∑∞
𝑡=1(𝑊 )𝑡. 𝜌(𝑊 ) represents the spectral radius of the matrix 𝑊 . It can be calculated by 𝜌(𝑊 ) =

max𝑖=1,2,…,𝑙 |𝜆𝑖|, where 𝜆𝑖 is the 𝑖-th eigenvalue of the matrix 𝑊 .

Proof 4. First, we discuss the convergence of Equation (18). According to 
∑∞
𝑡=0𝑄

𝑡 converges ⟺ 𝜌(𝑄) < 1, for Equation (18) to 
converge, the spectral radius of the matrix 𝑊 must be less than one. For any two matrices 𝐴 and 𝐵, their spectral radius satisfy the 
following property 𝜌(𝐴)𝜌(𝐵) ≥ 𝜌(𝐴𝐵). If matrix 𝐴 is given as 𝑐𝐸, where 𝑐 is a constant and 𝐸 is the identity matrix, then we have 
𝜌(𝑐𝐸)𝜌(𝐵) ≥ 𝜌(𝑐𝐸𝐵). According to the definition of spectral radius, we obtain 𝜌(𝑐𝐸) = 𝑐. Using matrix multiplication properties, we 
further derive 𝑐𝜌(𝐵) ≥ 𝜌(𝑐𝐵). If we need to ensure 𝜌(𝑐𝑊 ) < 1, it is sufficient to guarantee that 𝑐𝜌(𝑊 ) < 1, which simplifies to 𝑐 < 1 

𝜌(𝑊 ) . 

Thus, by multiplying the matrix 𝑊 by a constant 0 < 𝑐 < 1 
𝜌(𝑊 ) , we can ensure the convergence of Equation (18). Since multiplying 

a matrix by a constant does not alter the relative magnitude of its elements, this operation will not affect the final selection results. 
Next, we discuss the issue of simplifying the computation of Equation (18). If 

∑∞
𝑡=0𝑄

𝑡 converges, then we have 
∑∞
𝑡=0𝑄

𝑡 = (𝐸 −𝑄)−1. 
Since the formula involves summing from 𝑡 = 1 instead of 𝑡 = 0, we have the following formula 

∑∞
𝑡=1(𝑐𝑊 )𝑡 = (𝐸 − 𝑐𝑊 )−1 − (𝑐𝑊 )0. 

Since (𝑐𝑊 )0 =𝐸, then we have 
∑∞
𝑡=1(𝑐𝑊 )𝑡 = (𝐸 − 𝑐𝑊 )−1 −𝐸.

Thus, we have resolved the issues of Equation (18)’s convergence and computational complexity through this proposition. The 
final formula for calculating the ̃⃗𝜑 becomes:

̃⃗𝜑 = (
∞ ∑
𝑡=1 

(𝑐𝑊 )𝑡)𝛽 = ((𝐸 − 𝑐𝑊 )−1 −𝐸)𝛽, (19)

where the constant 𝑐 = 0.9 
𝜌(𝑊 ) . After obtaining the ̃⃗𝜑, we select the DIS corresponding to the element with the highest value in the ̃⃗𝜑. 

This gives us the final DIS under attribute 𝑎. Considering the large number of variables used in this subsection, we have organized 
all the variables into Table 2 for easier reference by the reader. To help readers understand the theory presented in this section, we 
provided a small illustrative example in Example 3.4.

Example 3.4. In this example, we continue from the previously computed graph adjacency matrix. Based on the preference value 
vector calculation method introduced in this section, we compute the preference value vector and select the optimal information 
source under 𝑎1. According to the 𝑊 1 obtained in Example 3.3, we can obtain ̃⃗𝜑 under 𝑎1 with Equation (19) as follows:
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Table 2
Table of variable descriptions in Section 3.4.

Variable Description 
ΩΓ the overall weight of path 
Θ𝑡(𝑖, 𝑗) the total weight of the path set 𝜂𝑡

𝑖𝑗

Θ𝑡 the matrix with Θ𝑡(𝑖, 𝑗) as its (i, j)-th element 
𝜑𝑡(𝑖) the preference value of 𝐷𝐼𝑆𝑖 under the path length 𝑡
𝜑(𝑖) the preference value of 𝐷𝐼𝑆𝑖
𝜑⃗ the preference vector with 𝜑(𝑖) as its i-th element 
̃⃗𝜑 the estimated vector of 𝜑⃗

Fig. 2. The schematic diagram of the graph based information fusion method using GRNRS. 

̃⃗𝜑 =
⎡⎢⎢⎣
9.0434
9.0104
8.9456

⎤⎥⎥⎦ .
Based on the calculated ̃⃗𝜑 values, 𝐷𝐼𝑆1 has the highest corresponding value. Therefore, we select the 𝑎1 attribute column of 𝐷𝐼𝑆1
as the 𝑎1 attribute column in the final result.

3.5. The algorithm of the information fusion method

In this subsection, we summarize all the methods discussed above and propose an information fusion algorithm. The summary of 
each subsection in this section is listed below:

∙ In subsection 3.1, we introduced a method for constructing a partition binary tree using sorted samples and proposed how to 
obtain the neighborhood set from the constructed partition binary tree.

∙ In subsection 3.2, we explained how to use the obtained neighborhood set to calculate the neighborhood approximate accuracy 
for any DIS under attribute 𝑎.

∙ In subsection 3.3, we proposed a method for constructing a graph using the neighborhood approximate accuracy and the PCC.
∙ In subsection 3.4, we introduced a method to obtain the preference value for each DIS under attribute 𝑎 using the constructed 

graph. Finally, we select the DIS with the highest preference value as the final result under attribute 𝑎.
To better explain the main process of the algorithm, Fig. 2 is the schematic diagram of the algorithm. Next, we propose the 

information fusion algorithm in Algorithm 2. The time complexity of steps 2-7 in Algorithm 2 is 𝑂(𝑙 ⋅𝑚2), where 𝑙 is the number of 
information sources and 𝑚 is the number of samples. The time complexity of steps 8-14 is 𝑂(𝑙2 ⋅ 𝑚). The time complexity of steps 
15-18 is 𝑂(𝑙3). Thus, the overall time complexity of the algorithm is 𝑂(𝑛 ⋅ (𝑙 ⋅𝑚2 + 𝑙2 ⋅𝑚+ 𝑙3)), where 𝑚 is the number of samples, 𝑛
is the number of attributes, and 𝑙 is the number of information sources.
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Algorithm 2: Information fusion algorithm based on GRNRS and graph theory.

Input: 𝑀𝑆𝐷𝐼𝑆 = {𝐷𝐼𝑆𝑘|𝐷𝐼𝑆𝑘 = (𝑈,𝐴,𝑑, 𝑓𝑘
𝐴
,𝑉 𝑘
𝐴
, 𝑓𝑘
𝑑
, 𝑉 𝑘
𝑑
), 𝑘 = 1,2, ..., 𝑙}

Output: 𝐷𝐼𝑆𝑜𝑢𝑡 = (𝑈,𝐴,𝑑, 𝑓𝐴,𝑉𝐴, 𝑓𝑑 , 𝑉𝑑 )
1 for each 𝑎∈𝐴 do

2 for each 𝐷𝐼𝑆𝑘 in 𝑀𝑆𝐷𝐼𝑆 do

3 Sort the sample set 𝑈 in ascending order to obtain 𝑈𝑠𝑜𝑟𝑡𝑒𝑑 .

4 Construct a partition binary tree 𝑇 𝑎
𝑘

using 𝑈𝑠𝑜𝑟𝑡𝑒𝑑 .

5 Obtain the neighborhood set 𝑆 through Algorithm 1.

6 Calculate 𝑁𝐴𝑃𝑎(𝐷𝐼𝑆𝑘) through Equation (7), Equation (8) and Equation (9).

7 end 
8 for each 𝐷𝐼𝑆𝑖 in 𝑀𝑆𝐷𝐼𝑆 do

9 for each 𝐷𝐼𝑆𝑗 in 𝑀𝑆𝐷𝐼𝑆 do

10 𝑁𝑎
𝑖𝑗
←max(𝑁𝐴𝑃𝑎(𝐷𝐼𝑆𝑖),𝑁𝐴𝑃 𝑎(𝐷𝐼𝑆𝑗 ))

11 Calculate 𝑅𝑎
𝑖𝑗

through Equation (12).

12 𝑊 𝑎
𝑖𝑗
← 𝛼𝑁𝑎

𝑖𝑗
+ (1 − 𝛼)𝑅𝑎

𝑖𝑗

13 end 
14 end 
15 𝑐← 0.9 

𝜌(𝑊 𝑎 )

16 ̃⃗𝜑← ((𝐸 − 𝑐𝑊 𝑎)−1 −𝐸)𝛽
17 𝑝← 𝑎𝑟𝑔𝑚𝑎𝑥( ̃⃗𝜑)
18 Set the attribute 𝑎 column in 𝐷𝐼𝑆𝑝 as the attribute 𝑎 column in 𝐷𝐼𝑆𝑜𝑢𝑡 .
19 end 
20 return 𝐷𝐼𝑆𝑜𝑢𝑡

Table 3
The description of data sets.

No. Data sets Abbreviation Samples Attributes Classes 
1 Abalone Abalone 4177 8 3 
2 Avila Avila 20867 10 12 
3 Ecoli Ecoli 336 7 8 
4 Musk Musk 476 168 2 
5 Pendigits Pendigits 10992 16 10 
6 QSAR QSAR 1055 41 2 
7 Shill Bidding Dataset SBD 6321 10 2 
8 South German Credit SGC 1000 21 2 
9 Toxicity Toxicity 171 1203 2 
10 Waveform Waveform 5000 21 3 
11 Wholesale Customers Data WCD 440 8 3 
12 Wine Wine 178 13 3 

Table 4
Operating ambient.

Name Model Parameter 
CPU 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz 
Platform Python 3.9 
System Windows 11 64 bit 
Memory DDR5 16 GB; 4800 MHz 
Hard Disk Micron MTFDKBA512TFH 477 GB 

4. Experiments and results

In this section, we analyze the impact of various parameters of the proposed method on the final performance through experimental 
analysis. Additionally, we evaluate the effectiveness and time efficiency of the proposed method by comparing it with other methods. 
In this experiment, all the data we use comes from UCI. The number of samples, attributes, and categories for each dataset will be 
presented in Table 3. The experiment is conducted on a personal computer, and its configuration will be shown in Table 4. Since the 
raw data does not meet the conditions for multi-source information, we need to preprocess the original data.

The preprocessing steps for the raw data are as follows. Given a 𝐷𝐼𝑆 = (𝑈,𝐴,𝑑,𝑓𝐴,𝑉𝐴,𝑓𝑑 , 𝑉𝑑 ), we first apply normalization to 
ensure that all values in 𝐷𝐼𝑆 fall within the range of 0 to 1. Next, we add the source data 𝐷𝐼𝑆 to 𝑀𝑆𝐷𝐼𝑆 . Then, we generate 𝑚
random numbers 𝑟 = {𝑟1, 𝑟2,…, 𝑟𝑚}, which follow a normal distribution 𝑁(0,0.1), where 𝑚 represents the total number of samples. 
The value of sample 𝑥𝑖 for attribute 𝑎 in 𝐷𝐼𝑆𝑘 is modified as 𝑓𝑘

𝐴
(𝑥𝑖, 𝑎) = 𝑓𝐴(𝑥𝑖, 𝑎) + 𝑟𝑖, 𝑥𝑖 ∈ 𝑢, 𝑎 ∈ 𝐴. Next, we need to assign values 

of 1 to elements greater than 1 and values of 0 to elements less than 0, in order to ensure that all values lie within the range of 
0 to 1. Meanwhile, the decision attribute value of sample 𝑥𝑖 remains unchanged as 𝑓𝑑 = 𝑓𝑑 (𝑥𝑖, 𝑑), 𝑥𝑖 ∈ 𝑈 . As a result, we obtain 
𝑀𝑆𝐷𝐼𝑆 = {𝐷𝐼𝑆𝑘|𝐷𝐼𝑆𝑘 = (𝑈,𝐴,𝑑,𝑓𝑘

𝐴
,𝑉 𝑘
𝐴
,𝑓𝑘
𝑑
, 𝑉 𝑘
𝑑
), 𝑘 = 1,2, ..., 𝑙}.
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Fig. 3. The chart of the relationship between classification accuracy and runtime corresponding to different values of the parameter 𝑟 in the algorithm. 

4.1. Experimental designs

In this subsection, we will introduce the experimental design used to examine the impact of parameters in the proposed method 
on algorithm performance, as well as the experimental design for evaluating the efficiency and effectiveness of the proposed method.

4.1.1. The impact of parameters on the final performance of the algorithm

Our proposed method includes two parameters: one is the neighborhood radius 𝑟 used in generating the neighborhood set, and 
the other is the weight parameter 𝛼 used in constructing the adjacency matrix of the weighted undirected graph. We first examine 
the effect of parameter 𝑟 on the final results of the algorithm.

To examine the impact of parameter 𝑟 on the algorithm’s results, we need to fix the value of parameter 𝛼. To equally consider 
both the linear relationship between information sources and their influence on classification, we set 𝛼 = 0.5. Since the height of the 
constructed partition binary tree is related to the number of samples in the dataset, as stated in Proposition 2, and according to its 
Definition 4, the value of neighborhood radius 𝑟 must be smaller than the depth of the partition binary tree. Therefore, considering 
the dataset with the smallest number of samples, we set the range of 𝑟 from 1 to 5 with a step size of 1.

To evaluate the information fusion results of the algorithm, we use three classifiers: K Nearest Neighbors (KNN), Support Vec

tor Machine (SVM), and Decision Tree (DT) to classify the fused information and compute their classification accuracy. A higher 
classification accuracy indicates better information fusion performance of the algorithm. During model training, we adopt a 5-fold 
cross-validation strategy, and the final classification accuracy is obtained by averaging the accuracy across the five folds. At the 
same time, we record the computation time required for different values of parameter 𝑟, which helps analyze the impact of 𝑟 on 
computational efficiency. The results of this experiment are shown in Fig. 3.

Next, we evaluate the impact of parameter 𝛼 on the algorithm’s performance. Based on the experimental results for parameter 𝑟, 
where the best performance was achieved at 𝑟 = 2, we fix 𝑟= 2 in this experiment. Since 𝛼 ranges from 0 to 1, we set its values from 
0.1 to 0.9 with a step size of 0.1. Similar to the evaluation of 𝑟, we use KNN, SVM, and DT classifiers to classify the data and compute 
their classification accuracy. The experimental results are presented in Fig. 4.

4.1.2. The effectiveness of our algorithm comparing with other algorithms

In this subsection, we compare our proposed algorithm with other algorithms to gain a deeper understanding of its effectiveness. 
We will firstly introduce the comparison algorithms.

∙ Maximization Algorithm: This algorithm selects the maximum value from the multi-source data as the final fusion result. For 
the input 𝑀𝑆𝐷𝐼𝑆 = {𝐷𝐼𝑆𝑘|𝐷𝐼𝑆𝑘 = (𝑈,𝐴,𝑑,𝑓𝑘

𝐴
,𝑉 𝑘
𝐴
,𝑓𝑘
𝑑
, 𝑉 𝑘
𝑑
), 𝑘 = 1,2, ..., 𝑙}, the value of sample 𝑥 under attribute 𝑎 in the output 

𝐷𝐼𝑆 = (𝑈,𝐴,𝑑,𝑓𝐴,𝑉𝐴,𝑓𝑑 , 𝑉𝑑 ) can be expressed as 𝑓𝐴(𝑥, 𝑎) = max𝑘=1,2,…,𝑙 𝑓𝑘𝐴(𝑥, 𝑎). The value of sample 𝑥 under decision attribute 𝑑
is the same as that in MSDIS.
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Fig. 4. The chart of the relationship between classification accuracy corresponding to different values of the parameter 𝛼 in the algorithm. 

∙ Minimization Algorithm: This algorithm determines the final fusion result by selecting the smallest value from the multi-source 
data. Given the input 𝑀𝑆𝐷𝐼𝑆 = {𝐷𝐼𝑆𝑘|𝐷𝐼𝑆𝑘 = (𝑈,𝐴,𝑑,𝑓𝑘

𝐴
,𝑉 𝑘
𝐴
,𝑓𝑘
𝑑
, 𝑉 𝑘
𝑑
), 𝑘 = 1,2, ..., 𝑙}, the value of sample 𝑥 under attribute 𝑎 in 

the output 𝐷𝐼𝑆 = (𝑈,𝐴,𝑑,𝑓𝐴,𝑉𝐴,𝑓𝑑 , 𝑉𝑑 ) is defined as 𝑓𝐴(𝑥, 𝑎) = min𝑘=1,2,…,𝑙 𝑓𝑘𝐴(𝑥, 𝑎). The value of sample 𝑥 under decision attribute 
𝑑 is the same as that in MSDIS.

∙ Average Algorithm: This algorithm calculates the final fusion result by taking the average of the corresponding multi-source 
data values. For the input 𝑀𝑆𝐷𝐼𝑆 = {𝐷𝐼𝑆𝑘|𝐷𝐼𝑆𝑘 = (𝑈,𝐴,𝑑,𝑓𝑘

𝐴
,𝑉 𝑘
𝐴
,𝑓𝑘
𝑑
, 𝑉 𝑘
𝑑
), 𝑘 = 1,2, ..., 𝑙}, the value of sample 𝑥 under attribute 

𝑎 in the output 𝐷𝐼𝑆 = (𝑈,𝐴,𝑑,𝑓𝐴,𝑉𝐴,𝑓𝑑 , 𝑉𝑑 ) can be expressed as 𝑓𝐴(𝑥, 𝑎) =
∑
𝑘=1,2,…,𝑙 𝑓

𝑘
𝐴
(𝑥,𝑎)

𝑙
. The value of sample 𝑥 under decision 

attribute 𝑑 is the same as that in MSDIS.

∙ DI [30]: This method requires building a dependency function that considers both the interval length and the number of data 
points within it. Then, a median point within the interval is chosen as a reference to facilitate the determination of the dependency 
interval.

∙ IE [40]: This algorithm firstly establishes a tolerance relation based on RST. Utilizing this relation, a new conditional entropy is 
introduced to assess the significance of sources in relation to attributes. This approach determines the fusion result by selecting the 
attribute value of the source that corresponds to the lowest conditional entropy.

∙ DSET [39]: This algorithm introduces the concept of a support matrix by converting the data matrix into a support matrix. To 
handle evidence conflicts, it incorporates an additional data source based on average values. Moreover, a hierarchical fusion approach 
is proposed for further integration.

∙ FIE [31]: This algorithm constructs a fuzzy dominance relation between any two sources based on RST and FST. Additionally, 
a new conditional entropy is introduced to evaluate the importance of sources based on this relationship. For each attribute, the 
method calculates the conditional entropy in each source individually and identifies the source with the lowest result.

To evaluate the effectiveness of the algorithms, we introduce two metrics: classification accuracy and Average Quality (AQ). The 
AQ metric is a comprehensive measure to evaluate the performance of classification models. AQ combines Precision, Recall and 
F1-score to provide a balanced assessment of a model’s classification quality. It is defined as follows:

AQ = 1
3
(Precision + Recall + F1-score) ,

where precision measures the proportion of predicted positive samples that are actually positive, recall measures the proportion of 
actual positive samples that are correctly predicted, F1-score is the harmonic mean of Precision and Recall, reflecting the balance 
between them. These metrics were originally designed for binary classification problems. To make them applicable to multi-class 
classification, we redefined them accordingly. The weighted formulas are as follows:

International Journal of Approximate Reasoning 187 (2025) 109561 

13 



Y. Li and W. Xu 

Table 5
Comparison of the classification accuracy of various algorithms after using KNN for classification tasks.

raw max min mean DI IE DSET FIE our method 
abalone 0.5344 0.4958 0.5073 0.5121 0.4987 0.4865 0.5344 0.5016 0.5344 
avila 0.7980 0.3689 0.4058 0.4774 0.4210 0.3550 0.7980 0.3745 0.7980 
ecoli 0.8662 0.8364 0.8126 0.8482 0.8423 0.7888 0.8305 0.7680 0.8662 
musk 0.8361 0.8277 0.8236 0.8403 0.8319 0.8298 0.8340 0.8298 0.8277 
pendigits 0.9923 0.9783 0.9819 0.9889 0.9863 0.9748 0.9923 0.9769 0.9923 
QSAR 0.8578 0.8180 0.8066 0.8408 0.8256 0.7592 0.8578 0.7924 0.8578 
SBD 0.9894 0.9881 0.9847 0.9875 0.9883 0.9834 0.9894 0.9872 0.9894 
SGC 0.6940 0.7050 0.6950 0.7010 0.6970 0.6960 0.7160 0.7080 0.7160 
Toxicity 0.6497 0.6440 0.6266 0.6497 0.6380 0.6435 0.6612 0.6324 0.6321 
waveform 0.8228 0.788 0.778 0.8048 0.8074 0.7436 0.8228 0.7578 0.8228 
WCD 0.7182 0.6432 0.6977 0.6273 0.6409 0.6523 0.6455 0.6614 0.7182 
wine 0.9549 0.9494 0.9552 0.9606 0.9719 0.9608 0.9608 0.9330 0.9776 

Table 6
Comparison of the classification accuracy of various algorithms after using SVM for classification tasks.

raw max min mean DI IE DSET FIE our method 
abalone 0.5535 0.5348 0.5372 0.5487 0.5456 0.5336 0.5535 0.5406 0.5535 
avila 0.5684 0.4117 0.4536 0.4898 0.4577 0.4109 0.5684 0.4281 0.5684 
ecoli 0.8780 0.8574 0.8453 0.8691 0.8602 0.8037 0.8424 0.8156 0.8781 
musk 0.8677 0.8572 0.8614 0.8719 0.8656 0.8551 0.8677 0.8425 0.8719 
pendigits 0.9944 0.9805 0.9834 0.9913 0.9890 0.9787 0.9944 0.9826 0.9944 
QSAR 0.8569 0.8303 0.8161 0.8550 0.8408 0.7991 0.8569 0.8057 0.8569 
SBD 0.9820 0.9842 0.98276 0.98212 0.9832 0.9813 0.9820 0.9820 0.9820 
SGC 0.7250 0.7220 0.7260 0.7230 0.7260 0.7260 0.7250 0.7260 0.7250 
Toxicity 0.6726 0.6726 0.6726 0.6726 0.6726 0.6726 0.6726 0.6726 0.6726 
waveform 0.8604 0.8374 0.8286 0.855 0.8468 0.7932 0.8604 0.7972 0.8604 
WCD 0.7182 0.7182 0.7182 0.7182 0.7182 0.7182 0.7182 0.7182 0.7182 
wine 0.9775 0.9775 0.9775 0.9830 0.9889 0.9887 0.9832 0.9778 0.9832 

Table 7
Comparison of the classification accuracy of various algorithms after using DT for classification tasks.

raw max min mean DI IE DSET FIE our method 
abalone 0.5028 0.4625 0.4647 0.4774 0.4659 0.4575 0.4927 0.4520 0.5028 
avila 0.9864 0.2694 0.3050 0.3777 0.3252 0.2587 0.9856 0.2897 0.9864 
ecoli 0.8007 0.7261 0.7648 0.7678 0.7739 0.7470 0.7379 0.6965 0.8007 
musk 0.7920 0.6618 0.7417 0.7163 0.7311 0.7333 0.7857 0.6618 0.7899 
pendigits 0.9597 0.9240 0.9214 0.9509 0.9347 0.9185 0.9608 0.9253 0.9597 
QSAR 0.8095 0.7422 0.7251 0.7621 0.7318 0.729858 0.8123 0.7023 0.8095 
SBD 0.9976 0.994 0.9935 0.9949 0.9948 0.9867 0.9975 0.9948 0.9976 
SGC 0.6830 0.6150 0.6460 0.6160 0.6420 0.6040 0.6830 0.6310 0.6830 
Toxicity 0.5321 0.5672 0.5617 0.6086 0.5555 0.5269 0.4914 0.6084 0.5909 
waveform 0.7504 0.7174 0.7094 0.7474 0.7308 0.6628 0.7496 0.6518 0.7504 
WCD 0.7182 0.5409 0.6614 0.5523 0.5364 0.5477 0.5455 0.5682 0.7182 
wine 0.8819 0.9100 0.9441 0.9329 0.9443 0.9100 0.9103 0.8373 0.8706 

Precision =
𝐾∑
𝑖=1 
𝑤𝑖 ⋅ 𝑃𝑖, Recall =

𝐾∑
𝑖=1 
𝑤𝑖 ⋅𝑅𝑖, F1 =

𝐾∑
𝑖=1 
𝑤𝑖 ⋅ 𝐹1𝑖,

where 𝐾 is the number of classes, 𝑤𝑖 represents the proportion of samples in class 𝑖, and 𝑃𝑖, 𝑅𝑖, and 𝐹1𝑖 denote the Precision, Recall, 
and F1-score of class 𝑖, respectively. The resulting AQ value ranges from [0,1], where a higher value indicates better overall model 
performance in terms of accuracy, coverage, and stability. For each algorithm, we use KNN, SVM, and DT classifiers to classify the 
fused data and assess the results using the aforementioned evaluation metrics. We adopt a 5-fold cross-validation training strategy, 
where the final evaluation metrics are obtained by averaging the results from the 5 folds. The results are presented in Table 5, Table 6
and Table 7. Meanwhile, we performed Friedman and Nemenyi tests on the comparison results under the classification accuracy and 
AQ metrics. The specific evaluation method is as follows: For the classification accuracy metric, we calculate the average classification 
accuracy of each algorithm on every dataset by taking the mean of the results obtained from three classifiers (KNN, SVM, and DT). 
The Friedman and Nemenyi tests are then conducted using the average classification accuracies of all algorithms across all datasets. 
Similarly, the Friedman and Nemenyi tests can be conducted based on the AQ metric in the same manner. The results of Friedman 
test are presented in subsubsection 4.2.2. Fig. 5 and Fig. 6 respectively show the Critical Difference diagrams of the Nemenyi test 
based on the classification accuracy and AQ metrics.
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Fig. 5. The critical difference diagrams of the Nemenyi test based on the classification accuracy. 

Fig. 6. The critical difference diagrams of the Nemenyi test based on the AQ. 

Table 8
Comparison of the AQ of various algorithms after using KNN for classification tasks.

raw max min mean DI IE DSET FIE our method 
abalone 0.5355 0.4975 0.5076 0.5130 0.4995 0.4879 0.5355 0.5026 0.5355 
avila-ts 0.7967 0.3255 0.3672 0.4516 0.3903 0.3050 0.7967 0.3124 0.7967 
ecoli 0.8623 0.8336 0.8096 0.8455 0.8392 0.7815 0.8297 0.7622 0.8623 
musk 0.8426 0.8344 0.8322 0.8463 0.8388 0.8363 0.8408 0.8370 0.8343 
pendigits 0.9923 0.9783 0.9820 0.9889 0.9863 0.9749 0.9923 0.9734 0.9923 
QSAR 0.8585 0.8189 0.8084 0.8414 0.8268 0.7577 0.8585 0.7919 0.8585 
SBD 0.9895 0.9882 0.9846 0.9876 0.9884 0.9834 0.9895 0.9872 0.9895 
SGC 0.6933 0.6971 0.6881 0.6927 0.6904 0.6855 0.6881 0.7023 0.6881 
Toxicity 0.6339 0.6319 0.6029 0.6393 0.6217 0.6274 0.6404 0.6072 0.6154 
waveform 0.8226 0.7876 0.7776 0.8046 0.8074 0.7432 0.8226 0.7574 0.8226 
WCD 0.6115 0.6137 0.6148 0.5947 0.6037 0.5991 0.5947 0.5941 0.6115 
wine 0.9559 0.9508 0.9567 0.9614 0.9725 0.9622 0.9613 0.9360 0.9781 

Table 9
Comparison of the AQ of various algorithms after using SVM for classification tasks.

raw max min mean DI IE DSET FIE our method 
abalone 0.5417 0.5208 0.5265 0.5372 0.5349 0.5237 0.5417 0.5240 0.5417 
avila-ts 0.5595 0.3222 0.3965 0.4316 0.4007 0.2810 0.5595 0.2805 0.5595 
ecoli 0.8728 0.8515 0.8400 0.8655 0.8553 0.7994 0.8412 0.8086 0.8728 
musk 0.8690 0.8581 0.8626 0.8731 0.8667 0.8558 0.8692 0.8433 0.8731 
pendigits 0.9944 0.9806 0.9835 0.9913 0.9890 0.9788 0.9944 0.9768 0.9944 
QSAR 0.8560 0.8285 0.8139 0.8538 0.8390 0.7976 0.8560 0.8029 0.8560 
SBD 0.9825 0.9844 0.9830 0.9826 0.9835 0.9817 0.9825 0.9822 0.9825 
SGC 0.7053 0.6996 0.7081 0.7019 0.7061 0.7043 0.7053 0.7053 0.7053 
Toxicity 0.5553 0.5553 0.5553 0.5553 0.5553 0.5553 0.5553 0.5553 0.5553 
waveform 0.8603 0.8374 0.8284 0.8549 0.8467 0.7931 0.8603 0.7970 0.8603 
WCD 0.6115 0.6115 0.6115 0.6115 0.6115 0.6115 0.6115 0.6115 0.6115 
wine 0.9780 0.9780 0.9777 0.9834 0.9892 0.9890 0.9836 0.9779 0.9836 

4.1.3. The time efficiency of our algorithm comparing with other algorithms

To evaluate the time efficiency of our proposed algorithm, we recorded its execution time and compared it with the execution 
times of the baseline algorithms. The comparison algorithms used are DI [30], IE [40], SDET [39], and FIE [31], as introduced in 
subsubsection 4.1.2. The runtime comparison of these five algorithms across different datasets is presented in Table 11.
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Table 10

Comparison of the AQ of various algorithms after using DT for classification tasks.

raw max min mean DI IE DSET FIE our method 
abalone 0.5026 0.4620 0.4651 0.4777 0.4656 0.4570 0.4929 0.4530 0.5026 
avila-ts 0.9864 0.2712 0.3074 0.3803 0.3271 0.2613 0.9856 0.2963 0.9864 
ecoli 0.7999 0.7269 0.7648 0.7655 0.7721 0.7436 0.7318 0.6917 0.7999 
musk 0.7940 0.6613 0.7416 0.7169 0.7325 0.7339 0.7871 0.6628 0.7907 
pendigits 0.9598 0.9241 0.9215 0.9509 0.9348 0.9185 0.9608 0.9202 0.9598 
QSAR 0.8096 0.7433 0.7237 0.7642 0.7357 0.7318 0.8120 0.7016 0.8096 
SBD 0.9976 0.9939 0.9935 0.9949 0.9948 0.9867 0.9975 0.9948 0.9976 
SGC 0.6824 0.6182 0.6476 0.6153 0.6456 0.6068 0.6823 0.6319 0.6824 
Toxicity 0.5426 0.5655 0.5641 0.6078 0.5647 0.5219 0.4846 0.6125 0.5830 
waveform 0.7505 0.7176 0.7095 0.7474 0.7310 0.6632 0.7496 0.6521 0.7505 
WCD 0.6115 0.5500 0.5933 0.5558 0.5515 0.5424 0.5533 0.5672 0.6115 
wine 0.8837 0.9122 0.9462 0.9338 0.9455 0.9124 0.9120 0.8390 0.8719 

Table 11

Comparison of the time taken by various algorithms to perform information fusion 
tasks.

DI IE DSET FIE our method 
abalone 0.77 1981.24 1145.21 7435.85 23.20 
avila 4.90 72945.65 55826.85 156573.69 767.27 
ecoli 0.06 8.72 6.19 18.14 0.21 
musk 1.84 288.54 321.42 833.41 4.46 
pendigits 4.50 17370.54 27529.67 87019.20 257.71 
QSAR 0.99 356.04 381.40 1041.96 5.49 
SBD 1.35 3588.41 5528.96 12318.33 47.33 
SGC 0.49 156.22 163.27 519.25 2.21 
Toxicity 4.93 275.08 598.35 858.21 12.86 
waveform 2.62 4683.70 7699.44 11541.55 66.48 
WCD 0.07 12.42 11.67 40.38 0.25 
wine 0.05 3.23 3.13 9.34 1.26 

4.2. Experimental results

In this subsection, we analyze the experimental results to determine how different parameters in the algorithm affect the final 
outcomes, as well as the algorithm’s time efficiency and effectiveness.

4.2.1. The analysis of parameters’ impact on the final performance of the algorithm

First, we analyze the impact of parameter 𝑟 on the final results through Fig. 3. For the SVM classifier, the classification accuracy 
shows relatively small fluctuations as 𝑟 varies, indicating that linear classifiers like SVM are not particularly sensitive to changes 
in 𝑟. For the KNN classifier, its classification accuracy remains largely unaffected by the variation of 𝑟 in most classification tasks. 
However, in datasets where accuracy fluctuates more significantly, KNN tends to achieve higher accuracy when 𝑟 is set to 1 or 2. 
The DT classifier, on the other hand, is more sensitive to changes in 𝑟. In most datasets, its classification accuracy varies considerably 
with different 𝑟 values. By observing all the accuracy curves for DT, it can be concluded that for most datasets, setting 𝑟 to 1 or 2 
results in higher classification accuracy. Overall, selecting 𝑟 as 1 or 2 tends to yield better classification accuracy across classifiers. 
Meanwhile, by observing the runtime curves, it can be seen that in most cases, the algorithm runs faster as the value of 𝑟 increases. 
In conclusion, if the goal is to reduce the algorithm’s runtime, a larger 𝑟 value should be chosen. On the other hand, if the objective 
is to improve classification accuracy, a smaller 𝑟 value may be more appropriate.

Next, we analyze the impact of the parameter 𝛼 on classification accuracy using Fig. 4. By observing the curves for KNN and 
SVM, it can be seen that these two classifiers are not particularly sensitive to changes in 𝛼. In datasets with a large number of 
samples and few attributes, their classification accuracy remains stable. However, when faced with datasets that have few samples 
and many attributes, their classification accuracy fluctuates significantly, setting 𝛼 around 0.5 tends to result in better classification 
performance. In contrast, the DT (Decision Tree) classifier is more sensitive to changes in 𝛼. Overall, it also tends to achieve higher 
classification accuracy when 𝛼 is around 0.5. Therefore, setting 𝛼 to 0.5 is generally a suitable choice for most situations.

4.2.2. The analysis of our algorithm’s effectiveness comparing with other algorithms

According to Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10, our algorithm performs well compared to other information 
fusion algorithms across all three classifiers. In most datasets, it achieves a noticeable improvement in classification accuracy and 
AQ, particularly when handling datasets with a large number of samples, such as Avila, Pendigits, and SBD However, in datasets with 
a large number of attributes, such as Musk and Toxicity, the algorithm does not perform as well. Compared with other algorithms, 
our method demonstrates greater advantages when using DT as the classification model. Moreover, compared with some RST-based 
algorithms such as IE and FIE, our proposed algorithm improves the classification accuracy of the information fusion results. This 
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may be due to the fundamental mechanism of the algorithm, which selects the best information source for each attribute individually 
without considering the relationships between attributes. As the number of attributes increases, the influence of any single attribute on 
the final classification performance diminishes. Consequently, evaluating each attribute in isolation becomes less effective in reflecting 
the overall impact of the information system on classification. Therefore, incorporating a mechanism that considers the information 
system as a whole during the fusion process would enable the algorithm to perform better when dealing with datasets that have many 
attributes but few samples. The p-values of the Friedman test under the classification accuracy and AQ metrics are 0.00000153 and 
0.00000025, respectively. Using a significance level of 5%, we would reject the null hypothesis in favor of the alternative hypothesis: 
“The performance differences among the algorithms are statistically significant''. According to Fig. 5 and Fig. 6, We can conclude 
that our algorithm demonstrates better efficiency compared to the other algorithms.

4.2.3. The analysis of our algorithm’s time efficiency comparing with other algorithms

We analyze the time efficiency of our method based on the runtime comparison of the five algorithms presented in Table 11. 
Among all algorithms, the DI algorithm consistently has the shortest runtime; however, it also yields relatively low classification 
accuracy in information fusion tasks. Compared to the IE, DSET, and FIE algorithms, our method shows a significant improvement in 
runtime. This is especially evident in datasets with a large number of samples, such as Avila, Pendigits, and SBD, where our algorithm 
can save approximately 100 times more computation time compared to most other information fusion methods. Even in datasets with 
a large number of attributes, such as Musk and Toxicity, our algorithm demonstrates notably high computational efficiency compared 
to the majority of other fusion algorithms.

5. Conclusion and future work

In this section, we summarize the main content of this paper. First, we generate the neighborhood set using GRNRS. In this process, 
we propose an optimized algorithm for calculating the neighborhood set. Then, we introduce the concept of neighborhood approxi
mate accuracy as a metric for evaluating the contribution of information sources to classification tasks under specific attributes. By 
combining PCC, we construct the adjacent matrix for information sources, where the elements represent the quality of the information 
source pairs. Next, we use a graph path algorithm to calculate the preference value of each information source. Finally, we select the 
information source corresponding to the maximum preference value as the final information source under the specific attribute 𝑎.

In the experimental section, we analyze the impact of parameter variations on the algorithm’s results by comparing the classifica
tion accuracy of KNN, SVM, and DT classifiers for different values of parameters 𝑟 and 𝛼. The experimental results indicate that as the 
value of 𝑟 increases, the computation time decreases, while a smaller 𝑟 leads to higher classification accuracy. When 𝛼 is set to 0.5, 
a better classification accuracy is more likely to be achieved. Additionally, we compare our algorithm with several other algorithms 
and conduct the Friedman and Nemenyi test on the comparison results to assess our algorithm’s effectiveness. The results show that 
our algorithm performs well across all three classifiers, especially when handling multi-sample data. However, its performance is less 
satisfactory when dealing with multi-attribute data. Finally, we analyze the time efficiency of our algorithm by comparing its exe
cution time with that of various other algorithms. The results demonstrate that our algorithm significantly reduces the computation 
time compared to most information fusion algorithms, showcasing its high time efficiency.

Our algorithm still has considerable room for improvement and optimization. Firstly, the algorithm performed poorly in the 
experiments when handling multi-attribute datasets. As the possible reason proposed in subsubsection 4.2.2, future work can focus 
on incorporating a mechanism that holistically considers the entire information system during the fusion process to address this issue. 
Secondly, our algorithm currently only handles single-value multi-source information systems. In the future, modifications can be 
made to adapt the algorithm to handle other types of information systems.
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