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 A B S T R A C T

Multi-label learning tasks typically involve complex correlation between labels, which often span across 
multiple levels. Accurately capturing and fusing these multi-level correlation information is crucial for 
improving prediction performance and understanding the potential relationship between labels. The current 
mainstream label correlation acquisition methods mainly focus on statistical analysis of labels. However, these 
methods lack exploration of the hierarchical structure of correlation, which may lead to the cognitive bias of 
labels and the decline in predictive performance. To address this, a multi-label learning model with multi-level 
correlation information fusion via three-way concept-cognitive learning (MCF-3WCCL) is proposed to capture 
the hierarchical correlation between labels more comprehensively, improve the prediction performance and 
enhance the interpretability. In this model, three-way concept-cognitive operators are utilized to structurally 
represent label concepts, thereby capturing the hierarchical correlations among labels. Additionally, the extent 
of label concepts are used as clues, which are mapped into feature concepts to form the dependencies between 
labels and features. On this basis, by fusing these feature concepts, the overall cognition of the label is finally 
formed. Extensive comparative experiments reflect that the proposed method is superior and versatile.
. Introduction

Traditional supervised learning only allows each sample to be as-
ociated with one of multiple candidate labels. However, in the real 
orld, the data is often more complex, with a single sample typically 
ssociated with multiple labels. Traditional supervised learning has 
een unable to meet this demand. As a result, multi-label learning 
as garnered extensive attention in various fields such as sentiment 
nalysis, text recognition, data mining and so on [1–5]. The hallmark 
f multi-label learning is that the label variables show the intrinsic 
orrelation in the label space [6–9]. Therefore, an important research 
irection is how to mine and utilize useful label correlation from 
omplex multi-label data.
Recently, the study of label correlation in multi-label learning has 

arnered widespread attention [10–12]. label correlation can signifi-
antly improve model performance and enhance model interpretabil-
ty [7]. Based on this, many excellent methods have been devel-
ped [13–15]. Dai et al. [16] introduced a method using fuzzy con-
itional mutual information to calculate mutual information between 
abels, effectively capturing potential correlations within the label 
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space. GLFS [17] improves generalization performance by using local 
label correlations, which are learned through jointly learning of com-
mon features among similar labels and the specific features of each 
individual label. 2SML [18] utilizes highly representative instances 
to learn implicit correlations. Although these methods have achieved 
excellent performance to varying degrees, most of them focus on 
modeling label correlations at a single level, overlooking the poten-
tial multi-level and hierarchical structural relationships among labels. 
In addition, some methods are also affected by the class imbalance 
problem. Zhao et al. [19,20] attempted to alleviate this limitation by 
introducing label distribution information and label correlations for 
data enhancement. Other studies have sought to mine both positive 
and negative semantic information from labels to improve the un-
derstanding of label semantics [21,22], but they also lack in-depth 
modeling of correlation hierarchies. In fact, when processing complex 
information, the human cognitive system often follows a knowledge 
formation process that progresses from global to local, and from ab-
stract to concrete. High-level information provides global guidance 
for overall direction, while low-level information contributes to detail 
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refinement and supplementation. In multi-label learning, correlations at 
different levels influence the target label in different ways. Prioritizing 
the extraction of high-level guidance information and then gradually 
integrating local details aligns more closely with the logic of human 
cognitive development. Therefore, establishing a model that simulates 
this cognitive mechanism and effectively captures multi-level label 
correlations is of great significance for enhancing the model’s reasoning 
and decision-making abilities in complex label spaces.

It is worth noting that concept-cognitive learning (CCL) is an effec-
tive tool for knowledge mining. By simulating human cognitive process, 
learning concepts and revealing the hierarchical structure between con-
cepts, complex knowledge can be more easily understood and applied. 
CCL is a novel paradigm in intelligent learning, which is widely used 
in the fields of cognitive computing and artificial intelligence [23–26]. 
In the 1980s, Wille [27] introduced formal concept analysis (FCA), a 
formal method for defining the structure and relationships of concepts. 
A classical concept typically comprises two components: extent and 
intent, each of which can be uniquely determined by the other [28,29]. 
On this basis, CCL simulates the behavior of the human brain in 
concept learning through a specific cognitive model, aiming to identify 
concepts and learn objects from given clues [30]. In this process, 
concepts play a crucial role in knowledge mining and integrating 
data into wisdom. Recently, scholars have put forward various CCL 
models and methods to meet different practical needs [31–33]. Guo 
et al. [34] proposed a concept recall mechanism, which integrates 
past experience into the system by recalling relevant knowledge, and 
realizes the dynamic update of knowledge. To effectively avoids the 
high dependency of cognitive results on the order of attribute cognition, 
Liu et al. [35] adopted a random strategy independent of attribute 
order. However, the above methods are still not sufficient for the 
completeness of knowledge description. It is particularly noteworthy 
that the CCL model based on the three-way decision theory [36–38] 
is a significant representative study. This model introduces the idea 
of three divisions: the positive, negative, and boundary regions. It has 
achieved significant results in terms of the completeness of knowledge 
description and the reduction of cognitive bias [39–42]. Taking into 
account the limitations of individual cognition and the incompleteness 
of cognitive environment, Yuan et al. [43] established a progressive 
fuzzy three-way concept. In order to make the generated concept more 
flexible, Zhang et al. [44] put forward a variable precision three-
way concept induced by objects. This method allows multiple suitable 
concepts to be generated by setting different thresholds. Nevertheless, 
these methods focus on the concept generation in the feature space and 
ignore the complex semantic relationships between labels. This limits 
the application of CCL in multi-label learning.

In view of the advantages of CCL in knowledge mining, CCL pro-
vides an effective approach for the precisely mining multi-level correla-
tion information by comprehending and utilizing the relationship and 
hierarchical structure between concepts. Additionally, label concepts 
can help us discover implicit relationships between labels rather than 
relying solely on statistical co-occurrence. This method avoids cognitive 
biases that may result from label sparsity and builds more interpretable 
correlation model. Therefore, researchers have combined CCL with 
multi-label learning and achieved good results. Wu et al. [45] proposed 
a multi label classification based on the correlation concepts of positive 
and negative. Liu et al. [46] proposed a multi-level information fusion 
approach for stochastic concept clustering to deal with missing labels. 
However, they have a drawback in that they cannot be directly applied 
to continuous values. Instead, continuous values must be converted 
into discrete ones through discretization, which may lead to the loss of 
some information during this process. Therefore, further exploring the 
combination of CCL and multi-label learning is promising and worthy 
of investigation.

Based on the above discussion, we propose a multi-level correlation 
information fusion method via three-way concept-cognitive learning 
2 
for multi-label learning (MCF-3WCCL). Utilize the three-way concept-
cognitive learning to obtain label concepts and calculate the degree of 
importance of label concepts to the target label based on their structural 
information. We use the extent of label concepts as clues to construct 
the relationship between the label and the feature. Further, by fusing 
these feature concepts, the overall cognition of the label is finally 
formed. This approach can better leverage the effects of correlation in-
formation at different levels on labels, enhancing the model’s predictive 
performance and interpretability. The main contributions of this paper 
are as follows:

• The three-way concept-cognitive operator integrates positive and 
negative information to learn the label concept, which makes 
the acquired knowledge description more accurate and effectively 
reduces the cognitive bias of the label.

• The model calculates the degree of importance of label concepts 
to the target label based on their structural information, effec-
tively avoid the system paying too much attention to the local 
details and losing the integrity and improves the interpretability 
of the model.

• Constructing label correlation matrix from both extent and intent 
perspectives enables the multi-label learning model to more com-
prehensively understand and utilize the intrinsic structural infor-
mation of the data, thereby improving the prediction performance 
and generalization ability of the model.

The structure of this paper is as follows: Section 2 reviews the pre-
liminary knowledge relevant to this paper. Section 3 provides a detailed 
introduction to multi-level label correlation information mining and 
fusing mechanism based on three-way concept analysis. In Section 4, 
the MCF-3WCCL is verified and analyzed by experiments. The final 
section gives the conclusion.

2. Preliminaries

This section briefly reviews multi-label learning, fuzzy formal con-
cept analysis and fuzzy three-way concept analysis to clarify the knowl-
edge and notations used in this paper. For convenience, the main 
symbols used in this paper are listed in Table  1.

2.1. Multi-label learning

In multi-label learning framework [1,7], a multi-label dataset 𝑫 =
{(

𝐱𝑖, 𝐲𝑖
)}𝑛

𝑖=1 with 𝑛 samples is given, where 𝐱𝑖 =
[

𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚
] is the 

𝑚-dimensional feature vector of 𝑥𝑖 and 𝐲𝑖 =
[

𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝑞
] is the 𝑞-

dimensional label vector of 𝑥𝑖. The value 𝑦𝑖𝑗 ∈ {0, 1} characterizes the 
binary relationship between the label variable 𝑙𝑗 and the sample 𝑥𝑖, 
where 𝑦𝑖𝑗 = 1 means that the sample 𝑥𝑖 is associated with the label 𝑙𝑗 , 
and 𝑦𝑖𝑗 = 0 means that the sample 𝑥𝑖 is not associated with the label 
𝑙𝑗 . The feature matrix of the multi-label dataset is represented as 𝐗 =
[

𝐱1, 𝐱2,… , 𝐱𝑛
]T ∈ R𝑛×𝑚, and the label matrix is 𝐘 =

[

𝐲1, 𝐲2,… , 𝐲𝑛
]T ∈

{0, 1}𝑛×𝑞 .
The goal of multi-label learning is to obtain a mapping relation-

ship from the feature space to the label space, and to predict the 
labels of samples with known features but unknown labels. Hence, the 
multi-label learning problem can be formulated as follows:

min
𝑊

1
2
‖𝐗𝐖 − 𝐘‖2𝐹 + 𝜆‖𝐖‖1,

where 𝐖 ∈ R𝑚×𝑞 is a weight matrix, ‖⋅‖𝐹  represents the matrix 𝐹 -norm, 
‖𝐖‖  represents a regularization term, 𝜆 is a tradeoff parameter.
1
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Table 1
The summary of the main symbols.
 Symbol Description Symbol Description  
 𝐗 The feature matrix, 𝐗 ∈ R𝑛×𝑚 ̃▽, ▽ A pair of fuzzy three-way concept cognitive operators 
 𝐘 The label matrix, 𝐘 ∈ {0, 1}𝑛×𝑞 △, △ A pair of three-way concept cognitive operators  
 𝐖 The weight matrix, 𝐖 ∈ R𝑚×𝑞 𝑗 The 3WL-concept space of the label 𝑙𝑗  
 ‖ ⋅ ‖1 The 𝑙1-norm 𝑗 The weighted 3WL-concept space of the label 𝑙𝑗  
 ‖ ⋅ ‖2𝐹 The 𝐹 -norm 𝑗 The weighted fuzzy 3WF-concept space of the label 𝑙𝑗 
 𝑈 The set of objects 𝑝𝑐𝑗 The overall cognition of the label 𝑙𝑗  
 𝐴 The set of features 𝑟𝑒𝑥 The extent relevance  
 𝐿 The set of labels 𝑟𝑖𝑛 The intent relevance  
 𝐴̃ (𝑎) The fuzzy membership degree of 𝑎 in 𝐴̃ 𝑟𝑖𝑗 The label correlation between 𝑙𝑖 and 𝑙𝑗  
 𝑅̃𝐴 The fuzzy relation 𝑅̃𝐴 ∶ 𝑈 × 𝐴 → [0, 1] 𝐑 The label correlation matrix  
 𝑅𝐿 The binary relation 𝑅𝐿 ∶ 𝑈 × 𝐿 → {0, 1}  
2.2. Fuzzy formal concept analysis

In this subsection, we describe the fuzzy formal context and the 
fuzzy concept, which are also discussed in [24,28,31].

A triplet (𝑈,𝐴, 𝑅̃𝐴
) is called a fuzzy formal context, where 𝑈 =

{

𝑥1, 𝑥2, ⋯ , 𝑥𝑛
} and 𝐴 =

{

𝑎1, 𝑎2, ⋯ , 𝑎𝑚
} represent an object set and a 

feature set, respectively. The power sets of 𝑈 is represented by  (𝑈 ). 
𝑅̃𝐴 is a fuzzy relation between 𝑈 and 𝐴. The fuzzy relation 𝑅̃𝐴 ∶
𝑈 × 𝐴 → [0, 1], 𝑅̃𝐴 (𝑥, 𝑎) denotes the membership degree of 𝑥 with 
respect 𝑎.

Assume 𝐴 is a universe, for any 𝑎 ∈ 𝐴, the value 𝐴̃ (𝑎) ∶ 𝐴 → [0, 1]
is referred to as the fuzzy membership degree of 𝑎 in 𝐴̃. Then  (𝐴)
represents the set of all fuzzy subsets of 𝐴. Let 𝐵̃1 and 𝐵̃2 be two fuzzy 
sets on 𝐴. If 𝐵̃1 (𝑎) ⩽ 𝐵̃2 (𝑎), then 𝐵̃1 is a subset of 𝐵̃2, i.e., 𝐵̃1 ⊆ 𝐵̃2.

Definition 1.  Let (𝑈,𝐴, 𝑅̃𝐴
) be a fuzzy formal context. For any 𝑋 ⊆ 𝑈 , 

𝐵 ⊆ 𝐴 and 𝐵̃ ∈  (𝐴), the concept cognitive operators ̃ ∶  (𝑈 ) →

 (𝐴)  and  ∶  (𝐴) →  (𝑈 ) are defined by:

̃ (𝑋) (𝑎) =
⋀

𝑥∈𝑋
𝑅̃𝐴 (𝑥, 𝑎), 𝑎 ∈ 𝐴,


(

𝐵̃
)

=
{

𝑥 ∈ 𝑈 |∀𝑎 ∈ 𝐵, 𝐵̃ (𝑎) ⩽ 𝑅̃𝐴 (𝑥, 𝑎)
}

.

Property 1.  For ∀𝑋,𝑋1, 𝑋2 ∈  (𝑈 ) and 𝐵̃, 𝐵̃1, 𝐵̃2 ∈  (𝐴), the following 
statements hold:
(1) 𝑋1 ⊆ 𝑋2 ⇒ ̃

(

𝑋2
)

⊆ ̃
(

𝑋1
)

;
(2) 𝐵̃1 ⊆ 𝐵̃2 ⇒ 

(

𝐵̃2
)

⊆ 
(

𝐵̃1
)

;
(3) 𝑋 ⊆ ̃ (𝑋) , 𝐵̃ ⊆ ̃

(

𝐵̃
)

;
(4) ̃

(

𝑋1 ∪𝑋2
)

= ̃
(

𝑋1
)

∩ ̃
(

𝑋2
)

;
(5) 

(

𝐵̃1 ∪ 𝐵̃2
)

= 
(

𝐵̃1
)

∩
(

𝐵̃2
)

;
(6) ̃

(

𝑋1 ∩𝑋2
)

⊇ ̃
(

𝑋1
)

∩ ̃
(

𝑋2
)

;
(7) 

(

𝐵̃1 ∩ 𝐵̃2
)

⊇ 
(

𝐵̃1
)

∪
(

𝐵̃2
)

.

Thus, a pair (𝑋, 𝐵̃
) is fuzzy concept if ̃ (𝑋) = 𝐵̃ and  (

𝐵̃
)

=
𝑋. In general, 𝑋 and 𝐵̃ are called extent and intent, respectively, 
which can be uniquely determined by each other. The fuzzy concept 
lattice 𝐿̃ (

𝑈,𝐴, 𝑅̃
) is the referred to all fuzzy concepts in (𝑈,𝐴, 𝑅̃𝐴

)

. 
For ∀ (𝑋1, 𝐵̃1

)

,
(

𝑋2, 𝐵̃2
)

∈ 𝐿̃
(

𝑈,𝐴, 𝑅̃𝐴
)

, the ordered by (𝑋1, 𝐵̃1
)

⩽
(

𝑋2, 𝐵̃2
)

⇔ 𝑋1 ⊆ 𝑋2 ⇔ 𝐵̃2 ⊆ 𝐵̃1.

2.3. Fuzzy three-way concept analysis

Subsequently, the authors [38,40] combines three-way theory with 
formal concept analysis to explore it through positive and negative 
information, leading to three-way concept analysis. Correspondingly, a 
pair of negative concept cognitive operators are represented as follows.

Let 𝑅̃−
𝐴 = 𝑈 × 𝐴 − 𝑅̃𝐴 be the complement of the relation 𝑅̃𝐴, where 

𝑅̃−
𝐴 (𝑥, 𝑎) = 1 − 𝑅̃𝐴 (𝑥, 𝑎) reflects the non-membership degree of object 𝑥

to attribute 𝑎.
3 
Definition 2.  Let (𝑈,𝐴, 𝑅̃𝐴
) be a fuzzy formal context. For any 

𝑋 ⊆ 𝑈 , 𝐵 ⊆ 𝐴 and 𝐵̃ ∈  (𝐴), the negative concept cognitive operators 
̃− ∶  (𝑈 ) →  (𝐴)  and − ∶  (𝐴) →  (𝑈 ) are given as follows:
̃− (𝑋) (𝑎) =

⋀

𝑥∈𝑋
𝑅̃−
𝐴 (𝑥, 𝑎), 𝑎 ∈ 𝐴,

− (

𝐵̃
)

=
{

𝑥 ∈ 𝑈 |∀𝑎 ∈ 𝐵, 𝐵̃ (𝑎) ⩽ 𝑅̃−
𝐴 (𝑥, 𝑎)

}

,

where 𝐵̃ is the fuzzy set on the complement of 𝐴.
Furthermore, to represent both positive and negative information 

concurrently, we combine positive and negative cognitive operators to 
create three-way cognitive operators.

Definition 3.  Let (𝑈,𝐴, 𝑅̃𝐴
) be a fuzzy formal context. For any 𝑋 ⊆ 𝑈

and 𝐵̃1, 𝐵̃2 ∈  (𝐴), the fuzzy three-way concept cognitive operators 
̃▽ ∶  (𝑈 ) →  (𝐴) ×  (𝐴) and ▽ ∶  (𝐴) ×  (𝐴) →  (𝑈 ) are 
defined by:

̃▽ (𝑋) =
(

̃ (𝑋) , ̃− (𝑋)
)

,

▽ (

𝐵̃1, 𝐵̃2
)

= 
(

𝐵̃1
)

∩− (

𝐵̃2
)

.
Then, (𝑋,

(

𝐵̃1, 𝐵̃2
)) is a fuzzy three-way concept if ̃▽ (𝑋) =

(

𝐵̃1, 𝐵̃2
) and ▽

(

𝐵̃1, 𝐵̃2
)

= 𝑋. Obviously, 
(

▽̃▽ (𝑋) , ̃▽ (𝑋)
)

represent the object-induced fuzzy three-way concept.

3. Mining multi-level correlation information based on three-way 
concept analysis

Generally speaking, humans typically adopt a multi-level cognitive 
style in the process of understanding labels. High-level information 
helps us quickly grasp the main characteristics and overarching signif-
icance of labels, while low-level information focuses on local features 
and unique meanings. By processing multi-level information, humans 
avoid overlooking the global significance while also considering the 
specific details, so as to make a more accurate and comprehensive 
understanding of labels. In this section, It should be noted that each 
label concept contains rich label correlation information. The weights 
are assigned according to the degree of importance of these multi-level 
correlation information to the target label. Furthermore, the overall 
cognition of the target label is obtained by associating and fusing the 
corresponding feature concepts. Finally, a multi-label learning model, 
named MCF-3WCCL, is constructed.

3.1. Acquire the multi-level correlation information

In multi-label data, labels are usually scarce and uncertain, making 
it challenging to accurately identify and learn them. Additionally, 
complex correlations exist between labels, and relying solely on limited 
positive label information may result in insufficient model learning or 
poor generalization. Therefore, to better model and utilize the limited 
label information, it is crucial to fully utilize both the positive and 
negative information in the labels, as well as the structural relationships 
between label semantics. In this subsection, we will use three-way 
concept analysis to uncover potential multi-level label correlations and 
enhance the model’s understanding of labels.
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Table 2
A multi-label context about animals.
 𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 
 𝑥1 0.8 0.4 0.6 0.3 1 1 0 1 0  
 𝑥2 0.5 0.7 0.2 0.1 1 0 0 0 0  
 𝑥3 0.1 0.9 0.8 0.7 0 0 1 1 1  
 𝑥4 0.6 0.2 0.4 0.3 1 0 0 1 0  
 𝑥5 0.3 0.5 0.7 0.9 0 0 1 0 1  
 𝑥6 0.4 0.8 0.3 0.6 0 0 1 1 0  
 𝑥7 0.9 0.6 0.4 0.2 1 0 0 0 1  

Definition 4.  A quintuple ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ is called a multi-label 

context, where 𝑈 =
{

𝑥1, 𝑥2,… , 𝑥𝑛
} represents a non-empty finite 

sample set, 𝐴 =
{

𝑎1, 𝑎2,… , 𝑎𝑚
} represents a non-empty finite feature 

set, and 𝐿 =
{

𝑙1, 𝑙2,… , 𝑙𝑞
} represents a non-empty finite label set, 

which contains 𝑞 possible label variables. 𝑅̃𝐴 ∶ 𝑈 ×𝐴 → [0, 1] is a fuzzy 
relation between 𝑈 and 𝐴, 𝑅̃𝐴 (𝑥, 𝑎) denotes the membership degree of 
𝑥 with respect 𝑎. 𝑅𝐿 ∶ 𝑈 × 𝐿 → {0, 1} is a binary relation between 𝑈
and 𝐿, 𝑥𝑅𝐿𝑙 = 1 represents object 𝑥 with label 𝑙.

Definition 5.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context. For 

any 𝑋 ⊆ 𝑈 and 𝐿1, 𝐿2 ⊆ 𝐿, the three-way concept-cognitive operators 
△ ∶  (𝑈 ) →  (𝐿)× (𝐿) and △ ∶  (𝐿)× (𝐿) →  (𝑈 ) are defined 
by:

△ (𝑋) = ( (𝑋) ,− (𝑋)) ,

△ (

𝐿1, 𝐿2
)

= 
(

𝐿1
)

∩− (

𝐿2
)

,

where, the positive operators  (𝑋) and  (

𝐿1
) are as follows:

 (𝑋) =
{

𝑙 ∈ 𝐿|∀𝑥 ∈ 𝑋, 𝑥𝑅𝐿𝑙 = 1
}

,


(

𝐿1
)

=
{

𝑥 ∈ 𝑈 |∀𝑙 ∈ 𝐿1, 𝑥𝑅𝐿𝑙 = 1
}

.

The negative operators − (𝑋) and − (

𝐿2
) are as follows:

− (𝑋) =
{

𝑙 ∈ 𝐿|∀𝑥 ∈ 𝑋, 𝑥𝑅𝐿𝑙 = 0
}

,

− (

𝐿2
)

=
{

𝑥 ∈ 𝑈 |∀𝑙 ∈ 𝐿2, 𝑥𝑅𝐿𝑙 = 0
}

.

Then, (𝑋,
(

𝐿1, 𝐿2
)) is a three-way label concept (3WL-concept) if 

△ (𝑋) =
(

𝐿1, 𝐿2
) and △

(

𝐿1, 𝐿2
)

= 𝑋. Obviously, 
(

△△ (𝑋) ,

△ (𝑋)
)

 and 
(

△
(

𝐿1, 𝐿2
)

,△
(

△
(

𝐿1, 𝐿2
)

))

 are 3WL-concepts. 
Moreover, if 𝑋 ⊆ 𝑋′ or (𝐿′

1, 𝐿
′
2
)

⊆
(

𝐿1, 𝐿2
)

, then (𝑋,
(

𝐿1, 𝐿2
)) is re-

ferred to as a sub-concept of (𝑋′,
(

𝐿′
1, 𝐿

′
2
))

, denoted by (𝑋,
(

𝐿1, 𝐿2
))

⩽
(

𝑋′,
(

𝐿′
1, 𝐿

′
2
))

.

Definition 6.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context, for any 

𝑙 ∈ 𝐿 and 𝑥 ∈ 𝑈𝑗 ⊆ 𝑈 , where 𝑈𝑗 is the set of all samples with label 𝑙𝑗 , 
then the 3WL-concept space of the label 𝑙𝑗 is defined by :
𝑗 =

{

( (𝑥) ∩−− (𝑥) , ( (𝑥) ,− (𝑥))) |𝑥 ∈ 𝑈𝑗
}

∪ {( (𝑙) ∩− (𝑙¬) , ( (𝑙) ,−− (𝑙¬))) |𝑙 ∈ 𝐿} ,

where 𝑙¬ denotes any label except 𝑙. 𝑗 denotes the set of all 
3WL-concepts under the label 𝑙𝑗 . For convenience, we briefly note the 
3WL-concept as (𝑋𝑘,

(

𝐿+
𝑘 , 𝐿

−
𝑘
))

.

In reality, each 3WL-concept has rich label correlation information, 
𝐿+
𝑘  contains labels that are common to 𝑋𝑘, and 𝐿−

𝑘  contains labels 
that are not common to 𝑋𝑘. In addition, multi-level relationships can 
be formed between 3WL-concepts. The following we through a simple 
example to illustrate.

Example 1. Table  2 is a multi-label context, where 𝑈 =
{

𝑥1, 𝑥2,… , 𝑥7
}

correspond to Lion, Elephant, Eagle, Wolf, Swallow, Owl, and Cow, 
respectively. 𝐴 =

{

𝑎1, 𝑎2, 𝑎3, 𝑎4
} is a feature set, and 𝐿 =

{

𝑙1, 𝑙2,… , 𝑙5
}

is a label set where 𝑙1, 𝑙2,… , 𝑙5 correspond to Mammal, Felid, Bird, 
Predator, and Migratory Animal, respectively. 
4 
Fig. 1. Multi-level relationships between 3WL-concepts.

Taking the label 𝑙1 as an example, we can calculate the 3WL-concept 
space of the label 𝑙1 :
1

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

({

𝑥1, 𝑥2, 𝑥4, 𝑥7
}

,
({

𝑙1
}

,
{

𝑙3
}))

,
({

𝑥1, 𝑥2, 𝑥4
}

,
({

𝑙1
}

,
{

𝑙3, 𝑙5
}))

,
({

𝑥2, 𝑥4, 𝑥7
}

,
({

𝑙1
}

,
{

𝑙2, 𝑙3
}))

,
({

𝑥1, 𝑥4
}

,
({

𝑙1, 𝑙4
}

,
{

𝑙3, 𝑙5
}))

,
({

𝑥2, 𝑥7
}

,
({

𝑙1
}

,
{

𝑙2, 𝑙3, 𝑙4
}))

,
({

𝑥1
}

,
({

𝑙1, 𝑙2, 𝑙4
}

,
{

𝑙3, 𝑙5
}))

,
({

𝑥4
}

,
({

𝑙1, 𝑙4
}

,
{

𝑙2, 𝑙3, 𝑙5
}))

,
({

𝑥2
}

,
({

𝑙1
}

,
{

𝑙2, 𝑙3, 𝑙4, 𝑙5
}))

,
({

𝑥7
}

,
({

𝑙1, 𝑙5
}

,
{

𝑙2, 𝑙3, 𝑙4
}))

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

For ({𝑥1, 𝑥2, 𝑥4, 𝑥7
}

,
({

𝑙1
}

,
{

𝑙3
}))

, 𝑙1 is the co-occurrence label of 
{

𝑥1, 𝑥2, 𝑥4, 𝑥7
}

, and 𝑙3 is a label that 
{

𝑥1, 𝑥2, 𝑥4, 𝑥7
} does not have in 

common. It shows that 𝑙1 (Mammal) and 𝑙3 (Bird) may be mutually 
exclusive. In fact, 𝑙1 and 𝑙3 do exist mutually exclusive from the 
actual semantics. In addition, for ({𝑥1, 𝑥2, 𝑥4

}

,
({

𝑙1
}

,
{

𝑙3, 𝑙5
}))

, nega-
tive labels {𝑙3, 𝑙5

} may exhibit a correlation, because bird is typically 
migratory animal. Therefore, 3WL-concepts contain rich correlation 
information, including both positive and negative correlations.

Through the extent of 3WL-concepts, we can get a multi-level 
relationship as shown in Fig.  1. We can observe that as the hierarchy 
level increases, the number of included samples gradually increases, 
and the information covered becomes more extensive. For example, at 
the top level of the hierarchy, ({𝑥1, 𝑥2, 𝑥4, 𝑥7

}

,
({

𝑙1
}

,
{

𝑙3
})) has the 

label 𝑙1 as the common label of its samples. 𝑙1 (Mammal) is a highly 
generalized label that can typically cover more animal samples. As the 
hierarchy extends downward, the number of samples decreases, and 
the information becomes more specific. For example, at the bottom 
level, ({𝑥1

}

,
({

𝑙1, 𝑙2, 𝑙4
}

,
{

𝑙3, 𝑙5
})) represents individual lion, which is a 

more specific subclass of the mammal, which reflects the characteristics 
of local information. Therefore, constructing multi-level correlation 
information helps us better understand labels.

3.2. The overall cognition of the label

The human cognitive system tends to establish a knowledge system 
gradually, progressing from global to local. Based on this, high-level 
information, serving as the core of global guidance, should be priori-
tized to ensure that the model or system follows the correct direction. 
To simulate the process of human recognition and learning labels, we 
assign weights to 3WL-concepts based on the hierarchical structure 
and follow a progressive pattern of decreasing weights layer by layer. 
This approach helps balance the conflict between global objectives 
and specific details, preventing the system from overly focusing on 
local details and losing the generality of the objective. Additionally, 
in real-world data, samples with similar features often share similar 
labels. Therefore, we maintain a similar topological structure between 
3WF-concepts and 3WL-concepts through the extent of 3WL-concepts, 
thereby modeling the relationship between features and labels more 
effectively.

Definition 7.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context. For any 

(

𝑋 ,
(

𝐿+, 𝐿−)) ∈  , 𝑈 ⊆ 𝑈 is the set of all samples with label 𝑙 . 
𝑘 𝑘 𝑘 𝑗 𝑗 𝑗
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The measures of extent 𝑋𝑘, positive intent 𝐿+
𝑘  and negative intent 𝐿−

𝑘
are defined as follows:

𝐻𝑒𝑥
(

𝑋𝑘
)

= − 1
ln ||
|

𝑈𝑗
|

|

|

ln
|

|

𝑋𝑘
|

|

|

|

|

𝑈𝑗
|

|

|

, (1)

𝐻+
𝑖𝑛
(

𝐿+
𝑘
)

= − 1
ln |𝐿|

ln
|𝐿| − |

|

|

𝐿+
𝑘
|

|

|

+ 1

|𝐿|
, (2)

𝐻−
𝑖𝑛
(

𝐿−
𝑘
)

= − 1
ln |𝐿|

ln
|𝐿| − |

|

|

𝐿−
𝑘
|

|

|

|𝐿|
, (3)

where |⋅| denotes the cardinality.

Property 2.  Let 𝐻𝑒𝑥
(

𝑋𝑘
)

, 𝐻+
𝑖𝑛
(

𝐿+
𝑘
) and 𝐻−

𝑖𝑛
(

𝐿−
𝑘
) be the measures of 

extent 𝑋𝑘, positive intent 𝐿+
𝑘  and negative intent 𝐿−

𝑘 , respectively. Then

(1) 0 ⩽ 𝐻𝑒𝑥
(

𝑋𝑘
)

,𝐻+
𝑖𝑛
(

𝐿+
𝑘
)

,𝐻−
𝑖𝑛
(

𝐿−
𝑘
)

⩽ 1.
(2) 𝐻𝑒𝑥

(

𝑋1
)

⩾ 𝐻𝑒𝑥
(

𝑋2
)

, if 𝑋1 ⊆ 𝑋2.
(3) 𝐻+

𝑖𝑛
(

𝐿+
1
)

⩽ 𝐻+
𝑖𝑛
(

𝐿+
2
)

, if 𝐿+
1 ⊆ 𝐿+

2 .
(4) 𝐻−

𝑖𝑛
(

𝐿−
1
)

⩽ 𝐻−
𝑖𝑛
(

𝐿−
2
)

, if 𝐿−
1 ⊆ 𝐿−

2 .

The first item shows that the value range of 𝐻𝑒𝑥
(

𝑋𝑘
)

, 𝐻+
𝑖𝑛
(

𝐿+
𝑘
)

, 
𝐻−

𝑖𝑛
(

𝐿−
𝑘
) is [0, 1]. The second to fourth terms indicate that 𝐻𝑒𝑥

(

𝑋𝑘
) is 

monotonically decreasing, while 𝐻+
𝑖𝑛
(

𝐿+
𝑘
) and 𝐻−

𝑖𝑛
(

𝐿−
𝑘
) are monotoni-

cally increasing.

Definition 8.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context. For 

any (𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
))

∈ 𝑗 , 𝐻𝑘 is the measure of 
(

𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
))

. The 
weight 𝑤𝑘 of 

(

𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
)) is defined as follows : 

𝑤𝑘 =
1 −𝐻𝑘

∑𝑠
𝑘=1

(

1 −𝐻𝑘
) , (4)

where 𝐻𝑘 =
𝐻𝑒𝑥

(

𝑋𝑘
)

+𝐻+
𝑖𝑛

(

𝐿+
𝑘

)

+𝐻−
𝑖𝑛

(

𝐿−
𝑘

)

3 , 𝑠 = |

|

|

𝑗
|

|

|

 is the number of 
3WL-concepts in the 3WL-concept space for the label 𝑙𝑗 . Obviously, 
∑𝑠

𝑘=1 𝑤𝑘 = 1.

Property 3.  For any (𝑋1,
(

𝐿+
1 , 𝐿

−
1
))

,
(

𝑋2,
(

𝐿+
2 , 𝐿

−
2
))

∈ 𝑗 , if 
(

𝑋1,
(

𝐿+
1 , 𝐿

−
1
))

⩽
(

𝑋2,
(

𝐿+
2 , 𝐿

−
2
))

, then 𝑤1 ⩽ 𝑤2.

Proof. The proof is immediate from Definitions  5, 8 and Property  2.

This property indicates that the big concept will gain greater impor-
tance. On the one hand, the big concept has a greater extent, that is, 
stronger generalization ability. On the other hand, the big concept has 
a smaller intent, so it is easier to focus attention on the target label.

Definition 9.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context. For any 

(

𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
))

∈ 𝑗 , 𝑤𝑘 is its weight. Then 
(

𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
)

, 𝑤𝑘
) is 

called a weighted 3WL-concept and the weighted 3WL-concept space 
of label 𝑙𝑗 is defined by:

𝑗 =
{(

𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
)

, 𝑤𝑘
)

|𝑋𝑘 ∈ 𝑗
}

.

𝑗 denotes the set of all weighted 3WL-concepts under the la-
bel 𝑙𝑗 .  =

{

1,2,… ,𝑞
} is a set of the weighted 

3WL-concept spaces under all labels. On this basis, Algorithm 1 gives 
the construction process of weighted 3WL-concept space and its time 
complexity is 𝑂

(

𝑞
(

|

|

|

𝑈𝑗
|

|

|

2
+ 2𝑞2 + 2𝑘

))

.

In the above process, we actually determined the degree of impor-
tance of different 3WL-concepts when learning label. Next, we use the 
extent of the weighted 3WL-concepts as clue to obtain the weighted 
fuzzy three-way feature concepts and fuse these concepts to form an 
overall cognition of the target label.
5 
Algorithm 1: Constructing the weighted 3WL-concept space.
Input: A multi-label context ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿

⟩

.
Output: The weighted 3WL-concept space 

 =
{

1,2,⋯ ,𝑞
}

.
1  = ∅ ;
2 for 𝑗 = 1 ∶ 𝑞 do
3 𝑗 = ∅;
4 for each 𝑥 ∈ 𝑈𝑗 and 𝑙 ∈ 𝐿 do
5 Compute 3WL-concept 

( (𝑥) ∩−− (𝑥) , ( (𝑥) ,− (𝑥))) and 
( (𝑙) ∩− (𝑙¬) , ( (𝑙) ,−− (𝑙¬))) by Definitions  5
and 6;

6 𝑗 ← ( (𝑥) ∩−− (𝑥) , ( (𝑥) ,− (𝑥))) and 
( (𝑙) ∩− (𝑙¬) , ( (𝑙) ,−− (𝑙¬)));

7 end 
8 for (𝑋𝑘,

(

𝐿+
𝑘 , 𝐿

−
𝑘
))

∈ 𝑗 do
9 Calculate 𝐻𝑒𝑥

(

𝑋𝑘
) by Eq.  (1);

10 Calculate 𝐻+
𝑖𝑛
(

𝐿+
𝑘
) by Eq.  (2);

11 Calculate 𝐻−
𝑖𝑛
(

𝐿−
𝑘
) by Eq.  (3);

12 end 
13 for 𝑘 = 1 ∶ |

|

|

𝑗
|

|

|

 do
14 Calculate 𝑤𝑘 by Definition  8;
15 𝑗 ←

(

𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
)

, 𝑤𝑘
)

;
16 end 
17  ← 𝑗 ;
18 end 
19 return  =

{

1,2,⋯ ,𝑞
}

.

Definition 10.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context. For 

any (𝑋𝑘,
(

𝐿+
𝑘 , 𝐿

−
𝑘
)

, 𝑤𝑘
)

∈ 𝑗 , the weighted fuzzy three-way fea-
ture concept space of the label 𝑙𝑗 is defined by:

𝑗 =
{(

▽̃▽ (

𝑋𝑘
)

, ̃▽ (

𝑋𝑘
)

, 𝑤𝑘

)

|𝑋𝑘 ∈ 𝑗

}

,

where 
(

▽̃▽
(

𝑋𝑘
)

, ̃▽
(

𝑋𝑘
)

, 𝑤𝑘

)

 is called a weighted fuzzy three-
way feature concept (3WF-concept), for short 

(

𝑋′
𝑘,
(

𝐵̃
′+
𝑘 , 𝐵̃′−

𝑘

)

, 𝑤𝑘

)

.

𝑗 denotes the set of all weighted fuzzy 3WF-concepts for the 
label 𝑙𝑗 . The set of weighted fuzzy 3WF-concept spaces of all labels is 
denoted by  =

{

1,2,…𝑞
}

.

Definition 11.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context, for all 

(

𝑋′
𝑘,
(

𝐵̃
′+
𝑘 , 𝐵̃′−

𝑘

)

, 𝑤𝑘

)

∈ 𝑗 , then the pseudo-concept of the label 
𝑙𝑗 is given by:
𝑋𝑗 = 𝑋′

1 ∪𝑋′
2 ∪⋯ ∪𝑋′

𝑠;

𝐵̃+
𝑗 = 𝑤1𝐵̃

′+
1 +𝑤2𝐵̃

′+
2 +⋯ +𝑤𝑠𝐵̃

′+
𝑠 ;

𝐵̃−
𝑗 = 𝑤1𝐵̃

′−
1 +𝑤2𝐵̃

′−
2 +⋯ +𝑤𝑠𝐵̃

′−
𝑠 .

After learning all the concepts related to the label, an overall 
cognition of the label 𝑙𝑗 is formed, that is 

(

𝑋𝑗 ,
(

𝐵̃+
𝑗 , 𝐵̃

−
𝑗

))

, denoted 
by 𝑝𝑐𝑗 . The set of pseudo-concepts formed by all labels is recorded as 
 =

{

𝑝𝑐1, 𝑝𝑐2,… , 𝑝𝑐𝑞
}

.

3.3. The label correlation and multi-label learning model

In the previous subsection, we formed an overall cognition of all 
labels. This subsection further explores and leverages explicit label 
correlations. Most existing methods only consider a single perspective, 
either sample similarity or feature similarity (e.g., cosine similarity), 
which makes it difficult to fully capture the semantic relationships 
between labels. However, in multi-label data, label correlations are 
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often jointly determined by both sample-level and feature-level sim-
ilarities. For example, in music classification, ‘‘Music A’’ and ‘‘Music 
B’’ may both be labeled as ‘‘light music’’ and ‘‘relaxation’’, reflecting 
high label-level consistency and indicating strong sample similarity. 
Meanwhile, this type of music often has similar audio features such 
as ‘‘low frequency’’ and ‘‘smooth rhythm’’, which further promotes the 
co-occurrence of related labels. Accordingly, we consider both sample-
level and feature-level similarities to model label correlations more 
comprehensively, thereby enhancing the model’s expressive power and 
generalization performance.

Definition 12.  Let ⟨𝑈,𝐴 ∪ 𝐿, 𝑅̃𝐴, 𝑅𝐿
⟩ be a multi-label context, 𝑝𝑐𝑖 =

(

𝑋𝑖,
(

𝐵̃+
𝑖 , 𝐵̃

−
𝑖
)) and 𝑝𝑐𝑗 =

(

𝑋𝑗 ,
(

𝐵̃+
𝑗 , 𝐵̃

−
𝑗

))

 are the overall cognitions of 
labels 𝑙𝑖 and 𝑙𝑗 respectively. The extent relevance and intent relevance 
between label 𝑙𝑖 and 𝑙𝑗 are defined as follows:

𝑟𝑒𝑥
(

𝑝𝑐𝑖, 𝑝𝑐𝑗
)

=
|

|

|

𝑋𝑖 ∩𝑋𝑗
|

|

|

|

|

|

𝑋𝑖 ∪𝑋𝑗
|

|

|

, (5)

𝑟𝑖𝑛
(

𝑝𝑐𝑖, 𝑝𝑐𝑗
)

=

∑𝑚
𝑘=1

(

𝑎+𝑖,𝑘 ⋅ 𝑎
+
𝑗,𝑘 + 𝑎−𝑖,𝑘 ⋅ 𝑎

−
𝑗,𝑘

)

√

∑𝑚
𝑘=1

(

𝑎+ 2
𝑖,𝑘 + 𝑎− 2

𝑖,𝑘

)

⋅

√

∑𝑚
𝑘=1

(

𝑎+ 2
𝑗,𝑘 + 𝑎− 2

𝑗,𝑘

)

, (6)

where 𝑎+𝑖,𝑘 = 𝐵̃+
𝑖
(

𝑎𝑘
)

, 𝑎−𝑖,𝑘 = 𝐵̃−
𝑖
(

𝑎𝑘
)

.

In fact, the extent relevance shows the label correlation from a 
sample-based perspective, while the intent relevance shows the label 
correlation from a feature-based perspective. These two aspects are 
important factors affecting the label correlation. Therefore, combining 
these two aspects to define label correlation is helpful to enhance the 
generalization performance.

The label correlation between 𝑙𝑖 and 𝑙𝑗 is given by: 

𝑟𝑖𝑗 = 𝛾 ⋅ 𝑟𝑒𝑥
(

𝑝𝑐𝑖, 𝑝𝑐𝑗
)

+ (1 − 𝛾) ⋅ 𝑟𝑖𝑛
(

𝑝𝑐𝑖, 𝑝𝑐𝑗
)

. (7)

Then, the label correlation matrix can be expressed as:

𝐑 =
(

𝑟𝑖𝑗
)

𝑞×𝑞 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟11 𝑟12 ⋯ 𝑟1𝑞
𝑟21 𝑟22 ⋯ 𝑟2𝑞
⋮ ⋮ ⋱ ⋮
𝑟𝑞1 𝑟𝑞2 ⋯ 𝑟𝑞𝑞

⎞

⎟

⎟

⎟

⎟

⎠

.

By considering the label correlation matrix, we can determine the 
similarity between the prediction coefficients of different label vari-
ables in a multi-label model. The MCF-3WCCL algorithm is designed 
as follows: 
min
𝐖

1
2
‖𝐗𝐖 − 𝐘‖2𝐹 + 𝛼

2
‖𝐖𝑇𝐖 − 𝐑‖2𝐹 + 𝛽‖𝐖‖1 (8)

where 𝛼, 𝛽 > 0 are trade-off parameters, and 𝐖 =
[

𝐰1,𝐰2,… ,𝐰𝑞
]

∈
R𝑚×𝑞 is the coefficient matrix in the multi-label classification model. 
For any 𝑙𝑗 ∈ 𝐿, the sub-classifier is 𝐜𝑗 = 𝐗𝐰𝑗 .

The first term minimizes the gap between the label set predicted by 
the model and the real label set. By reducing errors, the model can 
better fit the data and make more accurate predictions. The second 
term compresses the hypothesis space by introducing label correlation. 
By considering the label correlation, the objective function optimizes 
the label prediction by guiding the model to adjust the position of the 
hyperplane. The last item enhances the sparsity of the model by 𝑙1-norm 
regularization, simplifies the model and avoids overfitting. In the opti-
mization solution, the accelerated proximal gradient algorithm [12,47] 
is employed to achieve a fast convergence rate. Building on the above 
theory, Algorithm 2 is a multi-level correlation information fusion via 
three-way concept-cognitive learning for multi-label learning.

Next, we will discuss the time complexity of Algorithm 2, the 
process can be divided into three main parts. (1) The first part is 
the construction and fusion stage of the weighted fuzzy 3WF-concept 
(Steps 1–16). Steps 3–7 are used to construct weighted fuzzy 3WF-
concepts, where the number of generated concepts does not exceed 
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𝑛 + 2𝑞, so the time complexity of this part is 𝑂 (𝑛 + 2𝑞). Next, Steps 
8–15 fuse up to 𝑛 + 2𝑞 weighted fuzzy 3WF-concepts, where the intent 
of each concept is an 𝑚-dimensional vector. The time complexity of 
this step is 𝑂 (𝑚 (𝑛 + 2𝑞)). Since the outer loop iterates over 𝑞 concept 
spaces, the total time complexity of Steps 1–16 is 𝑂 (𝑞𝑚 (𝑛 + 2𝑞)). (2) 
The second part is the construction of the label correlation matrix 
(Steps 17–24), which involves calculating the similarities between 𝑞
pseudo concepts. Since the intent of each pseudo-concept is an 𝑚-
dimensional vector, the time complexity is 𝑂 (

𝑚𝑞2
)

. (3) The third part is 
the optimization of the objective function and prediction (Steps 25–29), 
which includes three components: The first term is the reconstruction 
error, with time complexity 𝑂 (𝑛𝑚𝑞); The second term is the label 
correlation constraint, with time complexity 𝑂 (

𝑚𝑞2
)

; The third term is 
the sparse regularization term, with time complexity 𝑂 (𝑚𝑞). Therefore, 
the total time complexity of this stage is 𝑂 (

𝑛𝑚𝑞 + 𝑚𝑞2 + 𝑚𝑞
)

. In multi-
label learning, it is typically assumed that 𝑛 ≫ 𝑚 and 𝑛 ≫ 𝑞, so the time 
complexity of Algorithm 2 can be simplified to 𝑂 (𝑛𝑚𝑞). Furthermore, 
considering 𝑡 iterations of gradient descent, the total time complexity 
becomes 𝑂 (𝑡 ⋅ 𝑛𝑚𝑞).

In addition, Fig.  2 presents an overview of the MCF-3WCCL model, 
which mainly consists of three parts: (1) Data processing stage: The 
original feature data and label data are processed separately using the 
three-way cognitive operator, forming the corresponding 3WL-concepts 
and 3WF-concepts. These concepts provide the semantic-level struc-
tural foundation for subsequent modeling. (2) Multi-Level correlation 
information fusion stage: A hierarchical structure of 3WL-concepts is 
constructed, and the weights of 3WL-concepts are calculated and grad-
ually decreased layer by layer. Finally, the overall cognition of each 
label is formed through the information fusion of 3WF-concepts. (3) 
Prediction stage: The fused overall cognition of the labels is combined 
with the constructed label correlation matrix to optimize the objective 
function and generate the final multi-label prediction results.

4. Experimental analysis

In this section, we use real-world multi-label datasets to compare 
traditional and state-of-the-art multi-label learning algorithms, along 
with their experimental setups. Through experiments and statistical 
analysis using five multi-label evaluation metrics, we validate the 
effectiveness of MCF-3WCCL in multi-label learning. Additionally, the 
impact of critical parameters on experimental performance is further 
assessed. All experiments were conducted on a computer with the fol-
lowing configuration: Windows 11 OS, Intel(R) Core(TM) i5-13600KF 
CPU @ 3.5 GHz, 32 GB RAM, and MATLAB as the programming 
language.

4.1. Datasets and experiment settings

To assess the effectiveness of MCF-3WCCL in multi-label learning, 
16 multi-label datasets were selected from Mulan.1 Table  3 provides 
a detailed description of each dataset, where ‘‘Sample’’ denotes the 
number of samples, ‘‘Dim’’ refers to the feature dimension, ‘‘Label’’ 
indicates the number of labels, ‘‘Cardinality’’ represents the average 
number of labels per sample, and ‘‘Type’’ describes the dataset type.

To describe the performance of MCF-3WCCL, the following 10 
multi-label algorithms are chosen as comparison methods:

∙ ML-KNN [14]: A widely-used benchmark algorithm for multi-
label classification, which does not consider label correlations or label-
specific feature selection. Parameter 𝑘 = 10 and the smoothing param-
eter 𝑠 is set to 1.

∙ MRDM [3]: This is a method based on manifold regularization and 
dependency maximization, which evaluates the dependency between 

1 https://mulan.sourceforge.net/datasets-mlc.html.

https://mulan.sourceforge.net/datasets-mlc.html
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Fig. 2. Overview of MCF-3WCCL model.
manifold space and label space by introducing HSIC-based measure-
ments. The parameters 𝛼 = 1 and 𝛽, 𝛾 ∈

{

10−2, 10−1,… , 102
}

.
∙ LPLC [22]: Using local positive and negative pairwise label corre-

lations, an effective multi-label classification Bayesian model is estab-
lished. The parameters 𝑘 = 10 and grid search for 𝛼 ∈ {0.1, 0.2,… , 1}.

∙ GLFS [17]: The algorithm improves the generalization perfor-
mance through local label correlations, specially, both label-group 
and instance-group correlations are used together to enhance model 
training. The parameters 𝛼, 𝜆 ∈ {0.1, 0.2,… , 1} and 𝛽, 𝛾 ∈

{

10−3, 10−2,
… , 103

}

.
∙ 2SML [18]: The feature manifold and label manifold share a 

weight matrix, leveraging prior knowledge of correlations, while im-
plicit correlations are learned by selecting highly representative in-
stances. The parameters 𝜆1 = 10−3, 𝜆2 = 10−3, 𝜆3 = 10−4 and 𝛼 = 0.6, 𝛽 =
1 − 𝛼.

∙ LLSF-DL [12]: The algorithm with 𝑙1-norm regularization used to 
learn label-specific features. This algorithm incorporates both second-
order and higher-order label correlations. The parameters 𝛼, 𝛽, 𝛾 are 
searched in {4−5, 4−4,… , 45

}

, and 𝜌 is searched in {0.1, 1, 10}.
∙ JLCLS [10]: This method enhances the learning process of label-

specific features in similar labels by label correlations. The parameters 
𝛼, 𝛽, 𝜃 ∈

{

2−10, 2−9,… , 210
}

.
∙ MSWL [4]: This algorithm employs sparse representation to utilize 

global label correlations in a one-vs-all manner and combines this 
with local correlations to enhance generalization performance. The 
parameters 𝛼, 𝛽 ∈

{

10−3, 10−2,… , 103
}

, 𝛾 ∈
{

10−6, 10−5,… , 106
} and 

𝜆 = 0.1.
∙ GLMAM [11]: This algorithm uses a mechanism that uses attention 

to simultaneously exploit label and instance information to capture 
both global and local label correlations. The parameters 𝜆1, 𝜆2, 𝜆3 ∈
[

10−6, 106
] and 𝑔 ∈

[

20, 27
]

.
∙ MDFS [2]: Manifold regularization is used to mine label correla-

tions. The parameters 𝛼 = 1 and 𝛽, 𝜆 ∈
{

10−3, 10−2,… , 103
}

.
The parameters for each of the above comparison methods are set 

as the corresponding literature suggested. In MCF-3WCCL algorithm, 
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the parameters 𝛼, 𝛽 ∈
{

4−5, 4−4,… , 45
} and 𝛾 ∈ {0, 0.1, 0.2,… , 1}. 

We uploaded our code on github, specifically at https://github.com/
Jimmy4629/MCF-3WCCL.git.

Table  4 summarizes the correlation strategies employed by different 
methods.

4.2. Experimental results

This experiment employed five-fold cross-validation to evaluate the 
performance of the MCF-3WCCL and 10 other comparison methods 
based on five evaluation metrics: Average Precision (↑), Coverage (↓), 
One-error (↓), Ranking Loss (↓) and Hamming Loss (↓), where ‘‘↑’’ 
denotes the bigger the better, and ‘‘↓’’ indicates the smaller the better. 
The data was randomly split into training (80%) and testing (20%) 
sets, and the experiments were repeated five times to ensure fairness. 
The final performance is presented as the mean of the classification 
results across each fold in cross-validation, given as ‘mean ± variance’. 
The last two rows present the average (Ave.) performance across all 
datasets and the Win/Tie/Loss record indicates the number of datasets 
where MCF-3WCCL performs better, equally, or worse than the other 
comparison methods, respectively. Tables  5–9 present the experimental 
results comparing MCF-3WCCL with other methods. The best results for 
each dataset are emphasized in bold.

The experimental results presented in Tables  5–9 lead to the follow-
ing conclusions:

∙ The performance of MCF-3WCCL on most datasets is better than 
the other 10 multi-label methods, which significantly reflects its ad-
vantages. Whether in Ave. or Win/Tie/Loss statistics, MCF-3WCCL per-
forms best, showing the superiority and effectiveness of its classification 
performance.

∙ Combined with Table  4, it can be observed that most methods con-
sidering label correlation (e.g., MCF-3WCCL, LLSF-DL, MSWL, GLMAM, 
MDFS, JLCLS) perform better than methods that do not consider label 
correlation (e.g., ML-KNN, MRDM). This result indicates that label 
correlation plays a key role in multi-label learning tasks.

https://github.com/Jimmy4629/MCF-3WCCL.git
https://github.com/Jimmy4629/MCF-3WCCL.git
https://github.com/Jimmy4629/MCF-3WCCL.git
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Algorithm 2: Multi-level correlation information fusion via 
three-way concept-cognitive learning for multi-label learning 
(MCF-3WCCL).

Input: The weighted 3WF-concept space 
 =

{

1,2,⋯ ,𝑞
}

.
Output: The outputs 𝐘̂.

1  =
{

1,2,⋯ ,𝑞
}

,  = ∅;
2 for 𝑗 = 1 ∶ 𝑞 do
3 𝑗 = ∅;
4 for 𝑋𝑘, 𝑤𝑘 ∈ 𝑗 do
5 Construct weighted fuzzy 3WF-concept 

(

▽̃▽
(

𝑋𝑘
)

, ̃▽
(

𝑋𝑘
)

, 𝑤𝑘

)

 by Definitions  3 and 10;
6 𝑗 ←

(

▽̃▽
(

𝑋𝑘
)

, ̃▽
(

𝑋𝑘
)

, 𝑤𝑘

)

;
7 end 
8 𝑋𝑗 = ∅; 𝐵̃+

𝑗 = ∅; 𝐵̃−
𝑗 = ∅;

9 for 
(

𝑋′

𝑘,
(

𝐵̃
′+
𝑘 , 𝐵̃′−

𝑘

)

, 𝑤𝑘

)

∈ 𝑗 do
10 𝑋𝑗 = 𝑋𝑗 ∪𝑋′

𝑘;
11 𝐵̃+

𝑗 = 𝐵̃+
𝑗 +𝑤𝑘𝐵̃

′+
𝑘 ;

12 𝐵̃−
𝑗 = 𝐵̃−

𝑗 +𝑤𝑘𝐵̃
′−
𝑘 ;

13 end 
14 𝑝𝑐𝑗 ←

(

𝑋𝑗 ,
(

𝐵̃+
𝑗 , 𝐵̃

−
𝑗

))

;

15  ← 𝑝𝑐𝑗 ;
16 end 
17 for 𝑖 = 1 ∶ 𝑞 do
18 for 𝑗 = 1 ∶ 𝑞 do
19 Calculate 𝑟𝑒𝑥

(

𝑝𝑐𝑖, 𝑝𝑐𝑗
) by Eq.  (5);

20 Calculate 𝑟𝑖𝑛
(

𝑝𝑐𝑖, 𝑝𝑐𝑗
) by Eq.  (6);

21 Calculate 𝑟𝑖𝑗 by Eq.  (7);
22 end 
23 end 
24 Acquire the label correlation matrix 𝐑 =

(

𝑟𝑖𝑗
)

𝑞×𝑞 ;
25 Construct the multi-label learning model in Eq.  (8);
26 Get the optimal solution 𝐖∗;
27 Predict the outputs 𝐘̂ = 𝐗𝑡𝑒𝑠𝑡𝐖∗;
28 return 𝐘̂.

Table 3
Description of the multi-label datasets.
 ID Dataset Sample Dim Label Cardinality Type  
 1 Flags 194 19 7 3.392 Image  
 2 Cal500 502 68 174 26.044 Music  
 3 CHD49 555 49 6 2.580 Medicine 
 4 Emotion 593 72 6 1.869 Music  
 5 Birds 645 260 19 1.014 Audio  
 6 Genbase 662 1186 27 1.252 Biology  
 7 Medical 978 1449 45 1.245 Text  
 8 Enron 1702 1001 53 3.378 Text  
 9 Image 2000 294 5 1.236 Image  
 10 Scene 2407 294 6 1.074 Image  
 11 Social 5000 1047 39 1.283 Text  
 12 Computers 5000 681 33 1.508 Text  
 13 Health 5000 612 32 1.663 Text  
 14 Business 5000 438 30 1.588 Text  
 15 20NG 19300 1006 20 1.029 Text  
 16 Tmc2007 28596 500 22 2.22 Text  

∙ Among all the methods considering label correlation, the methods 
using global correlation (e.g., MCF-3WCCL, LLSF-DL, JLCLS, MSWL, 
GLMAM, MDFS) are generally superior to the methods using only local 
correlation (e.g., LPLC, GLFS, 2SML). The possible reason is that global 
correlation can provide more holistic information and help to capture a 
wider connection between labels. In contrast, methods that only focus 
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on local correlation may overly rely on specific features or samples, 
which can lead to overfitting and adversely affect the generalization 
ability of the model.

∙ Although MSWL, GLMAM and MDFS consider both local and 
global correlations in design, they do not explore the multi-level re-
lationship between local and global correlations. This limitation may 
lead to the lack of effective strategies in balancing local and global 
correlations, preventing them from fully leveraging the complementary 
advantages of both. As a result, these methods still underperform 
compared to MCF-3WCCL.

In view of the above results, it is necessary to balance the global cor-
relation and local correlation by exploring and combining multi-level 
correlation information. Global correlation provides holistic guidance, 
while local correlation can mine micro-level of specific features or 
samples. Through the effective fusion of multi-level correlation in-
formation, the performance and adaptability of the model can be 
improved while avoiding over-fitting, which provides a direction for 
further research on multi-label learning. In summary, MCF-3WCCL has 
achieved significant success in multi-label learning tasks by virtue of 
its fusion of multi-level correlation information.

4.3. Statistical analysis

To analyze the relative performance of the 11 multi-label methods 
in greater depth, we will conduct the Friedman test [48] and the 
Bonferroni-Dunn test [49] to investigate the statistical significance of 
the experimental results.

The Friedman test [48] is a commonly used statistical test for 
repeated measures designs. For any evaluation metric, the average 
ranking of the 𝑖th algorithm can be calculated as 𝑅𝑖 =

1
𝑁

∑𝑁
𝑗=1 𝑟𝑖𝑗 , where 

𝑁 is the number of multi-label datasets, and 𝑟𝑖𝑗 denotes the ranking 
of the 𝑖th algorithm on the 𝑗th dataset. The Friedman statistic 𝐹𝐹
follows the 𝐹 -distribution with numerator degrees of freedom (𝑘 − 1)
and denominator degrees of freedom (𝑘 − 1) ∗ (𝑁 − 1), and can be 
calculated as follows:

𝐹𝐹 =
(𝑁 − 1)𝜒2

𝐹

𝑁 (𝑘 − 1) − 𝜒2
𝐹

,

where 𝜒2
𝐹 = 12𝑁

𝑘(𝑘+1)

(

∑𝑘
𝑖=1 𝑅

2
𝑖 −

𝑘(𝑘+1)2

4

)

, 𝑘 is the number of algorithms.
Table  10 shows the Friedman statistics for different metrics of MCF-

3WCCL, with 𝑘 = 11, 𝑁 = 16, and the significance level 𝜃 = 0.05, the 
Friedman statistics of the five evaluation metrics are greater than the 
critical value 1.8943. As a result, the null hypothesis that the methods 
perform equally is rejected, indicating significant differences in the 
performance of the algorithms.

To further validate these findings, we employ a post hoc analysis 
using the Bonferroni-Dunn test [49] to clearly demonstrate the perfor-
mance gap between MCF-3WCCL and the other comparison algorithms. 
In general, if the average ranks differ by at least the critical difference 
(𝐶𝐷 = 𝑞𝜃

√

𝑘(𝑘+1)
6𝑁 ), the performance of the two algorithms is signifi-

cantly different. For the Bonferroni-Dunn test, when 𝑘 = 11, 𝜃 = 0.05, 
then 𝑞𝜃 = 2.807. Therefore, with 𝑁 = 16, we can calculate the critical 
difference 𝐶𝐷 = 3.2915. If the average ranks of our algorithm and a 
comparison algorithm are within one CD, their relative performance 
is considered statistically similar. To visually represent this, Fig.  3 
presents the CD plot for each evaluation metric. In each sub-figure, 
algorithms falling outside the red line are deemed to have significantly 
different performance compared to MCF-3WCCL. From Fig.  3, it is 
evident that MCF-3WCCL consistently achieves the highest rankings 
across all evaluation metrics. Overall, the performance of MCF-3WCCL 
is significantly superior to most other algorithms.
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Table 4
Correlation strategies of different methods.
 Method No correlation Local correlation Global correlation Multi-level correlation 
 ML-KNN ✓  
 MRDM ✓  
 LPLC ✓  
 GLFS ✓  
 2SML ✓  
 LLSF-DL ✓  
 JLCLS ✓  
 MSWL ✓ ✓  
 GLMAM ✓ ✓  
 MDFS ✓ ✓  
 MCF-3WCCL ✓ ✓ ✓  
Table 5
Comparison results of MCF-3WCCL with other comparison methods on Average Precision (↑) metric.
 Dataset ML-KNN MRDM LPLC GLFS 2SML LLSF-DL JLCLS MSWL GLMAM MDFS MCF-3WCCL 
 Flags 0.8033±0.0251 0.8058±0.0200 0.8032±0.0290 0.7840±0.0076 0.6840±0.0339 0.7883±0.0338 0.8083±0.0249 0.7998±0.0002 0.6569±0.0339 0.8020±0.0127 0.8148±0.0349 
 Cal500 0.4937±0.0088 0.4899±0.0125 0.4967±0.0095 0.4840±0.0036 0.4135±0.0088 0.4993±0.0025 0.4991±0.0069 0.4868±0.0000 0.3399±0.0062 0.4959±0.0021 0.5054±0.0081 
 CHD49 0.7715±0.0159 0.7938±0.0127 0.7848±0.0195 0.7733±0.0095 0.7932±0.0155 0.7723±0.0228 0.7919±0.0301 0.7964±0.0002 0.7848±0.0243 0.7655±0.0074 0.8067±0.0272 
 Emotion 0.7889±0.0187 0.8011±0.0046 0.8005±0.0281 0.7705±0.0318 0.7961±0.0225 0.7969±0.0278 0.7654±0.0184 0.7863±0.0039 0.7880±0.0311 0.7998±0.0259 0.8109±0.0187 
 Birds 0.7168±0.0261 0.7210±0.0187 0.6902±0.0168 0.7011±0.0378 0.7686±0.0132 0.6992±0.0266 0.7070±0.0466 0.7640±0.0000 0.7539±0.0352 0.7074±0.0181 0.7763±0.0286 
 Genbase 0.3189±0.0330 0.9868±0.0043 0.9899±0.0013 0.9501±0.1025 0.6230±0.4563 0.9964±0.0023 0.9943±0.0044 0.9793±0.0357 0.9819±0.0128 0.9844±0.0046 0.9974±0.0011 
 Medical 0.8024±0.0100 0.8618±0.0104 0.7658±0.0099 0.7849±0.0977 0.4275±0.3733 0.8662±0.0244 0.8466±0.0213 0.7028±0.0130 0.9076±0.0113 0.7881±0.0185 0.9077±0.0099 
 Enron 0.6239±0.0082 0.6341±0.0078 0.5209±0.0141 0.6506±0.0303 0.6899±0.0146 0.6846±0.0114 0.6961±0.0078 0.4484±0.0683 0.5774±0.0171 0.6253±0.0202 0.7054±0.0106 
 Image 0.7867±0.0112 0.7512±0.0080 0.7884±0.0103 0.7435±0.0364 0.7467±0.0135 0.7841±0.0186 0.7259±0.0064 0.7801±0.0004 0.7735±0.0245 0.7816±0.0179 0.7917±0.0073 
 Scene 0.8579±0.0130 0.7544±0.0276 0.8383±0.0097 0.7771±0.0770 0.8394±0.0103 0.7793±0.0119 0.8432±0.0119 0.8281±0.0002 0.8134±0.0159 0.8486±0.0212 0.8521±0.0077  
 Social 0.7338±0.0085 0.7225±0.0145 0.7360±0.0101 0.7329±0.0124 0.7781±0.0074 0.7424±0.0119 0.7765±0.0121 0.6751±0.0330 0.7713±0.0110 0.7399±0.0102 0.7782±0.0091 
 Computers 0.6388±0.0112 0.6095±0.0045 0.5780±0.0058 0.6345±0.0092 0.7077±0.0123 0.6311±0.0036 0.7047±0.0049 0.7008±0.0000 0.6963±0.0150 0.6617±0.0120 0.7086±0.0084 
 Health 0.6711±0.0096 0.7285±0.0147 0.4810±0.0101 0.7266±0.0215 0.7899±0.0056 0.6533±0.0113 0.7849±0.0092 0.7797±0.0000 0.7788±0.0090 0.7196±0.0129 0.7850±0.0060  
 Business 0.8790±0.0099 0.8647±0.0080 0.8708±0.0016 0.8788±0.0035 0.8871±0.0108 0.8774±0.0041 0.8805±0.0041 0.8807±0.0000 0.8769±0.0076 0.8793±0.0045 0.8872±0.0069 
 20NG 0.6030±0.0111 0.5722±0.0035 0.4581±0.0101 0.4619±0.1195 0.8170±0.0031 0.7319±0.0022 0.8346±0.0045 0.8201±0.0000 0.8208±0.0023 0.6205±0.0257 0.8352±0.0031 
 Tmc2007 0.7926±0.0026 – 0.7538±0.0033 0.6766±0.0436 0.8198±0.0016 0.7465±0.0039 0.8335±0.0032 0.8253±0.0000 0.8343±0.0023 0.7920±0.0124 0.8394±0.0012 
 Ave. 0.7051 0.7398 0.7098 0.7207 0.7238 0.7531 0.7804 0.7534 0.7597 0.7507 0.8001  
 Win/Tie/Loss 15/0/1 15/0/0 16/0/0 16/0/0 15/0/1 16/0/0 16/0/0 16/0/0 16/0/0 16/0/0  
Table 6
Comparison results of MCF-3WCCL with other comparison methods on Coverage (↓) metric.
 Dataset ML-KNN MRDM LPLC GLFS 2SML LLSF-DL JLCLS MSWL GLMAM MDFS MCF-3WCCL 
 Flags 0.5491±0.0228 0.5472±0.0151 0.5604±0.0420 0.5492±0.0131 0.6661±0.0350 0.5530±0.0440 0.5494±0.0155 0.5483±0.0003 0.7046±0.0588 0.5718±0.0141 0.5460±0.0368 
 Cal500 0.7513±0.0204 0.7504±0.0184 0.8174±0.0043 0.7642±0.0043 0.9186±0.0069 0.7462±0.0139 0.7460±0.0089 0.7985±0.0000 0.9071±0.0042 0.7499±0.0021 0.7457±0.0221 
 CHD49 0.4817±0.0201 0.4522±0.0165 0.4571±0.0075 0.4638±0.0164 0.4605±0.0053 0.4856±0.0093 0.4538±0.0254 0.4541±0.0002 0.4540±0.0184 0.4844±0.0076 0.4345±0.0281 
 Emotion 0.3067±0.0205 0.2987±0.0177 0.3249±0.0178 0.3130±0.0223 0.3100±0.0126 0.3010±0.0170 0.3220±0.0150 0.3110±0.0033 0.3047±0.0112 0.3255±0.0169 0.2971±0.0178 
 Birds 0.1528±0.0199 0.1571±0.0189 0.1820±0.0137 0.1731±0.0289 0.1520±0.0256 0.1653±0.0144 0.1677±0.0162 0.1523±0.0001 0.1598±0.0302 0.1498±0.0105 0.1420±0.0150 
 Genbase 0.2115±0.0195 0.0201±0.0063 0.0186±0.0019 0.0406±0.0284 0.1024±0.1100 0.0138±0.0023 0.0129±0.0052 0.0192±0.0152 0.0313±0.0129 0.0105±0.0016 0.0104±0.0021 
 Medical 0.0610±0.0067 0.0498±0.0076 0.0811±0.0033 0.0779±0.0199 0.3258±0.2404 0.0571±0.0084 0.0350±0.0134 0.1335±0.0053 0.0320±0.0085 0.0632±0.0073 0.0380±0.0075  
 Enron 0.2578±0.0147 0.2427±0.0053 0.4029±0.0251 0.2676±0.0097 0.2801±0.0103 0.2317±0.0113 0.2609±0.0160 0.5126±0.0637 0.4049±0.0171 0.2566±0.0060 0.2572±0.0129  
 Image 0.1971±0.0129 0.2182±0.0084 0.2078±0.0121 0.2392±0.0254 0.2172±0.0105 0.1942±0.0132 0.2288±0.0087 0.2023±0.0003 0.2083±0.0230 0.2063±0.0122 0.1938±0.0039 
 Scene 0.0885±0.0032 0.1451±0.0180 0.0893±0.0047 0.1342±0.0510 0.0909±0.0057 0.1420±0.0070 0.0884±0.0047 0.1013±0.0001 0.1104±0.0082 0.0883±0.0136 0.0868±0.0069 
 Social 0.0830±0.0036 0.0839±0.0070 0.1183±0.0045 0.0897±0.0042 0.0827±0.0055 0.0841±0.0069 0.0828±0.0073 0.1692±0.0159 0.0997±0.0128 0.0836±0.0046 0.0824±0.0061 
 Computers 0.1286±0.0077 0.1373±0.0055 0.2141±0.0281 0.1331±0.0042 0.1182±0.0079 0.1134±0.0052 0.1190±0.0059 0.1313±0.0000 0.1359±0.0081 0.1192±0.0035 0.1409±0.0057  
 Health 0.1072±0.0029 0.0949±0.0066 0.1696±0.0053 0.0983±0.0070 0.1068±0.0055 0.0991±0.0017 0.1034±0.0041 0.1068±0.0000 0.1209±0.0069 0.0990±0.0031 0.1268±0.0046  
 Business 0.0955±0.0055 0.0825±0.0034 0.1040±0.0040 0.0780±0.0024 0.0794±0.0074 0.0657±0.0036 0.0776±0.0058 0.0735±0.0000 0.0846±0.0059 0.0781±0.0028 0.0712±0.0058  
 20NG 0.1709±0.0058 0.2159±0.0046 0.2628±0.0073 0.2804±0.0731 0.0550±0.0017 0.1218±0.0016 0.0470±0.0007 0.0546±0.0000 0.0554±0.0011 0.1555±0.0141 0.0464±0.0009 
 Tmc2007 0.1470±0.0010 – 0.1977±0.0044 0.2334±0.0260 0.1285±0.0013 0.2566±0.0037 0.1239±0.0018 0.1239±0.0000 0.1292±0.0032 0.1503±0.0066 0.1238±0.0016 
 Ave. 0.2369 0.2331 0.2630 0.2460 0.2559 0.2269 0.2137 0.2433 0.2464 0.2245 0.2089  
 Win/Tie/Loss 14/0/2 12/0/3 16/0/0 14/0/2 14/0/2 12/0/4 13/0/3 14/0/2 13/0/3 13/0/3  
4.4. Parameter sensitivity analysis

The MCF-3WCCL algorithm’s objective function involves three im-
portant parameters: 𝛼, 𝛽 and 𝛾. The trade-off parameters 𝛼 and 𝛽 are 
coefficients of the regularization terms, primarily aimed at reducing 
model complexity. When constructing label correlations, 𝛾 can balance 
extent relevance and intent relevance. A series of experiments were 
conducted using five evaluation metrics to analyze the impact of 𝛼, 𝛽, 
and 𝛾 on the performance of MCF-3WCCL. Given the limited space, we 
selected six datasets from various domains to demonstrate the influence 
of these parameters on performance. All parameters except the one 
being analyzed are fixed at their optimal values.
9 
Fig.  4 shows the impact of 𝛾 on the performance of MCF-3WCCL. 
Each row corresponds to a different dataset and shows the influences 
of 𝛾 on the five evaluation metrics. The results show that: For the 
Genbase dataset, the performance is best when 𝛾 = 1, indicating 
that Genbase can be completely dependent on the extent relevance. 
In most datasets, the parameter 𝛾 achieves high performance on some 
intermediate values, indicating that the multi-label classification per-
formance is affected by both the extent relevance and intent relevance. 
Parameter 𝛾 can well integrate the relationship between the two to 
achieve the best performance. It is worth noting that when 𝛾 ∈ [0.3, 0.5], 
MCF-3WCCL is more likely to achieve optimal performance across 
most datasets. Overall, This analysis highlights the importance of 𝛾 in 
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Table 7
Comparison results of MCF-3WCCL with other comparison methods on One-error (↓) metric.
 Dataset ML-KNN MRDM LPLC GLFS 2SML LLSF-DL JLCLS MSWL GLMAM MDFS MCF-3WCCL 
 Flags 0.2293±0.0869 0.2293±0.0388 0.2320±0.0430 0.2395±0.0230 0.4111±0.1016 0.3025±0.0664 0.2185±0.0735 0.2341±0.0000 0.4284±0.1057 0.2207±0.0457 0.1987±0.0604 
 Cal500 0.1183±0.0297 0.1176±0.0325 0.1360±0.0233 0.0904±0.0028 0.5149±0.0220 0.1235±0.0230 0.1184±0.0207 0.2129±0.0000 0.3555±0.0313 0.1002±0.0012 0.1175±0.0227  
 CHD49 0.2342±0.0332 0.2354±0.0205 0.2378±0.0389 0.2781±0.0122 0.2590±0.0423 0.3027±0.0226 0.2498±0.0505 0.2348±0.0010 0.2681±0.0691 0.2424±0.0136 0.2378±0.0468  
 Emotion 0.2919±0.0329 0.2648±0.0038 0.2450±0.0548 0.3183±0.0558 0.2632±0.0410 0.2851±0.0610 0.3338±0.0249 0.2979±0.0102 0.3035±0.0647 0.2635±0.0463 0.2445±0.0351 
 Birds 0.3550±0.0445 0.3457±0.0305 0.3938±0.0210 0.3575±0.0434 0.2778±0.0223 0.4124±0.0499 0.3519±0.0670 0.2744±0.0000 0.2940±0.0479 0.3687±0.0301 0.2713±0.0514 
 Genbase 0.8906±0.0749 0.0136±0.0056 0.0014±0.0013 0.0539±0.1349 0.0016±0.0033 0.0000±0.0000 0.0030±0.0060 0.0223±0.0439 0.0061±0.0121 0.0284±0.0087 0.0015±0.0030  
 Medical 0.2587±0.0121 0.1779±0.0151 0.2870±0.0111 0.2508±0.1230 0.0658±0.0808 0.1668±0.0312 0.2035±0.0184 0.3386±0.0281 0.1270±0.0198 0.2756±0.0214 0.1227±0.0103  
 Enron 0.3137±0.0161 0.3184±0.0335 0.4929±0.0136 0.2637±0.0390 0.2392±0.0277 0.2262±0.0191 0.2261±0.0147 0.5116±0.0781 0.3349±0.0213 0.3187±0.0328 0.2186±0.0166 
 Image 0.3270±0.0180 0.3900±0.0157 0.3235±0.0322 0.3860±0.0586 0.4005±0.0220 0.3350±0.0286 0.4355±0.0123 0.3383±0.0008 0.3439±0.0269 0.3242±0.0290 0.3185±0.0145 
 Scene 0.2506±0.0227 0.3976±0.0388 0.2611±0.0158 0.3551±0.1101 0.2699±0.0196 0.3365±0.0188 0.2643±0.0227 0.2813±0.0003 0.3037±0.0281 0.2528±0.0319 0.2455±0.0101 
 Social 0.3474±0.0129 0.3614±0.0198 0.3130±0.0175 0.3370±0.0171 0.2820±0.0084 0.3492±0.0167 0.2874±0.0189 0.3835±0.0330 0.2833±0.0097 0.3305±0.0152 0.2776±0.0077 
 Computers 0.4378±0.0124 0.4748±0.0090 0.4624±0.0145 0.4427±0.0106 0.3551±0.0170 0.4758±0.0053 0.3642±0.0064 0.3488±0.0000 0.3510±0.0152 0.4095±0.0165 0.3472±0.0110 
 Health 0.4272±0.0111 0.3436±0.0167 0.6578±0.0165 0.3390±0.0263 0.2590±0.0131 0.4934±0.0180 0.2610±0.0205 0.2655±0.0002 0.2580±0.0192 0.3581±0.0161 0.2488±0.0068 
 Business 0.1194±0.0116 0.1338±0.0092 0.1138±0.0064 0.1194±0.0049 0.1193±0.0115 0.1348±0.0052 0.1202±0.0092 0.1196±0.0000 0.1241±0.0101 0.1908±0.0042 0.1190±0.0059 
 20NG 0.5154±0.0145 0.5270±0.0030 0.6173±0.0066 0.6438±0.1307 0.2708±0.0052 0.3617±0.0038 0.2530±0.0075 0.2652±0.0000 0.2632±0.0039 0.4998±0.0317 0.2481±0.0050 
 Tmc2007 0.2337±0.0033 – 0.2660±0.0040 0.3185±0.0409 0.2115±0.0041 0.2620±0.0034 0.1922±0.0065 0.2097±0.0000 0.1860±0.0019 0.2336±0.0132 0.1824±0.0011 
 Ave. 0.3344 0.2887 0.3818 0.2996 0.2625 0.2855 0.2427 0.2710 0.2644 0.2716 0.2125  
 Win/Tie/Loss 15/0/1 14/0/1 13/0/3 15/0/1 15/0/1 15/0/1 16/0/0 15/0/1 16/0/0 15/0/1  
Table 8
Comparison results of MCF-3WCCL with other comparison methods on Ranking Loss (↓) metric.
 Dataset ML-KNN MRDM LPLC GLFS 2SML LLSF-DL JLCLS MSWL GLMAM MDFS MCF-3WCCL 
 Flags 0.2256±0.0320 0.2252±0.0142 0.2234±0.0353 0.2535±0.0106 0.3989±0.0134 0.2359±0.0339 0.2189±0.0273 0.2304±0.0005 0.4336±0.0644 0.2350±0.0107 0.2139±0.0430 
 Cal500 0.1845±0.0068 0.1846±0.0025 0.1977±0.0054 0.1866±0.0013 0.2346±0.0059 0.1847±0.0017 0.1802±0.0044 0.2019±0.0000 0.3191±0.0050 0.1857±0.0008 0.1789±0.0036 
 CHD49 0.2310±0.0153 0.2089±0.0136 0.2060±0.0136 0.2272±0.0143 0.2161±0.0127 0.2551±0.0191 0.2077±0.0299 0.2064±0.0003 0.2154±0.0135 0.2534±0.0088 0.1920±0.0309 
 Emotion 0.1718±0.0174 0.1643±0.0065 0.1748±0.0241 0.1948±0.0283 0.1709±0.0155 0.1630±0.0150 0.1871±0.0141 0.1779±0.0043 0.1709±0.0207 0.1758±0.0219 0.1578±0.0191 
 Birds 0.1059±0.0137 0.1121±0.0128 0.1412±0.0148 0.1310±0.0259 0.0987±0.0131 0.1150±0.0076 0.1157±0.0189 0.1004±0.0001 0.1050±0.0214 0.1085±0.0102 0.0917±0.0170 
 Genbase 0.1958±0.0185 0.0060±0.0035 0.0054±0.0011 0.0194±0.0261 0.4012±0.4889 0.0011±0.0008 0.0023±0.0016 0.0084±0.0145 0.0118±0.0066 0.0014±0.0011 0.0006±0.0004 
 Medical 0.0431±0.0070 0.0335±0.0070 0.0639±0.0023 0.0543±0.0199 0.6080±0.4801 0.0429±0.0078 0.0232±0.0107 0.1034±0.0040 0.0204±0.0053 0.0453±0.0064 0.0244±0.0066  
 Enron 0.0938±0.0059 0.0892±0.0035 0.1756±0.0129 0.0932±0.0050 0.0950±0.0032 0.0900±0.0043 0.0782±0.0058 0.2793±0.0591 0.1754±0.0102 0.0926±0.0036 0.0900±0.0052  
 Image 0.1795±0.0113 0.2067±0.0099 0.1907±0.0151 0.2271±0.0334 0.2028±0.0105 0.1749±0.0165 0.2195±0.0068 0.1876±0.0004 0.1910±0.0254 0.1915±0.0155 0.1746±0.0052 
 Scene 0.0900±0.0075 0.1567±0.0224 0.0976±0.0073 0.1451±0.0608 0.0921±0.0060 0.1513±0.0095 0.0889±0.0062 0.1037±0.0001 0.1138±0.0097 0.0893±0.0163 0.0871±0.0078 
 Social 0.0595±0.0032 0.0615±0.0062 0.0915±0.0039 0.0641±0.0033 0.0566±0.0030 0.0568±0.0054 0.0562±0.0041 0.1430±0.0145 0.0687±0.0098 0.0606±0.0038 0.0561±0.0051 
 Computers 0.0897±0.0054 0.0970±0.0034 0.1749±0.0207 0.0915±0.0029 0.0778±0.0057 0.0767±0.0041 0.0809±0.0038 0.1037±0.0000 0.1052±0.0074 0.0820±0.0032 0.0966±0.0053  
 Health 0.0670±0.0023 0.0541±0.0034 0.1128±0.0028 0.0572±0.0055 0.0529±0.0021 0.0597±0.0011 0.0521±0.0017 0.0587±0.0000 0.0661±0.0048 0.0664±0.0027 0.0660±0.0023  
 Business 0.0396±0.0034 0.0452±0.0033 0.0556±0.0022 0.0452±0.0019 0.0384±0.0045 0.0328±0.0016 0.0384±0.0023 0.0400±0.0000 0.0450±0.0037 0.0449±0.0023 0.0356±0.0025  
 20NG 0.1767±0.0059 0.2240±0.0047 0.3242±0.0019 0.2912±0.0777 0.0551±0.0014 0.1244±0.0013 0.0468±0.0007 0.0555±0.0000 0.0561±0.0011 0.1609±0.0146 0.0464±0.0011 
 Tmc2007 0.0605±0.0008 – 0.0914±0.0017 0.1151±0.0180 0.0459±0.0005 0.1194±0.0030 0.0424±0.0008 0.0439±0.0000 0.0457±0.0013 0.0617±0.0047 0.0423±0.0009 
 Ave. 0.1259 0.1246 0.2109 0.1373 0.1778 0.1177 0.1024 0.1278 0.1339 0.1160 0.0971  
 Win/Tie/Loss 15/0/1 13/0/2 16/0/0 14/0/2 14/0/2 13/0/3 12/0/4 15/0/1 15/0/1 15/0/1  
Table 9
Comparison results of MCF-3WCCL with other comparison methods on Hamming Loss (↓) metric.
 Dataset ML-KNN MRDM LPLC GLFS 2SML LLSF-DL JLCLS MSWL GLMAM MDFS MCF-3WCCL 
 Flags 0.3102±0.0209 0.3042±0.0238 0.3436±0.0218 0.3571±0.0235 0.4924±0.0158 0.2944±0.0164 0.2977±0.0236 0.2899±0.0007 0.4572±0.0404 0.3567±0.0109 0.2874±0.0433 
 Cal500 0.1391±0.0011 0.1385±0.0022 0.1560±0.0039 0.1378±0.0007 0.1379±0.0020 0.1369±0.0015 0.1373±0.0023 0.1465±0.0000 0.1500±0.0034 0.1438±0.0007 0.1370±0.0008  
 CHD49 0.3180±0.0100 0.3114±0.0152 0.3336±0.0103 0.2998±0.0061 0.2910±0.0097 0.3032±0.0243 0.3311±0.0036 0.3195±0.0004 0.4291±0.0152 0.3360±0.0076 0.2874±0.0133 
 Emotion 0.2096±0.0210 0.2019±0.0140 0.2162±0.0113 0.2126±0.0221 0.2086±0.0121 0.2193±0.0145 0.2088±0.0087 0.2068±0.0002 0.3109±0.0113 0.2054±0.0105 0.1959±0.0108 
 Birds 0.0573±0.0033 0.0560±0.0059 0.0619±0.0024 0.0614±0.0026 0.0494±0.0032 0.0578±0.0014 0.0543±0.0048 0.0528±0.0001 0.0735±0.0023 0.0575±0.0023 0.0470±0.0055 
 Genbase 0.0756±0.0024 0.0177±0.0064 0.0052±0.0009 0.0067±0.0081 0.3276±0.3439 0.0017±0.0007 0.0069±0.0011 0.0034±0.0044 0.0428±0.0033 0.0042±0.0007 0.0007±0.0007 
 Medical 0.0158±0.0007 0.0237±0.0011 0.0179±0.0011 0.0143±0.0028 0.1299±0.2044 0.0146±0.0067 0.0154±0.0006 0.0563±0.0304 0.0264±0.0011 0.0161±0.0010 0.0138±0.0016 
 Enron 0.0527±0.0012 0.0569±0.0033 0.0603±0.0016 0.0527±0.0034 0.0478±0.0011 0.0522±0.0017 0.0581±0.0024 0.1251±0.0208 0.0637±0.0008 0.0536±0.0013 0.0453±0.0008 
 Image 0.1762±0.0079 0.1804±0.0100 0.1883±0.0073 0.1981±0.0178 0.2110±0.0037 0.2060±0.0032 0.2056±0.0030 0.1890±0.0002 0.2471±0.0062 0.1771±0.0079 0.1784±0.0083  
 Scene 0.0866±0.0074 0.1019±0.0041 0.0980±0.0042 0.1183±0.0191 0.1128±0.0065 0.1350±0.0035 0.1757±0.0012 0.1156±0.0000 0.1786±0.0023 0.0972±0.0081 0.1019±0.0036  
 Social 0.0230±0.0005 0.0261±0.0006 0.0222±0.0005 0.0236±0.0021 0.0216±0.0003 0.0229±0.0002 0.0254±0.0003 0.1713±0.0163 0.0328±0.0007 0.0224±0.0005 0.0205±0.0009 
 Computers 0.0407±0.0010 0.0394±0.0013 0.0411±0.0003 0.0397±0.0009 0.0343±0.0005 0.0384±0.0017 0.0351±0.0007 0.0344±0.0000 0.0457±0.0004 0.0381±0.0013 0.0339±0.0013 
 Health 0.0474±0.0012 0.0401±0.0006 0.0810±0.0033 0.0383±0.0024 0.0349±0.0006 0.0394±0.0005 0.0440±0.0010 0.0355±0.0000 0.0519±0.0013 0.0418±0.0026 0.0332±0.0004 
 Business 0.0272±0.0014 0.0273±0.0005 0.0275±0.0006 0.0284±0.0004 0.0271±0.0010 0.0261±0.0010 0.0309±0.0002 0.0429±0.0050 0.0529±0.0007 0.0274±0.0005 0.0267±0.0016  
 20NG 0.0395±0.0005 0.0376±0.0005 0.0490±0.0002 0.0397±0.0047 0.6174±0.0016 0.0357±0.0007 0.0359±0.0004 0.0325±0.0000 0.0510±0.0003 0.0397±0.0030 0.0324±0.0009 
 Tmc2007 0.0653±0.0007 – 0.0711±0.0006 0.0832±0.0040 0.6009±0.0034 0.0594±0.0005 0.0609±0.0006 0.0665±0.0000 0.1001±0.0007 0.0654±0.0029 0.0588±0.0005 
 Ave. 0.1053 0.1042 0.1108 0.1070 0.2090 0.1027 0.1077 0.1180 0.1446 0.1052 0.0938  
 Win/Tie/Loss 14/0/2 15/0/0 16/0/0 16/0/0 16/0/0 14/0/2 16/0/0 16/0/0 16/0/0 16/0/0  
integrating extent and intent relevances to improve the performance 
and generalization ability of MCF-3WCCL.

Fig.  5 illustrates the influence of 𝛼 and 𝛽 on the performance of 
MCF-3WCCL. Each row corresponds to a different dataset and shows 
the influences of 𝛼 and 𝛽 on the five evaluation metrics. The results 
10 
indicate the following: Adjusting parameters 𝛼 and 𝛽 in the multi-label 
learning model significantly affects each evaluation metric. While the 
optimal parameter settings may vary for different datasets, the overall 
trend is consistent. These consistent trends suggest that when tuning 
model parameters, one can refer to these common patterns to optimize 



J. Wu et al.

Fig. 3. Bonferroni-Dunn test of MCF-3WCCL is compared with other comparison algorithms.

Fig. 4. The influence of parameter 𝛾 on the performance of MCF-3WCCL.

Information Fusion 124 (2025) 103361 
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Fig. 5. The influence of parameters 𝛼 and 𝛽 on the performance of MCF-3WCCL.
Table 10
Friedman test and the critical value.
 Evaluation metric 𝐹𝐹 Critical value(𝜃 = 0.05) 
 Average precision 6.1807

1.8943

 
 Coverage 4.1098  
 One-error 4.1054  
 Ranking loss 5.3467  
 Hamming loss 8.5581  

performance. This analysis demonstrates the importance of fine-tuning 
parameters 𝛼 and 𝛽 to attain optimal performance across different 
datasets, guided by the observed trends.

5. Conclusion

A core challenge of multi-label learning tasks is how to accurately 
capture and fuse complex and multi-level correlations among labels. 
12 
This paper proposes a multi-level correlation information fusion model 
via three-way concept-cognitive learning for multi-label learning. The 
model employs the three-way concept-cognitive operator to structurally 
represent label concepts, effectively capturing the multi-level correla-
tion information among labels. It calculates the degree of importance 
of each label concept to the target label based on the structural infor-
mation of the label concepts. Further, through the mapping of label 
concept extent, the multi-level correlation information is extended 
to the feature layer to form a dependency between labels and fea-
tures. On the basis of feature concept fusion, the overall cognition 
of the label is formed. A series of experimental results indicate that 
the model demonstrates superior predictive performance and strong 
interpretability. This multi-level correlation modeling method based 
on concept-cognitive learning provides a new solution for multi-label 
learning tasks, and provides a deeper ability to understand the potential 
associations between labels.
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This method effectively fuses multi-level correlation information, 
thereby improving both the performance and interpretability of multi-
label learning. However, the method is applicable only to complete 
multi-label data. In real-world scenarios, multi-label data is often in-
complete, with some labels missing for certain instances. For such 
incomplete label data, the 3WL-concepts derived by the method are 
also incomplete, making it difficult to leverage the extents of 3WL-
concepts as cues to obtain corresponding 3WF-concepts. This limitation 
restricts the method’s applicability in broader and more realistic envi-
ronments. Therefore, our future work will focus on further extending 
this method to address the challenge of constructing accurate label con-
cepts from incomplete label data, thereby enhancing its applicability 
and robustness in missing multi-label learning.
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