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 A B S T R A C T

Concept-cognitive learning, which emphasizes the representation and learning of knowledge incorporated 
within data, has yielded excellent results in classification research. However, learning concepts from a high-
dimensional dataset is a time-consuming and complex process, which increases the extraction of redundant 
information and leads to poor classification task. Most existing neighborhood concept generated by neighbor-
hood similarity granule use a single predefined distance function and ignore the decision labels, which lead 
to the fact that the learned distance function is not optimal. Moreover, current concept-cognitive learning 
methods do not fully utilize the advantages of granular concept and neighborhood concept, resulting in weak 
interpretability. To address these issues, we introduce a novel association-based concept-cognitive learning 
method with distance metric learning for knowledge fusion and concept classification. To be concrete, to 
decrease the dimensionality of dataset and remove the interfering information, the representative attribute set 
from attribute clusters based on correlation coefficient matrix is firstly discussed. Subsequently, neighborhood 
similarity granules based on distance metric learning are used to construct fuzzy concepts. To obtain fuzzy 
concept of maximum contribution, we present a valid fuzzy concept associative space related to clues in the 
human brain. Furthermore, a mechanism of fuzzy concept-cognitive associative learning with distance metric 
learning (FCADML) model is proposed, which aims to achieve concept clustering and class prediction by fusing 
objects and attributes within fuzzy concepts. Finally, we perform a classification performance evaluation on 
thirteen datasets which verify that the feasibility and efficiency of the proposed learning mechanism.
. Introduction

Cognitive computing [1], as an important part of artificial in-
elligence, can simulate complex human thinking process to achieve 
ognitive intelligence, which is used to handle perception, concepts 
earning and extracting, memory and experienced knowledge acqui-
ition and updating [2,3]. In fact, as the fundamental unit of human 
ognition, concept constructs a mapping between reality and mental 
ord, and explores the nature of development of things. Concept typ-
cally composes of extent and intent, where extent is the collection of 
nstances or objects represented by a concept,  while intent is the set of 
ttributes or properties that concept possesses [4,5].  So far, the integra-
ion of concept learning with philosophy, psychology, mathematics and 
ther disciplines  has been extensively utilized in diverse application 
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fields including rule extraction [6,7], dynamic updating [8], object 
classification [9,10], etc.

With the rapid development and advancement in information tech-
nology, big data is growing explosively. It has the characteristics of 
high redundancy and high noise which increase the complexity of 
information recognition. To enhance the ability of machine learning 
models to identify data patterns, it is necessary to remove redundant 
and interfering information from data before training models. Cur-
rently, knowledge discovery and feature selection relying on rough 
set theory (RST) [11] and formal concept analysis (FCA) [4] have 
attracted the interests of many readers. To find attribute subsets with 
high separability and faster computational efficiency, it is essential to 
combine the dependence and structure of attribute subsets for attribute 
reduction. Prasad et al. [12] proposed a Bayesian rough set model 
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which can solve uncertainty, classification and multi-decision prob-
lems. Yuan et al. [13] introduced an innovative uncertainty measure 
based on Zentropy and designed a feature selection approach by using 
the granule structure in the decision information system. Focusing on 
FCA, Shao et al. introduced the attribute reduction methods for main-
taining granular concept and lattice structure from the perspective of 
reducing attribute in [14,15]. It should be noted that the dimensionality 
of data can be reduced through reduction algorithms for eliminating 
redundant information and improving data quality. However, tradi-
tional reduction methods may suffer from overfitting in the face of 
high-dimensional data, resulting in unreliable results. Hence, how to 
reduce the dimensionality of data to enhance classification performance 
in cognitive computing is the basic motivation of this paper.

With the development of the integration of cognitive computing 
and FCA, a novel research subject named concept-cognitive learning 
(CCL) has brought about new advancements. CCL is an interdisciplinary 
research field that studies cognition of things and acquisition of knowl-
edge through concepts [16,17]. CCL recognizes concepts by specific 
cognitive models that simulate the behavior of the human brain from 
given clue and reveal the systematic patterns. Recently, some ground-
breaking results have been achieved, such as Wille’s formal concept [5], 
fuzzy concept [14,15,18], three-way dual concept [19], two-way con-
cept leaning [20,21]. Besides, Yao et al. [17] introduced an attractive 
method of concept learning with the viewpoint of cognitive informatics 
and granular computing. To obtain sufficient and necessary concepts, 
Xu et al. [20] discussed a concept learning transformation method 
that combines granular computing with two-way learning. Considering 
that concepts change with the increase of information granules, Xu 
et al. [21] further investigated a dynamic two-way concept-cognitive 
learning from a fuzzy progressive learning perspective. Indeed, precise 
cognition of concept is usually difficult to achieve, so Li et al. [22] de-
veloped a CCL mechanism combined upper and lower approximations 
from philosophy and cognitive psychology.

In addition, up to now, models that integrate concept cognition 
with machine learning have attracted much attention. For instance, 
in a series of seminal articles by Mi et al. concept cognition was 
first combined with machine learning to present an incremental CCL 
model [23], fuzzy-based concept learning classification model [24] 
and concurrent CCL model [25]. On this basis, papers [10,26–28] 
successively put forward several CCl classification algorithms based 
on weighted granular concepts, fuzzy granular concepts and interval 
granular concepts. The above-mentioned models all have in common 
that the concept spaces are constructed through different forms of 
granular concept. Moreover, Yuan et al. [9] studied an incremental 
learning mechanism through the progressive fuzzy three-way concept. 
Next, to address high-dimensional data, Guo et al. [29] investigated 
a CCL system for tumor diagnosis to improve the interpretability and 
universality. Considering the accumulation and forgetting of knowledge 
in dynamic environment, Guo et al. [30] designed a memory-based 
CCL method by combining concept recalling and concept forgetting. 
From the above statement, we can find that neighborhood granules 
mainly rely on different similarity metrics (e.g., Euclidean distance 
or cosine theorem), and then concept spaces are obtained through 
fuzzy operators, which are used for classification problem. Neverthe-
less, there exist some limitations about the above techniques, which 
are manifested in: 1) There is no research indicating that granular 
concept or neighborhood concept induced by neighborhood similarity 
granule is more beneficial for representing concept learning and im-
proving classification performance. 2) The existing CCL methods do 
not fully utilize the advantages of combining granular concept and 
neighborhood concept, resulting in weak interpretability. Toward this 
end, considering both granular concept and neighborhood concept to 
improve classification accuracy is another motivation for this paper. 

Distance metric learning (DML) is brought forward by Xing et al.
[31] to measure the similarity between samples. It has been extensively 
2 
utilized in many funny machine learning tasks, such as classifica-
tion [10,13,32], information retrieval [31,33], and bioinformatics [34]. 
DML is to compute the distance or similarity between diverse samples 
such that samples within the same decision class have a smaller dis-
tance than samples from the opposite decision class, and vice versa. 
The Euclidean distance metric is prevalent distance metric, which is 
generally used to measure the distance between two samples. How-
ever,  this distance metric could be unsuitable for every application 
area since it only considers the linear distance between samples and 
ignores the correlation between attributes. It is worth stressing that the 
desirable distance metric should maintain the similarity relationship in 
dataset, that is,  samples with high similarity should exhibit proximity, 
while dissimilar samples should maintain significant separation. For 
this problem, we aim to characterize the distance metric through 
considering conditional attributes and decision classes so that samples 
within the same class are more similar than those from different classes, 
thereby constructing an optimal neighborhood similarity granule.  This 
is another motivation for this paper.

To counter the above-mentioned issues, we introduce an inno-
vative association-based concept-cognitive learning method with dis-
tance metric learning for knowledge fusion and concept classification. 
Concretely, the representative attribute set via attribute clusters is 
discussed to reduce the dimensionality of data. It is known that as-
sociative learning can enable individuals to grasp concepts related to 
cues, which is highly consistent with the cognitive process in human 
brain cognition that triggers association and constructs concept through 
cues. Subsequently, to collect concepts with high contribution degree, 
we explore a fuzzy concept-cognitive associative learning mechanism 
for classification. The flowchart of the put-forward model FCADML 
is presented in Fig.  1. In summary, this article has the following 
contributions.

∙ In high-dimensional data mining, according to the correlation 
coefficient matrix, the representative attribute set based on attribute 
clusters is crucial to remove interfering information. This provides a 
new method for decreasing the computational cost and improving the 
operational efficiency.

∙ The decision information of samples needs to be considered to 
learn a suitable distance metric when granulating samples, which can 
not only improve the discrimination ability of similar relationship but 
also decrease the uncertainty of data, thereby enhance the accuracy and 
reliability of data analysis and processing.

∙ During the process of associative learning, the richness and flex-
ibility of association are strengthened with the help of granular con-
cept and neighborhood concept. Thus, fuzzy concept closest to clue is 
learned, so as to better meet the actual needs. 

The subsequent arrangements of the article are organized as follows. 
Some fundamental notations of fuzzy formal concept analysis and DML 
are recalled in Section 2. Section 3 introduces a novel concept asso-
ciative learning with DML. The results of our experimental evaluation 
appear in Section 4. At last, we summarize this work and provide 
recommendations for future research in Section 5.

2. Preliminaries

This section illustrates a brief overview of fuzzy formal concept 
analysis and distance metric learning. Further details are available 
in [18,31,35].

2.1. Fuzzy formal concept analysis

Given a universe 𝑈 , and a fuzzy set 𝐹  of 𝑈 is measured as a mapping 
function 𝐹 (⋅) ∶ 𝑈 → [0, 1]. Given each 𝑢 ∈ 𝑈 , the value 𝐹 (𝑢) is 
interpreted as the fuzzy membership degree of 𝑢 belonging to 𝐹 . Let 
 (𝑈 ) stand for the family of all fuzzy sets on 𝑈 . 

Assume that 𝑀 and 𝑁 are two fuzzy sets over 𝑈 . If �̃�(𝑢) ≤ �̃�(𝑢), 
𝑢 ∈ 𝑈 , then 𝑀 is considered a subset of 𝑁 , that is, 𝑀 ⊆ 𝑁 . Specifically, 
the set of all crisp sets on 𝑈 is marked as (𝑈 ).



C. Zhang et al. Information Fusion 124 (2025) 103386 
Fig. 1. Flowchart of model FCADML.

A fuzzy formal context is referred to as a triplet (𝑈,𝐴, �̃�), where 
𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑛} is the set of objects and 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑚} is the 
set of attributes. Subsequently, �̃� represents a fuzzy relation between 
𝑈 and 𝐴 (that is, �̃� ∶ 𝑈 × 𝐴 → [0, 1]), and every �̃�(𝑢, 𝑎) means the 
membership degree of object 𝑢 to attribute 𝑎.

In a fuzzy formal context (𝑈,𝐴, �̃�), given 𝑌 ⊆ 𝑈 and �̃� ∈  (𝐴), two 
operators �̃� ∶ (𝑈 ) →  (𝐴) and 𝐻 ∶  (𝐴) → (𝑈 ) are given by: 
�̃� (𝑌 )(𝑎) =

⋀

𝑢∈𝑌
�̃�(𝑢, 𝑎), 𝑎 ∈ 𝐴,

𝐻(�̃�) =
{

𝑢 ∈ 𝑈 ∶ ∀𝑎 ∈ 𝐴, �̃�(𝑎) ≤ �̃�(𝑢, 𝑎)
}

,
(1)

where a pair (𝑌 , �̃�) is called fuzzy concept satisfying �̃� (𝑌 ) = �̃� and 
𝐻(�̃�) = 𝑌 . Generally speaking, 𝑌  is extent and �̃� is intent of fuzzy 
concept.

In addition, with respect to two fuzzy formal contexts (𝑈,𝐴, �̃�)
and (𝑈,𝐷, 𝐽 ), where �̃� ∶ 𝑈 × 𝐴 → [0, 1] and 𝐽 ∶ 𝑈 × 𝐷 → {0, 1}. 
Then the quintuple (𝑈,𝐴, �̃�,𝐷, 𝐽 ) is called a fuzzy formal decision 
context (for short FFDC) where 𝐴 ∩ 𝐷 = ∅ with 𝐴 representing the 
conditional attribute set and 𝐷 representing the decision attribute set. 
Then 𝑈∕𝐷 = {𝑈𝑑1 , 𝑈𝑑2 ,… , 𝑈𝑑𝑡} is a decision division by 𝐷 with 𝑈 =
𝑈𝑑1 ∪ 𝑈𝑑2 ∪⋯ ∪ 𝑈𝑑𝑡  and 𝑈𝑑1 ∩ 𝑈𝑑2 ∩⋯ ∩ 𝑈𝑑𝑡 = ∅. 

2.2. Distance metric learning

Most existing sample similarities are characterized by distance met-
rics, such as Manhattan distance, Euclidean distance, Chebychev dis-
tance, etc. A distance function is denoted as

𝐷𝐴(𝑢, 𝑣) = (
𝑚
∑

𝑖=1
|𝑓 (𝑢, 𝑎𝑖) − 𝑓 (𝑣, 𝑎𝑖)|

𝑝)1∕𝑝,

where 𝑢 and 𝑣 are two objects in an 𝑚-dimensional vector 𝐴 =
{𝑎1, 𝑎2,… , 𝑎𝑚}, and 𝑓 (𝑢, 𝑎𝑖) and 𝑓 (𝑣, 𝑎𝑖) are the values of objects 𝑢 and 
𝑣 in the 𝑖th dimension 𝑎𝑖. To the best of our knowledge, these distance 
metrics fail to take into account the decision labels of samples. In fact, 
if the distance between two objects with different label is very small, 
it is easy to cause misclassification of objects. Therefore, given the 
decision information of the object, metric learning is to learn a valid 
distance function in which the nearest neighbors belonging to the same 
decision label are closely held and vice versa. Most researches focus on 
the Mahalanobis distance since it can be easily optimized by deriving 
a convex function that ensuring the global optimum [35,36]. Then a 
convex objective function for distance metric was proposed [31] and 
its form is given by as follows: 

√

𝑇 (2)
𝑑𝑄(𝑢, 𝑣) = (𝑄𝑢 −𝑄𝑣) 𝑀(𝑄𝑢 −𝑄𝑣),

3 
where 𝑄𝑢 = (𝑓 (𝑢, 𝑎1), 𝑓 (𝑢, 𝑎2),… , 𝑓 (𝑢, 𝑎𝑞))𝑇  is the vector of feature 
values in a feature subsect 𝑄 = {𝑎1, 𝑎2,… , 𝑎𝑞}. The learning form is 
parameterized by matrix 𝑀 which is required to be positive semi-
definite. Therefore, we can formulate a loss minimization problem as 
the function of the learn metric 𝑀 .

The neighborhood of object is a collection of similar objects. In such 
case, the neighborhood of an object is the collection of similar objects 
that have the same decision label as the object attached and is defined 
as 𝑑𝑄(𝑢, 𝑧) ≤ 𝑑𝑄(𝑢, 𝑣) + 1,  in which objects 𝑢 and 𝑣 are assigned to the 
same decision label, and 𝑢 and 𝑧 belong to different decision labels. 
Then the loss function consists of two terms induced by Eqs. (3) and 
(4), where Eq. (3) is used to pull those objects with the same decision 
label closer, and Eq. (4) is to push away those objects with different 
decision labels. That is, the form of problem is converted as follows: 
𝑝𝑢𝑙𝑙(𝑀) =

∑

𝑣∈𝑠𝑘𝑄(𝑢)
𝑑𝑄(𝑢, 𝑣), (3)

𝑝𝑢𝑠ℎ(𝑀) =
∑

𝑣∈𝑠𝑘𝑄(𝑢)

∑

𝑧∈𝑘𝑄(𝑢)−𝑠𝑘𝑄(𝑢)
[1 + 𝑑𝑄(𝑢, 𝑣) − 𝑑𝑄(𝑢, 𝑧)]+, (4)

where [⋅]+ = 𝑚𝑎𝑥(⋅, 0). 𝑠𝑘𝑄(𝑢) represents object 𝑢 has 𝑘 nearest neigh-
bors that belong to the same decision label. 𝑘𝑄(𝑢) means that 𝑢 has 
𝑘 nearest neighbors in dataset. Subsequently, these two terms are 
integrated into a loss function: 
min
𝑀

{(1 −𝑤)𝑝𝑢𝑙𝑙(𝑀) +𝑤𝑝𝑢𝑠ℎ(𝑀)},

𝑠.𝑡 𝑀 ≥ 0.
(5)

where 𝑤 is a constant. The minimization solution of loss function can 
be derived using gradient descent. It should be noted that this distance 
metric  takes into account the decision label so that samples from 
the same decision label are close to each other, while samples from 
different decision labels are far from each other. Then assume 𝑀 is a 
diagonal matrix, diagonal elements can serve as feature weights so as 
to evaluate feature importance.

3. Concept associative learning with distance metric learning

For ease of understanding below, we first provide explanations of 
some notations, which is illustrated in Table  1.

3.1. Attribute clusters for representative attributes

In the big data era, data has an explosive growth, but in fact, 
features with high correlation play a crucial part in the information 
process. Thus, it is essential to reduce the redundant or less relevant fea-
tures. In this subsection, we establish a method to extract representative 
attributes from attribute clusters. 

Definition 1.  Given a fuzzy formal context (𝑈,𝐴, �̃�), for any 𝑎𝑘, 𝑎𝑗 ∈
𝐴, the correlation coefficient between 𝑎𝑘 and 𝑎𝑗 is defined as follows: 

𝑟(𝑎𝑘, 𝑎𝑗 ) =
∑𝑛

𝑖=1 |�̃�(𝑢𝑖, 𝑎𝑘) − �̄�(𝑎𝑘) ∥ �̃�(𝑢𝑖, 𝑎𝑗 ) − �̄�(𝑎𝑗 )|
√

∑𝑛
𝑖=1(�̃�(𝑢𝑖, 𝑎𝑘) − �̄�(𝑎𝑘))2

√

∑𝑛
𝑖=1(�̃�(𝑢𝑖, 𝑎𝑗 ) − �̄�(𝑎𝑗 ))2

, (6)

where �̃�(𝑢𝑖, 𝑎𝑘) and �̄�(𝑎𝑘) represent the membership degree of object 
𝑢𝑖 to attribute 𝑎𝑘 and the mean value of attribute 𝑎𝑘 with respect to 
the object set 𝑈 , respectively. That is, �̄�(𝑎𝑘) = 1

𝑛
∑𝑛

𝑖=1 �̃�(𝑢𝑖, 𝑎𝑘). It is 
widely known that 𝑟(𝑎𝑘, 𝑎𝑗 ) ≤ 1. Especially, if �̃�(𝑢𝑖, 𝑎𝑘) = �̃�(𝑢𝑖, 𝑎𝑗 )
for any 𝑢𝑖 ∈ 𝑈 , then 𝑟(𝑎𝑘, 𝑎𝑗 ) = 1 holds. Otherwise, 𝑟(𝑎𝑘, 𝑎𝑗 ) < 1. 
The collection of correlation coefficient for any pair of attributes will 
construct a correlation coefficient matrix and is denoted as 𝑆, where 
𝑆(𝑘, 𝑗) = 𝑟(𝑎𝑘, 𝑎𝑗 ) for 𝑎𝑘, 𝑎𝑗 ∈ 𝐴. It is obvious that the above matrix 
satisfies reflexivity and symmetry.

Example 1.  A FFDC is described in Table  2 containing 𝑈 = {𝑢1, 𝑢2,
… , 𝑢 } and 𝐴 = {𝑎 , 𝑎 ,… , 𝑎 }. The decision attribute 𝑑 divides the 
13 1 2 7
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Table 1
The interpretation of notations.
 Notation Interpretation Notation Interpretation  
 𝑈 A set of objects 𝑈𝑑𝑘 A decision class  
 𝑃𝑅𝛿

𝑖 Attribute similarity path of 𝑖th path 𝑃𝑅𝛿 All attribute similarity paths  
 𝐶𝐿𝑖 𝑖th attribute cluster  All attribute clusters  
 𝑄(𝐶𝐿𝑖) Representative attribute in 𝐶𝐿𝑖 𝑄 Representative attribute set  
 𝑁(𝑢) Neighborhood similarity granule of object 𝑢  𝑑𝑘 All neighborhood similarity granules in 𝑈𝑑𝑘  
 𝑀𝐶𝑑𝑘 (𝑢) Maximum clue of object 𝑢 in 𝑈𝑑𝑘 𝑑𝑘 The set of all maximum clues in 𝑈𝑑𝑘  
 𝐹𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) Fuzzy concept associative subspace of 𝑀𝐶𝑑𝑘 (𝑢) in 𝑈𝑑𝑘 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) Efficient fuzzy concept associative subspace of 𝑀𝐶𝑑𝑘 (𝑢) in 𝑈𝑑𝑘  
 𝑉 𝐶𝐴𝑆𝑑𝑘 Valid fuzzy concept associative subspace in 𝑈𝑑𝑘 𝑉 𝐶𝐴𝑆𝑑 Valid fuzzy concept associative space  
Table 2
A fuzzy formal decision context.
 𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑑 
 𝑢1 0.73 0.33 0.59 0.53 0.50 0.40 0.65 1 
 𝑢2 0.10 0.79 0.33 0.50 0.45 0.04 0.10 1 
 𝑢3 0.44 0.50 0.09 0.97 0.33 0.46 0.67 1 
 𝑢4 0.37 0.43 0.33 0.15 0.53 0.30 0.73 1 
 𝑢5 0.32 0.42 0.28 0.85 0.14 0.31 0.53 1 
 𝑢6 0.69 0.85 0.84 0.92 0.03 0.57 0.88 1 
 𝑢7 0.96 0.22 0.88 0.45 0.17 0.45 0.39 1 
 𝑢8 0.20 0.27 0.31 0.34 0.55 0.21 0.73 2 
 𝑢9 0.61 0.01 0.40 0.52 0.90 0.20 0.02 2 
 𝑢10 0.45 0.44 0.87 0.26 0.58 0.75 0.70 2 
 𝑢11 0.67 0.06 0.67 0.64 0.13 0.88 0.79 2 
 𝑢12 0.07 0.37 0.65 0.36 0.05 0.17 0.27 2 
 𝑢13 0.25 0.61 0.43 0.46 0.13 0.09 0.49 2 
.

whole set of objects into two categories where 𝑈𝑑
1 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5,

𝑢6, 𝑢7} and 𝑈𝑑
2 = {𝑢8, 𝑢9, 𝑢10, 𝑢11, 𝑢12, 𝑢13}. The correlation coefficient 

matrix 𝑆 is shown as:

𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.7424 0.6987 0.4730 0.7453 0.6703 0.7681
0.7424 1.0000 0.6565 0.4736 0.7943 0.7899 0.8988
0.6987 0.6565 1.0000 0.8837 0.7064 0.7055 0.7124
0.4730 0.4736 0.8837 1.0000 0.6154 0.5687 0.5737
0.7453 0.7943 0.7064 0.6154 1.0000 0.7486 0.8790
0.6703 0.7899 0.7055 0.5687 0.7486 1.0000 0.7835
0.7581 0.8988 0.7124 0.5737 0.8790 0.7835 1.0000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Definition 2.  Let (𝑈,𝐴, �̃�) be a fuzzy formal context. Given any 
𝑎𝑘, 𝑎𝑗 ∈ 𝐴, if there exists a path starting from 𝑎𝑘 and ending at attribute 
𝑎𝑗 , and the correlation coefficient of attributes on this path is not less 
than 𝛿, then the attribute similarity path of 𝑖th path is defined as 
follows: 

𝑃𝑅𝛿
𝑖 = 𝑎𝑘

𝑟(𝑎𝑘 ,𝑎2)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎2 ⋯ 𝑎𝑡−1

𝑟(𝑎𝑡−1 ,𝑎𝑗 )
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎𝑗 , (7)

It should be pointed out that 𝑟(𝑎𝑘, 𝑎2) on the arrow indicates the cost 
of getting from 𝑎𝑘 to 𝑎2 in the 𝑖th path. Then an attribute might appear 
in multiple paths due to the fact that the cost of going forward from 
attribute 𝑎𝑘 may encounter multiple attributes not lower than 𝛿. All 
attribute similarity paths are denoted as 𝑃𝑅𝛿 = {𝑃𝑅𝛿

1, 𝑃𝑅
𝛿
2,… , 𝑃𝑅𝛿

𝑙 }, 
where 𝑙 represents the number of paths. In addition, the attributes 
within each attribute similarity path are clustered and denoted as 
attribute cluster, which is expressed as  = {𝐶𝐿1, 𝐶𝐿2,… , 𝐶𝐿𝑙}

where 𝐶𝐿𝑖 = {𝑎𝑘, 𝑎2,… , 𝑎𝑡−1, 𝑎𝑗 |𝑎𝑘
𝑟(𝑎𝑘 ,𝑎2)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎2 ⋯ 𝑎𝑡−1

𝑟(𝑎𝑡−1 ,𝑎𝑗 )
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎𝑗}. 

Example 2.  Assume 𝛿 = 0.7920, then the attribute similarity paths also 
have 𝑃𝑅𝛿

1 = 𝑎1
1.00
←←←←←←←←←←←←←←←←→ 𝑎1, 𝑃𝑅𝛿

2 = 𝑎2
0.7943
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎5

0.8790
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎7, 𝑃𝑅𝛿

3 = 𝑎3
0.8837
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎4

and 𝑃𝑅𝛿
4 = 𝑎6

1.00
←←←←←←←←←←←←←←←←→ 𝑎6. In addition, suppose 𝛿 = 0.7750, then the 

attribute similarity paths have 𝑃𝑅𝛿
1 = 𝑎1

1.00
←←←←←←←←←←←←←←←←→ 𝑎1, 𝑃𝑅𝛿

2 = 𝑎2
0.7943
←←←←←←←←←←←←←←←←←←←←←←←←→

𝑎5
0.8790
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎7, 𝑃𝑅𝛿

3 = 𝑎2
0.7899
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎6

0.7835
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎7 and 𝑃𝑅𝛿

4 = 𝑎3
0.8837
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎4. 

From the above statement, it is evident that different 𝛿 can induce 
different attribute similarity paths. Next, the attribute clusters given 
by 𝛿 = 0.7920 are 𝐶𝐿1 = {𝑎1}, 𝐶𝐿2 = {𝑎2, 𝑎5, 𝑎7}, 𝐶𝐿3 = {𝑎3, 𝑎4}
and 𝐶𝐿 = {𝑎 }. There exist intersecting attributes 𝑎  and 𝑎  in the 
4 6 2 7

4 
attribute similarity paths 𝑃𝑅𝛿
2 and 𝑃𝑅𝛿

3 when 𝛿 = 0.7750, and these 
paths are unioned. The final attribute clusters formed are 𝐶𝐿1 = {𝑎1}, 
𝐶𝐿2 = {𝑎2, 𝑎5, 𝑎6, 𝑎7} and 𝐶𝐿3 = {𝑎3, 𝑎4}.

Definition 3.  For an attribute cluster 𝐶𝐿𝑖, we define the representa-
tive attribute as follows: 
𝑄(𝐶𝐿𝑖) = {𝑎𝑘 ∈ 𝐴 ∶ 𝑎𝑟𝑔max

𝑎𝑗∈𝐶𝐿𝑖

(𝑟𝑜𝑡𝑗 )}, (8)

where 𝑟𝑜𝑡𝑗 =
∑

𝑘≠𝑗,𝑎𝑘∈𝐶𝐿𝑖
𝑆(𝑗, 𝑘) means the sum of correlation coeffi-

cient between attribute 𝑎𝑗 with other attributes in the cluster 𝐶𝐿𝑖. The 
representative attribute set is named 𝑄 = {𝑄(𝐶𝐿1), 𝑄(𝐶𝐿2),… , 𝑄(𝐶𝐿𝑙)}

Subsequently, we will continue to discuss the concept learning 
process in a new FFDC (𝑈,𝑄, �̃�,𝐷, 𝐽 ) formed by the representative 
attribute set 𝑄. The process of extracting the representative attributes 
is shown in Algorithm 1. 

Example 3 (Continued with Example  1). Let 𝛿 = 0.7920, for the attribute 
cluster 𝐶𝐿2, we obtain 𝑟𝑜𝑡2 = 𝑆(2, 5) + 𝑆(2, 7) = 1.69, 𝑟𝑜𝑡5 = 𝑆(5, 2) +
𝑆(5, 7) = 1.67 and 𝑟𝑜𝑡7 = 𝑆(7, 2) + 𝑆(7, 5) = 1.78. Then the attribute 
𝑎7 corresponding to the maximum value 1.78 is the representative 
attribute, which is 𝑄(𝐶𝐿2) = {𝑎7}. By a similar way, we obtain 𝑄 =
{𝑎1, 𝑎3, 𝑎6, 𝑎7}.

Then if 𝛿 = 0.7750, for the attribute cluster 𝐶𝐿2, we have 𝑟𝑜𝑡2 = 2.48, 
𝑟𝑜𝑡5 = 2.42, 𝑟𝑜𝑡6 = 2.32 and 𝑟𝑜𝑡7 = 2.56. Hence, 𝑄(𝐶𝐿2) = {𝑎7}. 
Finally, the representative attribute set is 𝑄 = {𝑎1, 𝑎3, 𝑎7}. Obviously, it 
is clearly known that different 𝛿 controls the size of the representative 
attribute set. That is to say, a larger value 𝛿 implies that fewer attributes 
satisfy the correlation coefficient, which leads to more attribute clusters 
and retains more representative attributes.

3.2. Fuzzy concept associative learning with distance metric learning

In this subsection, the similarities among different objects are mea-
sured by a distance metric between their attributes. A positive semi-
definite matrix 𝑀 is attained by optimizing the distance metrics among 
all objects. Thus, Eq. (2) can be used to describe a neighborhood 
similarity granule where 𝑑𝐴(𝑢, 𝑢𝑠) ∈ R+, and satisfies non-negativity 
and symmetry. As is commonly known, associative memory [37] should 
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Algorithm 1: The representative attribute set extraction based on 
the correlation coefficient
Input: A fuzzy formal context (𝑈,𝐴, �̃�) and threshold 𝛿.
Output: The representative attribute set 𝑄. 
1: Initialize: 𝑄 ← ∅, 𝐶 ← ∅; 
2: for each 𝑎𝑖 ∈ 𝐴 do 
3: for each 𝑎𝑘 ∈ 𝐴 do 
4: Compute the correlation coefficient 𝑟(𝑎𝑖, 𝑎𝑘) from Definition 1; 

5: if 𝑟(𝑎𝑖, 𝑎𝑘) ≥ 𝛿 then 
6: 𝐶(𝑎𝑖) ← 𝑎𝑘;
7: end if
8: end for
9:  ← 𝐶(𝑎𝑖);
10: end for
11: for each 𝑎𝑖 ∈ 𝐴 do 
12: for each 𝑎𝑗 ∈ 𝐴 − {𝑎𝑖} do 
13: if 𝐶(𝑎𝑖) ∩ 𝐶(𝑎𝑗 ) ≠ ∅ then 
14: 𝐶(𝑎𝑖) = 𝐶(𝑎𝑖) ∪ 𝐶(𝑎𝑗 ) and 𝑆 ← {𝑎𝑗}; // 𝑆 collects a set of 

other attributes whose intersection with 𝑎𝑖 is non-empty.
15: end if
16: end for
17: 𝐶𝐿𝑖 ← 𝐶(𝑎𝑖), 𝐴 = 𝐴 − {𝑎𝑖} and 𝐴 = 𝐴 − 𝑆; 
18: Compute 𝑟𝑜𝑡𝑘 in 𝐶𝐿𝑖 and select the representative attribute 

𝑎∗ = 𝑎𝑟𝑔max
𝑎𝑘∈𝐶𝐿𝑖

(𝑟𝑜𝑡𝑘); 
19: 𝑄(𝐶𝐿𝑖) ← 𝑎∗;
20: end for
21: 𝑄 ← 𝑄(𝐶𝐿𝑖). 
22: Return 𝑄.

be taken as the pivotal function of human brain computation. Further-
more, it is considered that the learning process of the human brain is 
a complicated one involving the generation, elimination, and modifi-
cation of the relationships of neural information [38] in associative 
memory. Actually, clues are the key to associative learning, which 
are continuously associated with the knowledge in the brain during 
the learning process. This process might be performed repeatedly until 
all the knowledge corresponding to the clues is associated. Therefore, 
we introduce a novel fuzzy concept associative learning process with 
distance metric learning.

Similarly, in a new fuzzy formal context (𝑈,𝑄, �̃�), given 𝑌 ⊆ 𝑈
and �̃� ∈  (𝑄), a pair of cognitive operators �̃�𝑄 ∶ (𝑈 ) →  (𝑄) and 
𝐻𝑄 ∶  (𝑄) → (𝑈 ) are given by: 
�̃�𝑄(𝑌 )(𝑎) =

⋀

𝑢∈𝑌
�̃�(𝑢, 𝑎), 𝑎 ∈ 𝑄,

𝐻𝑄(�̃�) =
{

𝑢 ∈ 𝑈 ∶ ∀𝑎 ∈ 𝑄, �̃�(𝑎) ≤ �̃�(𝑢, 𝑎)
}

,
(9)

In fact, the following discussion are based on (𝑈,𝑄, �̃�). Therefore, for 
the sake of convenience, we abbreviate two operators �̃�𝑄 and 𝐻𝑄 as �̃�
and 𝐻 , respectively. 

Definition 4.  Given a FFDC (𝑈,𝑄, �̃�,𝐷, 𝐽 ), in which 𝑈∕𝐷 = {𝑈𝑑1 , 𝑈𝑑2 ,
… , 𝑈𝑑𝑡}. For 𝑢 ∈ 𝑈𝑑𝑘 , the neighborhood similarity granule of 𝑢 is 
defined as follows: 
𝑁(𝑢) = {𝑢𝑠 ∈ 𝑈𝑑𝑘

|𝑑𝑄(𝑢, 𝑢𝑠) ≤ 𝛽}, (10)

where 𝛽 is a threshold.
Generally speaking, the smaller the distance 𝑑𝑄(𝑢, 𝑢𝑠) between 𝑢 and 

𝑢𝑠 is, the greater the similarity between them will be. And the threshold 
𝛽 is essential in concept learning process, which controls the size of 
𝑁(𝑢). Then we denote all neighborhood similarity granules under 𝑈𝑑𝑘

as  𝑑𝑘 = {𝑁(𝑢)|𝑢 ∈ 𝑈𝑑𝑘}. In fact, although 𝑁(𝑢) represents the set of 
some objects similar to 𝑢, there will be similar neighborhood similarity 
5 
granules in  𝑑𝑘  with inclusion relations. If the neighborhood similarity 
granules that satisfy the inclusion relationship are considered as clues 
of associative learning, which can reduce the time computational cost 
of learning concepts from multiple neighborhood similarity granules 
and is consistent with human thinking of learning concepts from the 
maximum clue. Therefore, the maximum clue in 𝑈𝑑𝑘  is defined as 
𝑀𝐶𝑑𝑘 (𝑢) = {𝑁(𝑢)|𝑢 ∈ 𝑁(𝑢) ∧ (∀𝑢 ∈ 𝑁(𝑢𝑖) ∧𝑁(𝑢𝑖) ∈  𝑑𝑘 ∧𝑁(𝑢) ⊆ 𝑁(𝑢𝑖)

⇒ 𝑁(𝑢𝑖) = 𝑁(𝑢))}.

(11)

Note that the maximum clue of 𝑢 includes all objects in 𝑈𝑑𝑘  that is 
related to 𝑢, and 𝑀𝐶𝑑𝑘 (𝑢) may show a detailed and exhaustive descrip-
tion of 𝑢 when we deliberate the issue of associative learning. The set 
of all maximum clues in 𝑈𝑑𝑘  is denoted as 𝑑𝑘 = {𝑀𝐶𝑑𝑘 (𝑢)|𝑢 ∈
𝑈𝑑𝑘}. There might be many identical maximum clues in 𝑑𝑘 , which 
shrinks the time consumption for associative learning from different 
maximum clues. For convenience, we abbreviate the maximum clue as 
clue 𝑀𝐶𝑑𝑘 (𝑢).

For 𝑀𝐶𝑑𝑘 (𝑢) ∈ 𝑑𝑘 , in the process of associative learning, 
clue 𝑀𝐶𝑑𝑘 (𝑢) is continuously associated with knowledge in the hu-
man brain, and finally concept is output according to the predeter-
mined goals or personal preferences. From Eq. (9), it is obvious that 
(

𝐻�̃� (𝑀𝐶𝑑𝑘 (𝑢)), �̃� (𝑀𝐶𝑑𝑘 (𝑢))
) is a fuzzy concept. Now, we discuss the 

associative learning process from clue 𝑀𝐶𝑑𝑘 (𝑢).
For 𝑀𝐶𝑑𝑘 (𝑢) ∈ 𝑑𝑘 , the fuzzy concept associative subspace under 

𝑈𝑑𝑘  is represented as follows: 
𝐹𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) = {(𝐻�̃� (𝑋), �̃� (𝑋))|𝑋 ⊆ 𝑀𝐶𝑑𝑘 (𝑢)}. (12)

where 𝐹𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) means the set of fuzzy concepts corresponding 
to all subsets of clue 𝑀𝐶𝑑𝑘 (𝑢). However, it is an NP-hard problem to 
learn 𝐹𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) from 𝑀𝐶𝑑𝑘 (𝑢) when the clue is large enough. 
To address the aforementioned problem, we learn the efficient fuzzy 
concept associative subspace from 𝑀𝐶𝑑𝑘 (𝑢), that is, 
𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) = {(𝐻�̃� (𝑀𝐶𝑑𝑘 (𝑢)), �̃� (𝑀𝐶𝑑𝑘 (𝑢)))}∪

{(𝐻�̃� (𝑢𝑗 ), �̃� (𝑢𝑗 ))|𝑢𝑗 ∈ 𝑀𝐶𝑑𝑘 (𝑢)}.
(13)

In addition, the efficient fuzzy concept associative subspace about 
all clues 𝑑𝑘  in 𝑈𝑑𝑘  is denoted as 𝐸𝐴𝑆𝑑𝑘 = {𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢1)),
𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢2)),… , 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢𝑟))}, where 𝑟 means the number 
of clues in 𝑑𝑘 .

As mentioned before, 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) is a set of fuzzy concepts 
related to 𝑀𝐶𝑑𝑘 (𝑢). However, we are more concerned about the fuzzy 
concept that emerges after the process of association ends. For a fuzzy 
set �̃� and 𝑎 ∈ 𝑄, the dominance operator ⋄ about 𝑎 is denoted as 
�̃�⋄(𝑎) = {𝑢𝑗 ∈ 𝑈 |�̃�(𝑢𝑗 , 𝑎) ≥ �̃�(𝑎)}. Obviously, �̃�⋄(𝑎) is a collection of 
objects whose fuzzy membership values with respect to attribute 𝑎 are 
greater than �̃�(𝑎).

Definition 5.  For (𝐻�̃� (𝑋), �̃� (𝑋)) ∈ 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)), then the 
extent-intent validity is given by: 

𝐸𝑖𝑣(𝐻�̃� (𝑋), �̃� (𝑋)) =
∑

𝑎∈𝑄

|𝐻�̃� (𝑋) ∩ �̃� (𝑋)⋄(𝑎)|
|�̃� (𝑋)⋄(𝑎)|

, (14)

where | ∗ | means the number of ∗.
More precisely, 𝐸𝑖𝑣(𝐻�̃� (𝑋), �̃� (𝑋)) means the effective contribution 

of extent 𝐻�̃� (𝑋) and intent �̃� (𝑋) to the formation of fuzzy concept 
(𝐻�̃� (𝑋), �̃� (𝑋)). The larger 𝐸𝑖𝑣(𝐻�̃� (𝑋), �̃� (𝑋)) is, the more relevant the 
fuzzy concept outputted and clue through associative learning is.

Definition 6.  For 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) ∈ 𝐸𝐴𝑆𝑑𝑘 ,  then the valid fuzzy 
concept associative subspace is given by: 

𝑉 𝐶𝐴𝑆𝑑𝑘 = {(𝐻�̃� (𝑌 ), �̃� (𝑌 ))| 𝑎𝑟𝑔max
(𝐻�̃� (𝑋),�̃� (𝑋))∈𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢))

𝐸𝑖𝑣(𝐻�̃� (𝑋), �̃� (𝑋)),

∀𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) ∈ 𝐸𝐴𝑆𝑑𝑘}.

(15)
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Definition  6 explains that a most valuable fuzzy concept is learned 
and derived from the given fuzzy concept associative subspace
𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)). Finally, the valid fuzzy concept associative subspace 
under each decision class is integrated into the overall concept space, 
which is called 𝑉 𝐶𝐴𝑆𝑑 = {𝑉 𝐶𝐴𝑆𝑑1 , 𝑉 𝐶𝐴𝑆𝑑2 ,… , 𝑉 𝐶𝐴𝑆𝑑𝑡}. Next, 
Algorithm 2 illustrates the process of constructing a valid fuzzy concept 
associative space.
Algorithm 2: Constructing valid fuzzy concept associative space
Input: A FFDC (𝑈,𝑄, �̃�,𝐷, 𝐽 ) and threshold 𝛽.
Output: Valid fuzzy concept associative space 𝑉 𝐶𝐴𝑆𝑑 . 
1: Initialize: 𝑉 𝐶𝐴𝑆𝑑 ← ∅; 
2: for each 𝑈𝑑𝑘 ∈ 𝑈∕𝐷 do 
3: Initialize:  𝑑𝑘 ← ∅, 𝑑𝑘 ← ∅ and 𝑉 𝐶𝐴𝑆𝑑𝑘 ← ∅; 
4: for each 𝑢𝑗 ∈ 𝑈𝑑𝑘  do 
5: Compute the neighborhood similarity granule 𝑁(𝑢𝑗 ) from 

Definition 4 and  𝑑𝑘 ← 𝑁(𝑢𝑗 );
6: end for
7: while  𝑑𝑘 ≠ ∅ do 
8: Sort the neighborhood similarity granule in  𝑑𝑘  in 

descending order of their number; 
9: for each 𝑢𝑗 ∈ 𝑈𝑑𝑘  do 
10: for 𝑢𝑖 ∈ 𝑈𝑑𝑘 − {𝑢𝑗} do 
11: if 𝑁(𝑢𝑖) ⊆ 𝑁(𝑢𝑗 ) then 
12: 𝑀𝐶𝑑𝑘 (𝑢𝑗 ) ← 𝑁(𝑢𝑗 ) according to Eq.  (11) and 

 𝑑𝑘 =  𝑑𝑘 −𝑁(𝑢𝑖);
13: else 
14: continue
15: end if
16: end for
17: 𝑑𝑘 ← 𝑀𝐶𝑑𝑘 (𝑢𝑗 );
18: end for
19: end while
20: for 𝑀𝐶𝑑𝑘 (𝑢𝑗 ) ∈ 𝑑𝑘  do 
21: Compute (𝐻�̃� (𝑀𝐶𝑑𝑘 (𝑢𝑗 )), �̃� (𝑀𝐶𝑑𝑘 (𝑢𝑗 ))) and 

𝐸𝑖𝑣(𝐻�̃� (𝑀𝐶𝑑𝑘 (𝑢𝑗 )), �̃� (𝑀𝐶𝑑𝑘 (𝑢𝑗 )));
𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) ⟵ (𝐻�̃� (𝑀𝐶𝑑𝑘 (𝑢𝑗 )), �̃� (𝑀𝐶𝑑𝑘 (𝑢𝑗 ))); 

22: for 𝑢𝑠 ∈ 𝑀𝐶𝑑𝑘 (𝑢𝑗 ) do 
23: Construct a fuzzy concept (𝐻�̃� (𝑢𝑠), �̃� (𝑢𝑠)) and calculate 

𝐸𝑖𝑣(𝐻�̃� (𝑢𝑠), �̃� (𝑢𝑠));
24: 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)) ⟵ (𝐻�̃� (𝑢𝑠), �̃� (𝑢𝑠));
25: end for
26: Select a fuzzy concept (𝐻�̃� (𝑌 ), �̃� (𝑌 )) based on 

𝑎𝑟𝑔max𝐸𝑖𝑣(𝐻�̃� (𝑌 ), �̃� (𝑌 )) where 
(𝐻�̃� (𝑌 ), �̃� (𝑌 )) ∈ 𝐸𝐴𝑆𝑑𝑘 (𝑀𝐶𝑑𝑘 (𝑢)); 

27: 𝑉 𝐶𝐴𝑆𝑑𝑘 ← (𝐻�̃� (𝑌 ), �̃� (𝑌 ));
28: end for
29: 𝑉 𝐶𝐴𝑆𝑑 ← 𝑉 𝐶𝐴𝑆𝑑𝑘 .
30: end for
31: Return 𝑉 𝐶𝐴𝑆𝑑 .

Example 4 (Proceeded with Example  1). Suppose 𝛿 = 0.7920, 𝛽 = 0.4, 
and the nearest neighbors 𝑘 = 2. We can obtain 𝑀 for four attributes 
𝑎1, 𝑎3, 𝑎6, 𝑎7 is 1.43, 1.13, 1.23 and 0.59.

For the objects in decision class 𝑈𝑑1 , we can calculate the neigh-
borhood similarity granule 𝑁(𝑢1) = 𝑁(𝑢6) = {𝑢1, 𝑢6}, 𝑁(𝑢2) = {𝑢2}, 
𝑁(𝑢3) = 𝑁(𝑢4) = 𝑁(𝑢5) = {𝑢3, 𝑢4, 𝑢5} and 𝑁(𝑢7) = {𝑢7}. Then the 
clues are 𝑀𝐶𝑑1 (𝑢1) = {𝑢1, 𝑢6}, 𝑀𝐶𝑑1 (𝑢2) = {𝑢2}, 𝑀𝐶𝑑1 (𝑢3) = {𝑢3, 𝑢4, 𝑢5}
and 𝑀𝐶𝑑1 (𝑢7) = {𝑢7}. For 𝑀𝐶𝑑1 (𝑢1) and 𝑀𝐶𝑑1 (𝑢3), the fuzzy concept 
associative subspaces and the extent-intent validities are represented 
in Table  3. Thus, the fuzzy concepts ({𝑢6}, { 𝑎1

0.69 ,
𝑎3
0.84 ,

𝑎6
0.57 ,

𝑎7
0.88 }

) and 
(

{𝑢1, 𝑢3, 𝑢4, 𝑢5, 𝑢6}, {
𝑎1
0.32 ,

𝑎3
0.09 ,

𝑎6
0.30 ,

𝑎7
0.53 }

) corresponding to the maximum 
value 2.83 and 3.38 are the most valuable fuzzy concepts output 
through the process of associative learning. Next, we can obtain the 
valid fuzzy concepts associative subspace 𝑉 𝐶𝐴𝑆𝑑1  in Table  4.
6 
In addition, for the objects in decision class 𝑈𝑑2 , the neighborhood 
similarity granules are 𝑁(𝑢8) = {𝑢8, 𝑢13}, 𝑁(𝑢9) = {𝑢9}, 𝑁(𝑢10) =
𝑁(𝑢11) = {𝑢10, 𝑢11}, 𝑁(𝑢12) = {𝑢12, 𝑢13} and 𝑁(𝑢13) = {𝑢8, 𝑢12, 𝑢13}. Then 
we have 𝑀𝐶𝑑2 (𝑢9) = {𝑢9}, 𝑀𝐶𝑑2 (𝑢10) = {𝑢10, 𝑢11} and 𝑀𝐶𝑑2 (𝑢13) =
{𝑢8, 𝑢12, 𝑢13}. Employing a similar way, the valid fuzzy concept associa-
tive subspace 𝑉 𝐶𝐴𝑆𝑑2  is shown in Table  4.

3.3. Concept clustering

In the above section, constructing a valid fuzzy concept associative 
space based on maximum clues have been explored. But in practice, 
there exist a lot of repetitive and interfering information between fuzzy 
concepts, which will reduce the computational efficiency of model. 
Numerous fuzzy concepts provide different significance and merit in 
concept associative learning. Therefore, only the more important fuzzy 
concepts can be retained and compressed because human memory is 
limited. To address appropriate fuzzy ontologies for concept cognition, 
many concept fusion mechanisms have been studied, such as progres-
sive fuzzy three-way concept [9], fuzzy concept clustering [10,24,27] 
and interval-intent fuzzy concept clustering [28]. These method of 
generating pseudo-concepts are fused by fixed weights, which are not 
characterized by the information of concepts, which may lead to the 
transfer of conceptual preferences in the process of fusing.

As mentioned above, we note that 𝑀 is a diagonal matrix in Eq. (5), 
which corresponds to learning a metric where different axes is assigned 
different weights. More precisely, weights are used to evaluate the im-
portance of attributes. We denote 𝑑𝑖𝑎𝑔(𝑀) = (𝜔(𝑎1), 𝜔(𝑎2),… , 𝜔(𝑎𝑞)) for 
convenience. In this subsection, we study an innovative fuzzy concept 
clustering approach to compress the valid fuzzy concept associative 
space.

Definition 7.  For 𝐶𝑑𝑘
𝑟 ⊆ 𝑉 𝐶𝐴𝑆𝑑𝑘  and (𝑌1, �̃�1), (𝑌2, �̃�2),… , (𝑌𝑠, �̃�𝑠) ∈

𝐶𝑑𝑘
𝑟 , if there exists 𝑌1 ⊆ 𝑌2 ⊆ ⋯ ⊆ 𝑌𝑠, then (𝑌𝑠, �̃�𝑠) is a supremum fuzzy 
concept, the extent and intent of pseudo-concept (𝐘𝑟, �̃�𝑟) is denoted as:
𝐘𝑟 = 𝑌1 ∪ 𝑌2 ∪⋯ ∪ 𝑌𝑠,

�̃�𝑟 =
∑𝑠

𝑖=1 �̃�𝑖 ⋅ 𝑑𝑖𝑎𝑔(𝑀)
𝑠

.
(16)

 in which 𝑠 means the cardinality of fuzzy concepts. 
In fact, we can see that the intent of pseudo-concept is the average 

information after assigning weights to the intents of concepts in 𝐶𝑑𝑘
𝑟 . 

Meanwhile, pseudo-concept is integrated by fuzzy concepts that have 
extents with inclusion relation in 𝐶𝑑𝑘

𝑟 , which reduces space storage 
and eliminate cognitive limitations. Pseudo-concept can be seen as a 
reintegrated representation of 𝐶𝑑𝑘

𝑟 . Algorithm 3 outlines the clustering 
process of valid fuzzy concept associative space.

Example 5.  Proceeded with Example  4. Table  5 shows the pseudo-
concept space P from Definition  7. There are 2 and 2 pseudo-concepts 
in P𝑑1  and P𝑑2 , respectively.

3.4. Class prediction

It should be noticed that the class prediction of testing sample 
is mainly measured by the Euclidean distance between testing sam-
ple and existing fuzzy concept clustering space [28–30]. Generally 
speaking, the similarities between sample and pseudo-concepts is only 
determined by straight-line distance, ignoring the correlation between 
attributes and decision classes of the existing samples. In such case, it 
is necessary to propose a new method to measure similarity.

Definition 8.  Given a testing sample 𝑥𝑟, (𝑥𝑟, �̃� (𝑥𝑟)) is a new fuzzy 
concept, then the similarity between �̃� (𝑥𝑟) and pseudo-concept (𝐘𝑖, �̃�𝑖)
is termed as: 

𝑆𝑖𝑚(�̃� (𝑥𝑟), �̃�𝑖) =
√

(�̃� (𝑥𝑟) − �̃�𝑖)𝑇𝑀(�̃� (𝑥𝑟) − �̃�𝑖), (17)

where 𝑀 is a diagonal matrix in Eq. (5).
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Table 3
Fuzzy concept associative subspace and extent-intent validity.
 Clue Fuzzy concept associative subspaces Validity 
 
𝑀𝐶𝑑1 (𝑢1)

(

{𝑢6}, {
𝑎1
0.69

, 𝑎3
0.84

, 𝑎6
0.57

, 𝑎7
0.88

}
)

2.83  
 (

{𝑢1}, {
𝑎1
0.73

, 𝑎3
0.59

, 𝑎6
0.40

, 𝑎7
0.65

}
)

1.33  
 (

{𝑢1 , 𝑢6}, {
𝑎1
0.69

, 𝑎3
0.59

, 𝑎6
0.40

, 𝑎7
0.65

}
)

2.33  
 
𝑀𝐶𝑑1 (𝑢3)

(

{𝑢3 , 𝑢6}, {
𝑎1
0.44

, 𝑎3
0.09

, 𝑎6
0.46

, 𝑎7
0.67

}
)

2.45  
 (

{𝑢4 , 𝑢6}, {
𝑎1
0.37

, 𝑎3
0.33

, 𝑎6
0.30

, 𝑎7
0.73

}
)

2.13  
 (

{𝑢1 , 𝑢5 , 𝑢6}, {
𝑎1
0.32

, 𝑎3
0.28

, 𝑎6
0.31

, 𝑎7
0.53

}
)

2.2  
 (

{𝑢1 , 𝑢3 , 𝑢4 , 𝑢5 , 𝑢6}, {
𝑎1
0.32

, 𝑎3
0.09

, 𝑎6
0.30

, 𝑎7
0.53

}
)

3.38  
Table 4
Valid fuzzy concept associative space 𝑉 𝐶𝐴𝑆𝑑 in Table  2.

 Symbol Fuzzy concepts learned through associative learning 
 
𝑉 𝐶𝐴𝑆𝑑1

(

{𝑢6}, {
𝑎1
0.69

, 𝑎3
0.84

, 𝑎6
0.57

, 𝑎7
0.88

}
)  

 (

{𝑢1 , 𝑢2 , 𝑢4 , 𝑢6 , 𝑢7}, {
𝑎1
0.10

, 𝑎3
0.33

, 𝑎6
0.04

, 𝑎7
0.10

}
)  

 (

{𝑢1 , 𝑢3 , 𝑢4 , 𝑢5 , 𝑢6}, {
𝑎1
0.32

, 𝑎3
0.09

, 𝑎6
0.30

, 𝑎7
0.53

}
)  

 (

{𝑢7}, {
𝑎1
0.96

, 𝑎3
0.88

, 𝑎6
0.45

, 𝑎7
0.39

}
)  

 
𝑉 𝐶𝐴𝑆𝑑2

(

{𝑢8 , 𝑢10 , 𝑢11 , 𝑢12 , 𝑢13}, {
𝑎1
0.07

, 𝑎3
0.31

, 𝑎6
0.09

, 𝑎7
0.27

}
)  

 (

{𝑢9 , 𝑢11}, {
𝑎1
0.61

, 𝑎3
0.40

, 𝑎6
0.20

, 𝑎7
0.02

}
)  

 (

{𝑢11}, {
𝑎1
0.67

, 𝑎3
0.67

, 𝑎6
0.88

, 𝑎7
0.79

}
)  
Algorithm 3: Cognitive process of valid fuzzy concept associative 
clustering space
Input: A valid fuzzy concept associative space 𝑉 𝐶𝐴𝑆𝑑 .
Output: The pseudo-concept space P = {P𝑑1 ,P𝑑2 ,⋯ ,P𝑑𝑡}. 
1: for each 𝑉 𝐶𝐴𝑆𝑑𝑘 ∈ 𝑉 𝐶𝐴𝑆𝑑 do 
2: Sort the elements in 𝑉 𝐶𝐴𝑆𝑑𝑘  in descending order of the 

number of extents; 
3: for each (𝑌𝑖, �̃�𝑖) ∈ 𝑉 𝐶𝐴𝑆𝑑𝑘  do 
4: for (𝑌𝑗 , �̃�𝑗 ) ∈ 𝑉 𝐶𝐴𝑆𝑑𝑘  do 
5: if 𝑌𝑗 ⊆ 𝑌𝑖 then 
6: 𝐶𝑑𝑘

𝑖 ← (𝑌𝑗 , �̃�𝑗 );
7: else 
8: continue
9: end if
10: end for
11: Cluster 𝐶𝑑𝑘

𝑖  to generate a pseudo-concept (𝐘𝑖, �̃�𝑖); 
12: P𝑑𝑘 ← (𝐘𝑖, �̃�𝑖); 
13: 𝑉 𝐶𝐴𝑆𝑑𝑘 = 𝑉 𝐶𝐴𝑆𝑑𝑘 − 𝐶𝑑𝑘

𝑖 ;
14: end for
15: P ← P𝑑𝑘 .
16: end for
17: Return P.

As is well known, 𝑆𝑖𝑚(�̃� (𝑥𝑟), �̃�𝑖) is a distance similarity. The smaller 
the distance 𝑆𝑖𝑚(�̃� (𝑥𝑟), �̃�𝑖) is, the stronger the relationship between two 
fuzzy concepts is. Therefore, we can predict the class of new sample by 
obtaining the similarity between new sample and pseudo-concepts in 
P.

3.5. Overall procedure and complexity analysis

As summarized above, Fig.  2 describes the comprehensive flowchart 
of FCADML, which includes three parts, namely (1) Constructing a 
new fuzzy formal decision context; (2) Constructing valid fuzzy concept 
associative space; (3) Class prediction. Given a fuzzy formal context 
with fourteen attributes and two decision classes, we will explain the 
idea of flowchart. Due to the high correlation between some attributes, 
which increases the time consumption of computing fuzzy concepts, 
highly similar attributes are clustered into an attribute cluster from 
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Algorithm 4: Class prediction of testing sample
Input: The pseudo-concept space P and the fuzzy membership 

degree �̃�  of testing sample 𝑥𝑟.
Output: Class prediction 𝐿𝑟 of testing sample 𝑥𝑟. 
1: for P𝑑𝑘 ∈ P  do 
2: for (𝐘𝑖, �̃�𝑖) ∈ P𝑑𝑘  do 
3: Compute 𝑆𝑖𝑚(�̃� (𝑥𝑟), �̃�𝑖) according to Definition 8 and 

𝑙𝑟 ← 𝑆𝑖𝑚(�̃� (𝑥𝑟), �̃�𝑖);
4: end for
5: end for
6: Have 𝐿𝑟 ← 𝑎𝑟𝑔min(𝑚𝑖𝑛(𝑙𝑟)). 
7: Return 𝐿𝑟.

Definition  2. Then a representative attribute set from all attribute 
clusters is selected to ultimately construct a new FFDC with four condi-
tional attributes. Subsequently, we propose the neighborhood similarity 
granules controlled by threshold with distance metric learning and 
maximum clues for associative learning. It should be noted that 𝑁(1)
and 𝑀𝐶(1) represent the neighborhood similarity granule and the 
maximum cue of object 𝑢1, respectively, and other symbols also have 
the same meaning. In the process of associative learning, maximum 
clues are constantly associated with the knowledge in the human brain, 
and valid fuzzy concept space 𝑉 𝐶𝐴𝑆𝑑 is finally output based on extent-
intent validity. Pseudo-concept space is discussed from Definition  7. At 
last, finding the pseudo-concept that is closest to the testing sample to 
determine the decision class.

In addition, suppose 𝑡 is the cardinality of decision class. The time 
complexity of Algorithm 1 for extracting representative attribute set 
through the correlation coefficient matrix does not exceed 𝑂(|𝑈‖𝐴|2 +
|𝐴‖𝐴 − 1|). Next, in Algorithm 2, constructing valid fuzzy concept 
associative space includes three steps: (1) Obtaining the neighborhood 
similarity granules in Steps 3–6 which can be taken in 𝑂(|𝑈 |

2); (2) 
Finding maximum clues in Steps 8–20 which can be measured within 
𝑂(| 𝑑𝑘 ∥ 𝑈 |

2) where  𝑑𝑘  means the set of neighborhood similarity 
granules; (3) Computing fuzzy concept associative space and valid 
fuzzy concept associative space in Steps 21–29 which the time com-
plexity is 𝑂(|𝑑𝑘 ∥ 𝑈 |

2
|𝐴|) where 𝑑𝑘  is the maximum clue set in 

decision class 𝑑𝑘. All in all, the time complexity of running Algorithm 
2 is 𝑂(𝑡|𝑑𝑘 ∥ 𝑈 |

2
|𝐴|) in which 𝑡 is the cardinality of decision class. 
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Table 5
Pseudo-concept space P.

 Symbol Pseudo-concepts  
 
P𝑑1

(

{𝑢1 , 𝑢3 , 𝑢4 , 𝑢5 , 𝑢6}, {
𝑎1
0.82

, 𝑎3
0.55

, 𝑎6
0.59

, 𝑎7
0.14

}
)  

 (

{𝑢1 , 𝑢2 , 𝑢4 , 𝑢6 , 𝑢7}, {
𝑎1
0.86

, 𝑎3
0.71

, 𝑎6
0.33

, 𝑎7
0.05

}
)  

 
P𝑑2

(

{𝑢8 , 𝑢10 , 𝑢11 , 𝑢12 , 𝑢13}, {
𝑎1
0.60

, 𝑎3
0.57

, 𝑎6
0.66

, 𝑎7
0.11

}
) 

 (

{𝑢9 , 𝑢11}, {
𝑎1
0.99

, 𝑎3
0.47

, 𝑎6
0.27

, 𝑎7
0.01

}
)  
Fig. 2. The overall procedure of the proposed method.
In the clustering process, the fuzzy concepts that have already been 
clustered will not appear in the subsequent clustering process, so the 
number of fuzzy concepts to consider will gradually decrease each time. 
Hence, the time complexity of Algorithm 3 in the worst-case scenario 
does not exceed 𝑂(|𝑈 |

2
|𝐴|). With respect to Algorithm 4, the running 

time for class prediction of testing sample is 𝑂(|P ∥ 𝐴|). Hence, the total 
time complexity of the proposed model FCADML is 𝑂(𝑚𝑎𝑥{|𝑈 ∥ 𝐴|2 +
|𝐴‖𝐴 − 1|, 𝑡|𝑑𝑘

‖𝑈 |

2
|𝐴|}).

4. Experimental analyses

To demonstrate the classification performance of model FCADML, 
we will make a comparison between it and concept-cognitive learning 
as well as fuzzy classification algorithms. Meanwhile, we also compare 
it with machine learning classification algorithms. We select totally 
thirteen datasets from UCI1 and gene2 data set repositories, which show 
in Table  6.

1 Dataset source: http://archive.ics.uci.edu/.
2 Dataset source: https://jundongl.github.io/scikit-feature/datasets.html.
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4.1. Experimental setting

Before the experiment starts, the values of all attributes are nor-
malized by Max–Min normalization preprocessing to ensure the fuzzy 
environment of dataset, specifically given by:

�̃�(𝑢𝑖, 𝑎𝑗 ) =
𝑓 (𝑢𝑖, 𝑎𝑗 ) − min(𝑓 (𝑎𝑗 ))

max(𝑓 (𝑎𝑗 )) − min(𝑓 (𝑎𝑗 ))
,

where 𝑓 (𝑢𝑖, 𝑎𝑗 ) is the initial value of object 𝑢𝑖 to attribute 𝑎𝑗 . Addition-
ally, max(𝑓 (𝑎𝑗 )) and min(𝑓 (𝑎𝑗 )) are maximum and minimum values of 
attribute 𝑎𝑗 about all objects, respectively.

In the experiment, we compare FCADML with three concept-
cognitive learning classification algorithms, namely, DMPWFC [10], 
ILMPFTC [9], FCLM [24] and four fuzzy classification algorithms which 
are PIFWKNN [39], BM-FKNN [40], S3OFIS [41] and FSMBGD [42]. 
Furthermore, we also compare FCADML with seven machine learning 
classification algorithms [43–48], including Complex Tree (CT), Classi-
fication and Regression Tree (CART), Root-Sum-Square (RSS), Decision 
Tree (DT), Boosting, K-Nearest Neighbor (KNN) with 𝑘 = 3, and Gaus-
sian Kernel Function SVM (GSVM). Notice that parameters 𝛿 and 𝛽 play 
an important role in constructing attribute clusters and neighborhood 
similarity granules. Therefore, in the present experiment, parameters 𝛿

http://archive.ics.uci.edu/
https://jundongl.github.io/scikit-feature/datasets.html


C. Zhang et al. Information Fusion 124 (2025) 103386 
Table 6
Data description.
 ID Dataset Object Attribute Class 
 1 Connectionist 208 60 2  
 2 Libras 360 90 15  
 3 Wdbc 569 30 2  
 4 Appendicitis 106 7 2  
 5 Air 359 64 3  
 6 Derm 366 34 6  
 7 Phoneme 5404 5 2  
 8 Waveform 5000 21 3  
 9 Lung_disarete 73 325 7  
 10 Colonstd 62 2000 2  
 11 Yale 165 1024 15  
 12 WarpAR10P 130 2400 10  
 13 Lung 203 3312 5  
Table 7
Accuracy comparison (mean ± standard deviation%) under FCADML and other algorithms.
 ID (𝛿, 𝛽) FCADML DMPWFC ILMPFTC FCLM PIFWKNN BM-FKNN S3OFIS FSMBGD  
 1 (0.85,0.5) 85.62 ± 8.39 88.82 ± 6.50 91.01 ± 5.65 83.98 ± 12.17 87.49 ± 3.15 60.00 ± 3.12 83.66 ± 6.28 79.06 ± 5.64  
 2 (1.00,0.10) 85.00 ± 5.41 60.01 ± 6.54 84.81 ± 4.24 65.03 ± 3.58 66.11 ± 4.00 61.56 ± 5.13 73.33 ± 7.24 68.31 ± 9.86  
 3 (1.00,0.20) 95.96 ± 2.28 86.51 ± 3.70 91.67 ± 2.72 80.79 ± 5.29 95.78 ± 1.40 95.96 ± 1.00 94.90 ± 0.74 95.48 ± 5.13  
 4 (1.00,0.35) 85.84 ± 3.38 68.15 ± 13.31 71.38 ± 16.71 50.45 ± 25.41 85.02 ± 8.02 19.83 ± 8.55 8.48 ± 2.09 78.97 ± 4.84  
 5 (0.90,0.30) 96.67 ± 2.11 47.18 ± 5.00 95.63 ± 4.20 54.11 ± 5.67 87.48 ± 3.51 86.08 ± 4.68 86.07 ± 2.15 92.56 ± 5.86  
 6 (0.90,0.50) 95.09 ± 3.90 87.58 ± 3.88 94.93 ± 3.21 37.62 ± 5.00 94.42 ± 4.35 84.69 ± 6.09 94.80 ± 2.64 95.04 ± 3.35  
 7 (0.85,0.05) 76.41 ± 0.34 75.12 ± 1.45 67.21 ± 1.40 72.15 ± 1.41 85.64 ± 1.05 29.35 ± 1.59 5.22 ± 0.49 73.69 ± 2.15  
 8 (0.80,0.45) 80.12 ± 1.09 56.17 ± 1.29 76.35 ± 1.28 68.25 ± 1.06 82.34 ± 2.12 59.94 ± 1.52 6.64 ± 1.03 84.52 ± 4.65 
 9 (0.85,0.05) 70.00 ± 10.78 87.80 ± 8.05 87.80 ± 8.05 87.17 ± 7.94 80.67 ± 11.66 2.58 ± 0.51 82.00 ± 6.87 61.25 ± 5.74  
 10 (0.95,0.05) 76.03 ± 13.75 65.34 ± 19.55 65.34 ± 19.55 52.35 ± 19.41 69.87 ± 15.02 0.52 ± 0.04 74.10 ± 10.83 70.74 ± 2.66  
 11 (1.00,0.05) 55.76 ± 5.50 66.54 ± 8.60 66.54 ± 8.60 54.51 ± 10.64 64.24 ± 4.49 2.03 ± 0.22 66.67 ± 7.42 68.69 ± 9.30 
 12 (1.00,0.05) 80.00 ± 6.88 47.49 ± 7.53 47.49 ± 7.53 43.66 ± 7.81 46.92 ± 16.85 0.68 ± 0.15 47.69 ± 4.39 50.38 ± 5.34  
 13 (0.90,0.05) 94.06 ± 3.82 94.93 ± 3.66 94.93 ± 3.66 92.17 ± 12.04 97.55 ± 2.99 1.18 ± 0.05 94.55 ± 5.70 84.79 ± 5.98  
 Ave.± SD 82.81 ± 5.20 71.66 ± 6.85 79.62 ± 6.68 64.79 ± 9.44 80.27 ± 6.05 38.80 ± 2.51 62.93 ± 4.45 77.19 ± 5.42  
 Rank 2.58 4.88 3.50 6.15 3.54 6.19 4.85 3.69  
 Win/tie/loss 7/0/6 1/0/12 1/0/12 0/0/13 2/0/11 0/0/13 0/0/13 2/0/11  
and 𝛽 are set from 0.55 to 1.0, and 0.05 to 0.50, respectively, with a 
step size of 0.05 to predominate attribute clusters and neighborhood 
similarity granules.  To maintain the fairness of the experiment, we 
employ five-fold cross-validation in our experiment. In other words, 
each dataset is randomly divided into five segments, where four seg-
ments are combined as a training set and the other segment is utilized 
as a testing set. Intuitively, 80% of each dataset is used for training 
and the remaining 20% is used for testing. Then the final output is 
the average value of five testing results to estimate the classification 
performance. All experiments are conducted in MATLAB 2021a on a 
personal computer which is furnished with Intel(R) Core(TM) i7-4790 
CPU @ 3.6 GHz and 16 GB memory. 

4.2. Results and analyses

The results of accuracy and the optimal parameters 𝛿 and 𝛽 of 
the proposed algorithm FCADML and seven classification algorithms 
on thirteen datasets are displayed in Table  7. The last row presents 
the average accuracy and standard deviation, with the underlined 
bold highlighting the superior accuracy performance in contrast to 
other algorithms. As seen in this table, we can demonstrate that 
PIFWKNN and FSMBGD achieve the best accuracy twice respectively, 
while FCADML outperforms the best performance on seven datasets. 
Meanwhile, FCADML has higher average accuracy and lower standard 
deviation than other algorithms, which shows that the performance of 
FCADML outperforms other seven algorithms. The average accuracy of 
FCADML is increased by 4.01% and 3.16% when compared to ILMPFTC 
and PIFWKNN on all selected datasets. In short, the above results 
indicate that FCADML is superior to the other models in classification 
tasks.

In addition, to further evaluate the performance of FCADML, Table 
8 records the comparison of classification accuracy with seven machine 
9 
Fig. 3. Accuracy comparison with CCL and fuzzy classification algorithms.

learning algorithms. The results show that FCADML achieves higher 
accuracy of 7 times, while CART, KNN and GSVM realize a maximum 
value on 1, 3 and 2 out of thirteen datasets, respectively. Then FCADML 
improves the average accuracy by 1.37% when compared to KNN. Figs. 
3–4 intuitively depict the accuracy comparison between CCL, fuzzy 
classification and machine learning algorithms. As presented from two 
figures, the accuracy of FCADML has smaller fluctuation range than 
other fourteen algorithms in most datasets.
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Table 8
Accuracy comparison (mean ± standard deviation%) under FCADML and seven machine learning algorithms.
 ID (𝛿, 𝛽) FCADML CT CART RSS DT Boosting KNN GSVM  
 1 (0.85,0.50) 85.62 ± 8.39 71.63 ± 9.34 77.92 ± 4.39 62.04 ± 14.73 63.43 ± 7.82 75.02 ± 3.46 83.64 ± 4.05 81.71 ± 5.05  
 2 (1.00,0.10) 85.00 ± 5.41 62.78 ± 8.86 62.22 ± 4.75 36.94 ± 5.43 19.44 ± 6.73 11.67 ± 4.12 77.50 ± 3.85 81.39 ± 7.19  
 3 (1.00,0.20) 95.96 ± 2.28 91.57 ± 1.58 91.38 ± 2.90 86.64 ± 2.28 88.22 ± 4.15 94.38 ± 2.37 95.84 ± 1.00 97.36 ± 1.77  
 4 (1.00,0.35) 85.84 ± 3.38 83.90 ± 8.74 80.22 ± 3.75 83.03 ± 8.61 69.65 ± 16.86 82.08 ± 6.19 84.89 ± 4.03 85.71 ± 10.10 
 5 (0.90,0.30) 96.67 ± 2.11 81.62 ± 4.17 82.45 ± 2.69 45.40 ± 3.93 47.63 ± 2.93 57.93 ± 3.08 96.37 ± 1.88 91.65 ± 4.04  
 6 (0.90,0.50) 95.09 ± 3.91 95.08 ± 1.22 93.73 ± 4.12 55.43 ± 9.96 62.27 ± 7.89 78.97 ± 7.27 96.99 ± 2.45 95.07 ± 1.85  
 7 (0.85,0.05) 76.41 ± 0.34 85.38 ± 0.71 85.92 ± 1.19 70.65 ± 1.15 78.09 ± 1.47 77.72 ± 0.90 88.47 ± 1.16 80.50 ± 1.29  
 8 (0.80,0.45) 80.12 ± 1.09 77.32 ± 1.27 75.54 ± 0.66 77.80 ± 2.32 67.74 ± 1.29 69.44 ± 1.59 80.48 ± 1.08 86.12 ± 0.72  
 9 (0.85,0.05) 70.00 ± 10.78 45.24 ± 22.88 52.95 ± 18.89 49.71 ± 14.11 6.95 ± 6.91 42.48 ± 14.09 84.86 ± 8.90 28.67 ± 14.92 
 10 (0.95,0.05) 76.03 ± 13.75 77.31 ± 10.55 80.77 ± 8.75 64.23 ± 16.45 74.10 ± 9.08 77.56 ± 5.98 72.31 ± 8.19 64.49 ± 12.59 
 11 (1.00,0.05) 55.76 ± 5.50 42.42 ± 5.67 51.51 ± 6.78 33.33 ± 11.54 6.06 ± 10.50 9.70 ± 6.91 52.73 ± 6.28 0.61 ± 1.36  
 12 (1.00,0.05) 80.00 ± 6.88 66.15 ± 3.22 68.46 ± 9.58 32.31 ± 12.64 25.38 ± 9.65 32.31 ± 5.83 53.85 ± 7.20 1.54 ± 2.11  
 13 (0.90,0.05) 94.06 ± 3.82 88.17 ± 8.55 83.79 ± 4.92 68.46 ± 5.67 85.28 ± 8.55 78.80 ± 4.52 94.06 ± 3.78 68.52 ± 5.24  
 Ave.± SD 82.81 ± 5.20 74.51 ± 6.67 75.91 ± 5.64 58.92 ± 8.37 53.40 ± 7.22 60.62 ± 5.10 81.69 ± 4.14 66.41 ± 5.25  
 Rank 2.12 4.08 4.08 6.54 6.69 5.69 2.42 4.38  
 Win/tie/loss 7/0/6 0/0/13 1/0/12 0/0/13 0/0/13 0/0/13 3/0/10 2/0/11  
Fig. 4. Accuracy comparison with machine learning classification algorithms.

4.3. Parametric analyses

The algorithm FCADML involves two parameters, where parameter 
𝛿 reflects the size of the attribute cluster, which further determines the 
importance of the representative attributes, and parameter 𝛽 plays a 
critical role in constructing the neighborhood similarity granule, which 
measures the amount of information and classification performance. 
Figs.  5–7 record the accuracies of FCADML in different parameters. 
Fig.  5 depicts the classification accuracy as 𝛿 changes, from which we 
see that the accuracy have been fluctuating and rising significantly 
as the parameter changes with the highest fluctuation at [0.7,0.85]. 
Meanwhile, most datasets achieve optimal accuracy in the range of 
[0.9,1.0], indicating that larger parameters lead to fewer attribute 
correlations being satisfied, resulting in more attribute clusters and 
thus extracting more information. However, it is foreseeable that the 
accuracy of each dataset Libras, Appendicitis, Yale and WarpAR10P 
might increase when the parameter exceeds 1, which shows that the 
model FCADML is sensitive to 𝛿.

Fig.  6 describes the trend of classification accuracy varying with 
the parameter 𝛽. It can be observed that accuracies of most selected 
datasets outperform well and remain stable in [0.05,0.35] except that 
the accuracy of dataset Phoneme firstly presents stable and then drops 
significantly. Besides, we also noted that three datasets Air, Wdbc and 
10 
Fig. 5. Accuracy comparisons various with 𝛿 on thirteen datasets.

Fig. 6. Accuracy comparisons various with 𝛽 on thirteen datasets.

Appendicitis show a decreasing trend in accuracy varying from 0.35 to 
0.45. Finally, from a macro perspective, it can be seen that the accuracy 
performance is relatively stable with a minor impact from 𝛽.

Next, we continue to study the influence of parameters 𝛿 and 𝛽 in 
FCADML to verify the classification performance. The detailed accuracy 
results are presented in Fig.  7, from which we can confirm that the 
accuracies mostly increase with the increase of parameters 𝛿 and 𝛽. 
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Fig. 7. Accuracy comparison as parameters 𝛿 and 𝛽 on thirteen datasets.
 

It also can be indicated that the parameter 𝛽 is not sensitive to clas-
sification accuracy and maintain accuracy fluctuations within a small 
range when 𝛿 is a fixed value in [0.8,1.0] excepting for datasets Wdbc, 
Appendicitis and Phoneme. Consequently, algorithm FCADML displays 
more sensitive to 𝛿. It is essential to select an optimal parameter to 
improve the classification performance.
11 
4.4. Analyses of statistical results

Additionally, to further evaluate the statistical significance among 
all fifteen algorithms, Friedman test [49] and Bonferroni–Dunn test [50]
are identified whether there is an apparent difference with respect to 
the performance of selected models across thirteen datasets. A Fisher 
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Table 9
Rank of classification algorithms.
 ID FCADML DMPWFC ILMPFTC FCLM PIFWKNN BM-FKNN S3OFIS FSMBGD CT CART RSS DT Boosting KNN GSVM 
 1 4 2 1 5 3 15 6 9 12 10 14 13 11 7 8  
 2 1 12 2 8 7 11 5 6 9 10 13 14 15 4 3  
 3 2.5 14 9 15 5 2.5 7 6 10 11 13 12 8 4 1  
 4 1 12 10 13 3 14 15 9 5 8 6 11 7 4 2  
 5 1 14 3 12 6 7 8 4 10 9 15 13 11 2 5  
 6 2 10 6 15 8 11 7 5 3 9 14 13 12 1 4  
 7 8 9 13 11 3 14 15 10 4 2 12 6 7 1 5  
 8 5 14 8 11 3 13 15 2 7 9 6 12 10 4 1  
 9 7 1.5 1.5 3 6 15 5 8 11 9 10 14 12 4 13  
 10 4 10.5 10.5 14 9 15 5.5 8 3 1 13 5.5 2 7 12  
 11 6 3.5 3.5 7 5 14 2 1 10 9 11 13 12 8 15  
 12 1 7.5 7.5 10 9 15 6 5 3 2 11.5 13 11.5 4 14  
 13 5.5 2.5 2.5 7 1 15 4 10 8 11 14 9 12 5.5 13  
 Ave. 3.69 8.65 5.96 10.08 5.23 12.42 7.73 6.38 7.31 7.69 11.73 11.42 10.04 4.27 7.38  
Fig. 8. CD comparison of all classification algorithms with Bonferroni–Dunn test (𝛼 = 0.05).
distribution 𝐹𝐹  of Friedman test is termed as: 

𝐹𝐹 =
(𝑁 − 1)𝜒2

𝐹

𝑁(𝑘 − 1) − 𝜒2
𝐹

∼ 𝐹
(

𝑘 − 1, (𝑘 − 1)(𝑁 − 1)
)

, (18)

in which 𝜒2
𝐹 = 12𝑁

𝑘(𝑘+1)

(
∑𝑘

𝑖=1 𝑅
2
𝑖 −

𝑘(𝑘+1)2
4

)

. Then 𝑁 and 𝑘 represent the 
cardinalities of datasets and different algorithms, respectively. 𝑅𝑖 =
1
𝑁

∑𝑁
𝑗=1 𝑟

𝑖
𝑗 is the average rank of the 𝑖th algorithm across all datasets, 

here, 𝑟𝑖𝑗 is the rank of the 𝑖th algorithm on the 𝑗th dataset. Initially, it 
is supposed that there are no obvious differences among all algorithms, 
and in fact, if 𝐹𝐹 > 𝐹

(

𝑘− 1, 𝑘− 1(𝑁 − 1)
)

, then the original hypothesis 
is refuted. Actually, the rank results are described in Table  9 based 
on the cardinalities of algorithms. We can get 𝜒2

𝐹 = 66.1138 from the 
average rank of Table  9, and then 𝜒2

𝐹  is put into Eq. (17) to obtain 
𝐹𝐹 = 6.8461 > 𝐹 (14, 168) = 1.75 at level 𝛼 = 0.05. Moreover, the 
null hypothesis does not hold and we adopt the alternative hypothesis 
that there exists a remarkable difference in the performance of fifteen 
classification algorithms.

In addition, what we are currently focusing on whether there 
is difference between any two classification algorithms, so we use 
Bonferroni–Dunn test to evaluate their statistical results. Then the 
critical difference is delineated as: 

𝐶𝐷𝛼 = 𝑞𝛼

√

𝑘(𝑘 + 1)
6𝑁

(19)

 where 𝑞𝛼 represents the critical value at the significance level. Subse-
quently, the critical difference is 𝐶𝐷𝛼 = 5.09 where 𝑘 = 15 at level 𝛼 =
0.05. From Fig.  8, it is evident that FCADML has a significantly superior 
performance than BM-FKNN, FCLM, RSS, DT and Boosting. Meanwhile, 
the Bonferroni–Dunn test is not sufficient to demonstrate that there 
exist any significant differences among FCADML, KNN, PIFWKNN, 
S3OFIS, ILMPFTC, FSMBGD, CT, GSVM and CART. From CCL per-
spective, there is no obvious difference about performance between 
FCADML and ILMPFTC, while FCADML is better than DMPWFC and 
FCLM.
12 
5. Conclusion

This article have explored an innovative association-based concept-
cognitive learning method with distance metric learning for knowledge 
fusion and concept classification. The representative attribute set from 
attribute clusters is discussed to decrease the less relevant attributes 
and interfering information. Based on this, we propose a fuzzy concept 
associative learning model with distance metric learning, which is 
designed to learn fuzzy concepts that are closest to the clues, thus 
simulating the cognitive process of the human brain. Furthermore, 
concept clustering from the standpoint of pseudo-concept can compress 
the valid fuzzy concept associative space. At last, the performance su-
periority of the proposed model FCADML is verified from the accuracy 
and statistical results when compared with the existing CCL, fuzzy 
classification and machine learning models.

The introduction of associative learning in this article has opened up 
a new thought for concept-cognitive learning, which demonstrates the 
breadth and infinity of cognition. This idea breaks the limitations of 
constructing the concept space through the existing granular concept 
or neighborhood concept and masters the rich information for classi-
fication tasks. However, it is complex to construct the fuzzy concept 
associative space from formula (12) in terms of both time consumption 
and space storage when the clue is much abundant. Although we have 
provided a simple method for associative learning in formula (13), it is 
uncertain whether granular concept and neighborhood concept are the 
most valuable ones since they are only a small part of formula (12). 
Therefore, we will continue to focus on concept-cognitive associative 
learning to enhance its interpretability and application in the future 
research.
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