
Information Sciences 718 (2025) 122411

Available online 10 June 2025
0020-0255/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Information Sciences  

journal homepage: www.elsevier.com/locate/ins

Innovative multi-granularity granular-balls rough set for feature 

selection: Driving generalized multi-granularity rough set 

evolution with Zentropy integration

Weirui Ye , Weihua Xu ∗

College of Artificial Intelligence, Southwest University, Chongqing, 400715, PR China

A R T I C L E I N F O A B S T R A C T 

Keywords:

Feature selection

Granular-ball computing

Granular computing

Generalized multi-granularity rough set

Granular-ball computing provides an efficient, robust, and scalable framework for granular 
computing tasks. The original granular-balls generation method, akin to 𝑘-means clustering, 
begins by aggregating the entire dataset into a single granular-ball and then iteratively subdividing 
it into smaller units. While convenient, this approach inherits the limitations of 𝑘-means, 
performing poorly on partially distributed datasets. Additionally, it generates granular-balls with 
a single granularity, limiting its capacity to fuse data across multiple granular space (subset 
of the attribute power set) and resulting in information loss. To address these challenges, 
we propose a novel granular-balls generation method based on neighbor search. Building on 
this, we define multi-granularity granular-balls, enabling the generation of granular-balls across 
multiple granular space to better capture diverse data distributions. Furthermore, we explore the 
practical applications of multi-granularity granular-balls by introducing a feature selection method 
called generalized multi-granularity granular-balls rough set (GMG-GBRS). This method integrates 
multi-granularity granular-balls with generalized multi-granularity rough set with Zentropy. By 
utilizing the sample-reduction capabilities and multiple granular space filtering during granular-

balls generation, GMG-GBRS effectively reduces the domain size of rough set and minimizes 
the required multiple granular space, thereby significantly enhancing computational efficiency. 
Moreover, the superior data fusion capabilities of multi-granularity granular-balls, combined 
with their adaptive ability to generate neighborhood relationships, synergize with Zentropy’s 
precise uncertainty measurement across diverse granularity levels in information systems, thereby 
enhancing the efficacy of feature selection.

1. Introduction

Granular computing is an emerging paradigm in information processing that addresses complex information entities known as 
“information granules”, which are derived through data abstraction and knowledge extraction processes. Although granular comput-

ing lacks a formal axiomatic definition, several widely recognized models have been established, including rough set theory [1,2], 
quotient space theory [3], and cloud model theory [4]. These models have enabled granular computing to find extensive appli-

cations in feature selection [5], information fusion [6], and anomaly detection [7]. These capabilities are particularly relevant to 
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Fig. 1. Differences Between Traditional and Granular-Ball-Based Algorithms. 

data-intensive domains such as bioinformatics [8,9], where managing uncertainty and extracting knowledge from high-dimensional 
and heterogeneous data are critical challenges.

A significant advancement in this field is the development of granular-ball computing, inspired by the discovery of “global priority 
features of human cognition” [10]. Based on this cognitive mechanism, Wang et al. proposed multi-granularity cognitive computing 
[11], which was further extended by Xia and Wang into granular-ball computing, demonstrating advantages in efficiency, robustness, 
and interpretability [12]. In granular-ball computing, multiple point” data are aggregated into “balls”, which are then processed by 
granular-ball-based algorithms, as illustrated in Fig. 1. This strategy enhances both robustness and computational efficiency [13]. In 
addition to granular-ball methods, several other non-ball-based algorithms have also shown strong noise resistance, particularly in 
high-dimensional or noisy environments [14]. These approaches provide complementary perspectives on robust information process-

ing, and together they broaden the toolbox for handling uncertainty in real-world data.

Granular-ball computing has since been widely applied in classification and clustering tasks, demonstrating its versatility and 
effectiveness. For instance, Xia et al. integrated granular-ball computing with support vector machines (SVM), resulting in granular-

ball-based SVMs [15,16]. They further introduced controllable multi-granularity SVM (con-MGSVM) and support vector regression 
(con-MGSVR), significantly improving SVM performance [17]. In clustering, Xia et al. proposed ball 𝑘-means, a granular-ball-

enhanced variant of the exact 𝑘-means algorithm, which accelerates convergence [18]. Building on this, Xie et al. developed a 
granular-ball-based spectral clustering method, which improves similarity matrix construction while reducing computational com-

plexity [19].

However, it is important to clarify the notion of multi-granularity in different contexts. In Xia’s work [15–18], multi-granularity 
often refers to varying granular-ball sizes. In contrast, multi-granularity in this study refers to computing in a multi granular space 
(subset of the attribute power set). This discrepancy reflects the lack of unified terminology in granular computing. Rather than being 
contradictory, these definitions illustrate the contextual flexibility and adaptability of the granular computing paradigm.

Beyond classification and clustering, granular-ball computing has also contributed significantly to feature selection. Xia et al. in-

troduced granular-ball neighborhood rough set (GBNRS), which adaptively form object-specific neighborhoods in 𝑂(𝑁) time, offering 
more flexibility than traditional neighborhood rough set [20]. They subsequently proposed granular-ball rough set (GBRS), which 
combine the structural strengths of granular-ball computing with the descriptive capabilities of Pawlak and neighborhood rough set, 
facilitating the processing of continuous data and equivalence-based knowledge representation [21].
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The scope of granular-ball computing further extends to multi-label learning. Qian et al. proposed a granular-ball and label 
distribution-based feature selection method, which clusters multi-label data into adaptive granular structures and uses label enhance-

ment to convert logical labels into probabilistic distributions through instance-level similarity analysis [22]. To handle missing labels, 
Shu et al. designed a granular-ball-based mutual information feature selection algorithm, which improves classification accuracy via 
label recovery and granular-ball mutual information computation [23].

Furthermore, granular-ball computing has been effectively integrated with fuzzy rough set models. For label distribution learning, 
a granular-ball-based fuzzy rough set (GBFRS) method was proposed to address label ambiguity and dimensionality, achieving strong 
performance across twenty-two benchmark datasets [24]. In streaming data settings, a fuzzy neighborhood granular-ball rough set 
(FNGBRS) model was introduced by combining Canopy clustering and granular-ball computing, enabling parameter-free online group 
feature selection with improved efficiency and stable classification results [25]. Additionally, granular-ball computing enhances the 
robustness and scalability of fuzzy rough set models in high-dimensional spaces, outperforming traditional baselines [26].

Despite these advances, most rough set-based feature selection algorithms remain constrained to single-granularity frameworks 
[27,28]. To address this limitation and capture richer information from multiple granular space, multi-granularity rough set models 
have been proposed. For instance, Sun et al. developed a fuzzy neighborhood multi-granulation rough set-based feature selection 
framework that integrates algebraic and information-theoretic measures to improve classification stability [29]. Xu et al. presented 
a generalized multi-granulation neighborhood rough set model using matrix representations and introduced a new entropy measure 
for guiding heuristic feature subset selection [30]. Likewise, Zhang et al. proposed a feature selection algorithm based on generalized 
multi-granulation fuzzy neighborhood rough set (GMFNRS), which leverages fuzzy neighborhood entropy to improve uncertainty 
quantification and support efficient feature selection in complex environments [31].

Uncertainty measurement is a critical component in rough set-based feature selection algorithms, directly influencing their perfor-

mance. To improve the accuracy of uncertainty assessment in information systems, researchers have introduced information entropy 
into rough set models with considerable success [32,33]. In this study, we adopt Zentropy [34,35] as our uncertainty measure. The 
term “Zentropy” originates from the German word “Zustandssumme”, meaning the sum over different states or scales. This measure 
focuses on uncertainty across various granularity levels to design more robust feature evaluation functions. Compared with other 
entropy-based measures, Zentropy offers a more comprehensive and resilient characterization of uncertainty in decision information 
systems.

Despite the rapid progress in both multi-granularity rough set and granular-ball rough set, research on integrating granular-ball 
rough set into multi-granularity frameworks has largely stagnated. This stagnation stems primarily from the limitations of the origi-

nal granular-balls generation method [12], which lacks the ability to construct granular-balls in multiple granular space. Moreover, 
its partitioning-based strategy performs poorly on datasets with complex or irregular distributions, thus limiting its applicability. 
Although recent studies have improved the efficiency of granular-ball generation [19,36], they fail to address the fundamental chal-

lenge of effectively representing data at multiple granularities. These unresolved issues motivate our work, which seeks to develop a 
more flexible and robust granular-ball generation method tailored for multi-granularity modeling.

Therefore, to optimize granular-ball generation and enable its integration into multi-granularity rough set for enhanced perfor-

mance, we have made the following contributions:

1. We propose a novel granular-balls generation algorithm based on neighbor search. This method groups each data sample and 
its neighbors into a granular-ball, incrementally generating granular-balls. Unlike partitioning-based approaches, our method 
adapts to arbitrary data distributions, significantly improving data fusion accuracy.

2. We define the concept of multi-granularity granular-balls and devise a generation algorithm for them, building upon the neigh-

bor search-based granular-balls generation approach. The algorithm enables multi-granularity granular-balls to represent data 
in multiple granular space while filtering out invalid granularities, expediting subsequent multi-granularity feature selection 
algorithms. The process is illustrated in Fig. 2.

3. We develop a feature selection algorithm based on generalized multi-granularity rough set, incorporating Zentropy [34,35] to 
accurately measure uncertainty across diverse granularity levels. Our approach reduces sample size and granularity complexity 
through granular-balls generation, enabling efficient granularity screening and neighborhood relationship establishment, thereby 
improving computational efficiency and feature selection effectiveness.

Compared with the traditional feature selection algorithm based on rough set, our proposed algorithm has the following advan-

tages:

1. By generating multi-granularity granular-balls based on neighbor search, granular-balls can be generated in arbitrarily distributed 
data sets, forming a more accurate granular-balls neighborhood relationship, so that the granular-balls rough set can calculate the 
upper and lower approximations more accurately, and combined with Zentropy, it can more accurately measure the uncertainty 
of the information system, thereby improving the effect of feature selection.

2. Compared with the traditional multi-granularity rough set, which needs to calculate the entire multiple granular space (i.e., the 
power set of the attribute set), in the process of generating multi-granularity granular-balls, the granularity will be screened, 
thereby eliminating the granularity that cannot generate the granular-ball neighborhood relationship, thereby simplifying the 
size of the granular space, increasing the granularity that needs to be calculated for the multi-granular rough set, and improving 
the computational efficiency of the multi-granular rough set.
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Fig. 2. Process for Generating Multi-Granularity Granular-Balls (Algorithm 2). 

Table 1
Summary of Notations.

Symbol Description 
𝑈 Set of all samples, 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑚}. 
𝐷 Set of decision attributes (labels) for all samples, 𝐷 = {𝑑1, 𝑑2,… , 𝑑𝑚}. 
𝐴𝑇 Complete set of condition attributes, 𝐴𝑇 = {𝑎1 ,… , 𝑎𝑛}. 
𝐴 A subset of 𝐴𝑇 . 
P(𝐴) Power set of 𝐴, i.e., the set of all its subsets. 
𝐴𝑃 Multi-granular space, 𝐴𝑃 = {𝐴1,𝐴2 ,… ,𝐴𝑞} ⊆P(𝐴). 
GB Set of multi-granularity granular-balls, GB = {gb1,gb2,… ,gb𝑝}. 
gb𝑖 A multi-granularity granular-ball composed of granular-balls across different granularities, gb𝑖 = {𝑔𝑏𝐴1

𝑖
, 𝑔𝑏

𝐴2
𝑖
,… , 𝑔𝑏

𝐴𝑞
𝑖
}. 

𝐴𝑗 A single granularity, where 𝐴𝑗 ∈𝐴𝑃 . 
𝑔𝑏

𝐴𝑗
𝑖

Granular-ball under granularity 𝐴𝑗 , defined as a quintuple (�̊�𝐴𝑗
𝑖
, 𝑐
𝐴𝑗
𝑖
, 𝑟
𝐴𝑗
𝑖
, 𝑑

𝐴𝑗
𝑖
, 𝑝
𝐴𝑗
𝑖
). 

�̊�
𝐴𝑗
𝑖

Set of samples contained within the granular-ball. 
𝑐
𝐴𝑗
𝑖

Center of the granular-ball. 
𝑟
𝐴𝑗
𝑖

Radius of the granular-ball. 
𝑑
𝐴𝑗
𝑖

Label of the granular-ball, determined by the majority class among contained samples. 
𝑝
𝐴𝑗
𝑖

Purity of the granular-ball, i.e., the proportion of samples sharing the majority label. 
𝑅𝑎(𝑔𝑏𝐴𝑗

𝑖
) Overlap ratio of the granular-ball. 

𝑃
𝐴𝑗

𝑋𝑘
(𝑥) Support characteristic function indicating whether the neighborhood of 𝑥 is contained in decision class 𝑋𝑘. 

Δ(𝑥, 𝑦) Euclidean distance between samples 𝑥 and 𝑦. 
𝛽 Support threshold, 𝛽 ∈ (0.5,1]. 
𝐺𝑀

𝛽

𝐴𝑃
(𝑋𝑘) Lower approximation of decision class 𝑋𝑘 in the generalized multi-granularity granular-ball rough set. 

𝐺𝑀
𝛽

𝐴𝑃
(𝑋𝑘) Upper approximation of decision class 𝑋𝑘 in the generalized multi-granularity granular-ball rough set. 

𝑍(𝐴,𝐷) Zentropy with respect to attribute set 𝐴 and decision attribute set 𝐷. 
IM(𝑎,𝐴,𝐷) Inner significance measure of attribute 𝑎∈𝐴. 
SM(𝑎,𝐴,𝐷) Outer significance measure of attribute 𝑎 ∈𝐴. 

3. Similar to the original granular-balls rough set, multi-granularity granular-balls can simplify the domain of the rough set (from the 
number of samples |𝑈 | to the number of granular-balls |GB|), thereby improving the computational efficiency of the rough set.

The remainder of this paper is organized as follows. Section 2 introduces the basics of granular-ball computing and generalized 
multi-granularity rough set. Section 3 presents the definition and generation method for multi-granularity granular-balls based on 
neighbor search. Section 4 proposes generalized multi-granularity granular-balls rough set, integrating granular-balls with generalized 
multi-granularity rough set. In Section 5, we evaluate the efficiency of granular-balls generation and classification performance. 
Finally, Section 6 summarizes our findings and discusses future research directions.

Table 1 is a summary of the symbols involved in the algorithm proposed in this paper.

2. Preliminaries

In this section, we introduce the fundamental concepts of granular-ball computing and the generalized multi-granularity rough 
set.
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2.1. Granular-ball computing

Most existing feature selection algorithms operate at the finest level, taking individual points or pixels as inputs. However, this 
point-level perspective diverges from the coarse-to-fine nature of human cognition, which tends to grasp global structures before 
focusing on fine details. To bridge this gap, Xia et al. proposed Granular-Ball Computing (GBC), a novel data analysis framework 
rooted in the principles of granular computing [12]. Rather than representing data as isolated discrete points, GBC introduces the 
concept of granular-balls—hyperspherical regions in the feature space that encapsulate local data structures. This coarse-grained 
representation captures not only the central tendency of data but also preserves essential interrelationships among similar samples. 
An illustrative comparison between traditional methods and granular-ball-based algorithm is shown in Fig. 1.

To rigorously define a granular-ball, consider a labeled dataset 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑚}, where 𝑑𝑖 denotes the label associated with 
sample 𝑥𝑖. A granular-ball 𝑔𝑏 is represented as a quintuple:

𝑔𝑏 = (�̊� , 𝑐, 𝑟, 𝑑, 𝑝), (1)

with the components defined as follows:

• �̊� ⊆ 𝑈 is the set of data samples contained in the granular-ball.

• 𝑐 is center of the granular-ball, computed as:

𝑐 = 1 |�̊� | ∑
𝑥𝑖∈�̊�

𝑥𝑖, (2)

• 𝑟 is radius of the granular-ball, which is the average distance from the samples to the center:

𝑟 = 1 |�̊� | ∑
𝑥𝑖∈�̊�

‖𝑥𝑖 − 𝑐‖, (3)

where ‖ ⋅ ‖ denotes the L2 norm.

• 𝑑 is label of the granular-ball, which is the most frequent label among the samples in the ball,

𝑑 =Mo({𝑑𝑖 ∣ 𝑥𝑖 ∈ �̊�}), (4)

where Mo(⋅) denotes the mode function.

• 𝑝 is called purity, which is the ratio of samples in the ball that match the majority label:

𝑝 =
|{𝑑𝑖 ∣ 𝑑𝑖 = 𝑑}||�̊� | . (5)

This representation enables GBC to perform data modeling at multiple levels of abstraction. By grouping similar samples into 
compact and semantically meaningful units, it significantly reduces computational complexity, making it well-suited for large-scale 
datasets. Moreover, in the context of rough set-based feature selection, the use of granular-balls supports more adaptive and mean-

ingful neighborhood identification, thereby enhancing approximation quality and algorithmic efficiency.

To formalize the neighborhood relation induced by granular-balls, let 𝐺𝐵 = {𝑔𝑏1, 𝑔𝑏2,… , 𝑔𝑏𝑝} be the set of granular-balls gener-

ated from 𝑈 . The granular-ball neighborhood relation R is defined as the binary relation:

R =
{
(𝑔𝑏𝑖, 𝑥𝑗 ) ∈𝐺𝐵 ×𝑈 ||| 𝑥𝑗 ∈ �̊�𝑖} . (6)

In other words, a sample 𝑥𝑗 is related to a granular-ball 𝑔𝑏𝑖 if it belongs to 𝑔𝑏𝑖.
From this definition, it follows that the neighborhood of any granular-ball 𝑔𝑏𝑖 ∈𝐺𝐵 consists precisely of the samples it encloses:

R(𝑔𝑏𝑖) = �̊�𝑖. (7)

The generation of granular-balls is conducted in a top-down hierarchical fashion. Initially, the entire dataset is treated as a single 
coarse ball. This ball is then recursively split into smaller granular-balls based on sample distribution and label purity, until all 
resulting granular-balls satisfy a predefined purity threshold. This adaptive, data-driven strategy not only improves representational 
fidelity but also provides a natural pathway for multi-level reasoning. The overall process of granular-ball generation is illustrated in 
the flowchart of the original GBC algorithm in Fig. 3.

2.2. Generalized multi-granularity rough set

The classical rough set theory, proposed by Pawlak in the 1980s [1], provides a powerful mathematical framework for dealing 
with imprecise, uncertain, and incomplete information. However, it fundamentally relies on equivalence relations (or indiscernibility 
relations), which makes it inherently more suitable for categorical or discrete data. In real-world scenarios involving continuous 
attributes and numerical data, this assumption often becomes limiting.
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Fig. 3. Process for Generating Single-Granularity Granular-Balls (Origin). 

To overcome this constraint and better handle real-valued data, the Neighborhood Rough Set (NRS) [2] model was introduced. 
Rather than relying on equivalence classes, the NRS model defines object similarity through distance-based neighborhoods. Specifi-

cally, given a distance function Δ ∶𝑈 ×𝑈 →ℝ+, the 𝛿-neighborhood of a sample 𝑥 ∈𝑈 is defined as:

[𝑥]𝛿 = {𝑦 ∈𝑈 ∣ Δ(𝑥, 𝑦) ≤ 𝛿}, (8)

where 𝛿 > 0 is a user-defined neighborhood radius that controls the granularity of approximation. This mechanism allows the NRS 
model to adapt to noisy environments and gradual boundary regions commonly seen in numerical datasets.

Given a partition 𝑈∕𝐷 = {𝑋1,𝑋2,… ,𝑋𝑠} induced by decision attribute, the lower and upper approximations under the NRS 
framework are defined as:

𝑅𝛿(𝑋𝑘) = {𝑥 ∈𝑈 ∣ [𝑥]𝛿 ⊆ 𝑋𝑘}, (9)

𝑅𝛿(𝑋𝑘) = {𝑥 ∈𝑈 ∣ [𝑥]𝛿 ∩𝑋𝑘 ≠ ∅}. (10)

By tuning the neighborhood radius 𝛿, the NRS model offers a flexible balance between approximation precision and tolerance to 
data uncertainty, making it widely applicable in tasks such as feature selection, pattern recognition, and data mining.

Despite its advantages, the single-granularity nature of traditional NRS may fail to capture multi-scale structural information 
embedded in complex datasets. To address this issue, researchers have proposed the multi-granulation rough set (MGRS) models 
[29–31], which incorporate multiple granular perspectives to enhance robustness. In particular, the traditional MGRS approaches—

namely the optimistic and pessimistic models—are based on whether an object satisfies approximation conditions across all or at 
least one granularity. However, the pessimistic model is often too strict, while the optimistic model is overly permissive, which can 
both lead to poor performance in practical applications.

To strike a better balance between these two extremes, the Generalized Multi-Granulation Rough Set (GMGRS) model was in-

troduced. It allows partial agreement across multiple granularities through a support threshold, thus offering a more flexible and 
adaptive approximation framework.

It is worth noting, however, that the notion of multi-granularity can vary significantly across different research contexts. For 
example, in Xia’s work [15–18], multi-granularity typically refers to variations in granular-ball sizes. In contrast, this study adopts a 
different perspective, where multi-granularity is defined in terms of computations carried out over a multi-granular space—that is, a 
collection of attribute subsets derived from the power set of the full attribute set.

Formally, let 𝐴 be an attribute set and P(𝐴) its power set. Let 𝐴𝑃 = {𝐴1,𝐴2,… ,𝐴𝑞} ⊆P(𝐴) denote a multi-granular space, where 
each 𝐴𝑗 ∈𝐴𝑃 represents a single granularity. The neighborhood class of a sample 𝑥 under 𝐴𝑗 is defined as:

[𝑥]𝐴𝑗
𝛿

= {𝑦 ∈𝑈 ∣ Δ(𝑥, 𝑦) ≤ 𝛿}. (11)

Given a partition 𝑈∕𝐷 = {𝑋1,𝑋2,… ,𝑋𝑠} induced by decision attribute, define the support characteristic function 𝑃𝐴𝑗
𝑋𝑘

(𝑥) as:

𝑃
𝐴𝑗

𝑋𝑘
(𝑥) =

{
1, if [𝑥]𝐴𝑗

𝛿
⊆ 𝑋𝑘,

0, otherwise.
(12)

Based on this, for a support threshold 𝛽 ∈ (0.5,1], the generalized multi-granulation lower and upper approximations are defined 
as:
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𝐺𝑅
𝛽

𝐴𝑃
(𝑋𝑘) =

⎧⎪⎨⎪⎩𝑥 ∈𝑈 
|||||| 1 |𝐴𝑃 | ∑

𝐴𝑗∈𝐴𝑃
𝑃
𝐴𝑗

𝑋𝑘
(𝑥) ≥ 𝛽

⎫⎪⎬⎪⎭ , (13)

𝐺𝑅
𝛽

𝐴𝑃
(𝑋𝑘) =

⎧⎪⎨⎪⎩𝑥 ∈𝑈 
|||||| 1 |𝐴𝑃 | ∑

𝐴𝑗∈𝐴𝑃

(
1 − 𝑃𝐴𝑗

𝑋𝑐
𝑘

(𝑥)
)
> 1 − 𝛽

⎫⎪⎬⎪⎭ , (14)

in which 𝑋𝑐
𝑘

is the complement of 𝑋𝑘.

This generalized model enhances classical and neighborhood-based rough set by incorporating multiple views and tolerating 
partial consistency, making it especially effective in high-dimensional, noisy, or heterogeneous data environments.

3. Generation of multi-granularity granular-balls

Traditional granular-balls are limited to single-granularity data fusion, lacking the ability to integrate multi-granularity informa-

tion. To address this limitation and enhance their capability to capture multi-granularity characteristics, we extend the concept of 
single-granular granular-balls to multi-granularity granular-balls, enabling effective information fusion across multiple granularities.

Definition 1. Given an information system 𝐼𝑆 = (𝑈,𝐴𝑇 ∪𝐷,𝑉 ,𝑓 ), where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑚} and 𝐴𝑇 = {𝑎1, 𝑎2,… , 𝑎𝑛}, let 𝐴⊆𝐴𝑇 . 
The power set of 𝐴 is denoted as P(𝐴) = {𝐴1,𝐴2,… ,𝐴2|𝐴|}. Define a multiple granular space 𝐴𝑃 = {𝐴1,𝐴2,… ,𝐴𝑞} ⊆P(𝐴). For any 
𝐴𝑗 ∈𝐴𝑃 , the set of multi-granularity granular-balls is defined as:

GB = {gb1,gb2,… ,gb𝑝}, (15)

gb𝑖 = {𝑔𝑏𝐴1
𝑖
, 𝑔𝑏

𝐴2
𝑖
,… , 𝑔𝑏

𝐴𝑞
𝑖
}, 𝑖 ≤ 𝑝. (16)

Here, 𝑔𝑏𝐴𝑗
𝑖

= (�̊�𝐴𝑗
𝑖
, 𝑐
𝐴𝑗
𝑖
, 𝑟
𝐴𝑗
𝑖
, 𝑑
𝐴𝑗
𝑖
, 𝑝
𝐴𝑗
𝑖
) ∈ gb𝑖 represents a single-granularity granular-ball as introduced in Subsection 2.1, where 𝐴𝑗

denotes the granularity. Unlike the earlier definition in Subsection 2.1, the radius 𝑟𝐴𝑗
𝑖

is computed as:

𝑟
𝐴𝑗
𝑖

=
‖𝑥𝐴𝑗𝑎 − 𝑐𝐴𝑗

𝑖
‖+ ‖𝑥𝐴𝑗

𝑏
− 𝑐𝐴𝑗

𝑖
‖

2 
. (17)

Here, 𝑥𝑎 and 𝑥𝑏 represent the |�̊� |-th and (|�̊� |+ 1)-th nearest neighbors of 𝑐𝐴𝑗
𝑖

, respectively, and ‖ ⋅ ‖ denotes the L2 norm.

To facilitate computation, for any multi-granularity granular-ball gb𝑖 = {𝑔𝑏𝐴1
𝑖
, 𝑔𝑏

𝐴2
𝑖
,… , 𝑔𝑏

𝐴𝑞
𝑖
}, we define the set of granularities 

Ω as:

Ω(gb𝑖) = {𝐴1,𝐴2,… ,𝐴𝑞}, 𝑞 ≤ 2|𝐴|. (18)

We propose a novel granular-balls generation algorithm based on neighbor search, capable of producing both single-granularity 
and multi-granularity granular-balls. Typically, the neighbors of a sample exhibit homogeneity, sharing the same label and belonging 
to the same granular-ball. Based on this assumption, the 𝑘-nearest neighbors �̊� ′ 𝐴𝑗

𝑖
of a sample 𝑥𝐴𝑗

𝑖
are grouped into the same 

granular-ball 𝑔𝑏𝐴𝑗 . From these neighbors, we compute the center 𝑐𝐴𝑗
𝑖

and radius 𝑟𝐴𝑗
𝑖

to obtain a single-granularity granular-ball 
𝑔𝑏
𝐴𝑗
𝑖

= (�̊�𝐴𝑗
𝑖
, 𝑐
𝐴𝑗
𝑖
, 𝑟
𝐴𝑗
𝑖
, 𝑑
𝐴𝑗
𝑖
, 𝑝
𝐴𝑗
𝑖
).

When generating single-granularity granular-balls at the finest level, we maximize their size by choosing a sufficiently large 𝑘. 
However, excessively large 𝑘 values may reduce granular-ball purity. To balance size and quality, we search for an optimal 𝑘 value 
using binary search, ensuring the granular-ball satisfies a predefined purity threshold equals to 1 while maximizing its size.

To handle overlap among granular-balls, we introduce the overlap ratio to quantify the degree of overlap within the same granu-

larity:

Definition 2. For a granular-ball set GB = {gb1,gb2,… ,gb𝑝}, gb𝑖 = {𝑔𝑏𝐴1
𝑖
, 𝑔𝑏

𝐴2
𝑖
,… , 𝑔𝑏

𝐴𝑞
𝑖
}, 𝑖 ≤ 𝑝, and any granular-ball 𝑔𝑏𝐴𝑗

𝑖
=

(�̊�𝐴𝑗
𝑖
, 𝑐
𝐴𝑗
𝑖
, 𝑟
𝐴𝑗
𝑖
, 𝑑
𝐴𝑗
𝑖
, 𝑝
𝐴𝑗
𝑖
) ∈ gb𝑖, the overlap ratio is defined as:

𝑅𝑎(𝑔𝑏𝐴𝑗
𝑖
) =

|||⋃𝑝

𝑡≠𝑖
(�̊�𝐴𝑗
𝑖

∩ �̊�𝐴𝑗
𝑡

)||||||�̊�𝐴𝑗𝑖 ||| . (19)

After constructing the finest granular-balls, we identify additional granularities that satisfy the purity condition, enabling the 
creation of multi-granularity granular-balls GB. To manage high-dimensional data efficiently, we limit the size of the multiple granular 
space to [𝑁,𝑁], selecting granularities iteratively to ensure computational feasibility.



Information Sciences 718 (2025) 122411

8

W. Ye and W. Xu 

Algorithm 1: Generating a Multi-Granularity Granular-Ball.

Input: Size limitation of granular-ball [𝑀,𝑀], sample 𝑥, multiple granular space 𝐴𝑃 and its size limits [𝑁,𝑁].
Output: Multi-granularity granular-ball and multiple granular space.

1 𝑙𝑒𝑓 𝑡 =𝑀 , 𝑟𝑖𝑔ℎ𝑡 =𝑀 , 𝑚𝑖𝑑 = ⌊ 𝑙𝑒𝑓 𝑡+𝑟𝑖𝑔ℎ𝑡
2 ⌋, 𝑔𝑏𝐴

𝑖
= ∅, gb𝑖 = ∅; 

2 while 𝑙𝑒𝑓 𝑡 < 𝑟𝑖𝑔ℎ𝑡 do

3 Query 𝑚𝑖𝑑-nearest neighbors �̊� ′ 𝐴
𝑖

of 𝑥; 
4 Create a granular-ball 𝑔𝑏′ 𝐴

𝑖
= (�̊� ′ 𝐴

𝑖
, 𝑐′ 𝐴
𝑖
, 𝑟′ 𝐴
𝑖
, 𝑑′ 𝐴
𝑖
, 𝑝′ 𝐴
𝑖
) via Definition 1; 

5 if 𝑝′ 𝐴
𝑖

≥ 1 then

6 𝑙𝑒𝑓 𝑡 =𝑚𝑖𝑑 + 1, 𝑚𝑖𝑑 = ⌊ 𝑙𝑒𝑓 𝑡+𝑟𝑖𝑔ℎ𝑡
2 ⌋; 

7 if 𝑔𝑏𝐴
𝑖
= ∅ or |�̊� ′ 𝐴

𝑖
| > |�̊�𝐴

𝑖
| then

8 𝑔𝑏𝐴
𝑖
= 𝑔𝑏′ 𝐴

𝑖
; 

9 end 
10 else

11 𝑟𝑖𝑔ℎ𝑡 =𝑚𝑖𝑑 − 1, 𝑚𝑖𝑑 = ⌊ 𝑙𝑒𝑓 𝑡+𝑟𝑖𝑔ℎ𝑡
2 ⌋; 

12 end 
13 end 
14 if 𝑔𝑏𝐴

𝑖
= ∅ or 𝑅𝑎(𝑔𝑏𝐴

𝑖
) > 0 then

15 return None ; 
16 end 
17 gb𝑖 ← 𝑔𝑏𝐴

𝑖
; 

18 for 𝐴𝑗 ∈𝐴𝑃 do

19 Query 𝑚𝑖𝑑-nearest neighbors �̊� ′ 𝐴𝑗
𝑖

of 𝑐𝐴𝑗
𝑖

; 
20 Create a granular-ball 𝑔𝑏𝐴𝑗

𝑖
= (�̊� ′ 𝐴𝑗

𝑖
, 𝑐

′ 𝐴𝑗
𝑖
, 𝑟

′ 𝐴𝑗
𝑖
, 𝑑

′ 𝐴𝑗
𝑖
, 𝑝

′ 𝐴𝑗
𝑖

) via Definition 1; 
21 if 𝑑′ 𝐴𝑗

𝑖
= 𝑑𝐴

𝑖
and 𝑅𝑎(𝑔𝑏𝐴𝑗

𝑖
) ≤ 0 then

22 gb𝑖 ← 𝑔𝑏
𝐴𝑖
𝑖

; 
23 end 
24 end 
25 if |𝐴𝑃 ∩Ω(gb𝑖)| <𝑁 then

26 return None ; 
27 else

28 𝐴𝑃 =𝐴𝑃 ∩Ω(gb𝑖); 
29 return gb𝑖 , 𝐴𝑃 ; 
30 end 

Algorithm 2: Multi-Granularity Granular-Balls Generation Based on Neighbor Search.

Input: Samples set 𝑈 , attribute set 𝐴, target purity 𝑇 , size limitation of any granular-ball [𝑀,𝑀] and size limits of multiple granular space [𝑁,𝑁].
Output: Multi-granularity Granular-balls GB.

1 𝑆 = ∅, GB = ∅; 
2 Randomly select 𝑁 granularities as multiple granular space 𝐴𝑃 ⊆P(𝐴).; 
3 while |𝑆| < |𝑈 | do

4 Randomly select a single sample 𝑥∈ (𝑈 −𝑆); 
5 Get a multi-granularity granular-ball gb𝑖 and multiple granular space 𝐴𝑃 via Algorithm 1; 
6 𝑆← 𝑥; 
7 Get 𝑔𝑏𝐴

𝑖
= (�̊�𝐴

𝑖
, 𝑐𝐴
𝑖
, 𝑟𝐴
𝑖
, 𝑑𝐴
𝑖
, 𝑝𝐴
𝑖
) ∈ gb𝑖 ; 

8 if gb𝑖 is not 𝑁𝑜𝑛𝑒 then

9 𝑆 = 𝑆 ∪ �̊�𝐴
𝑖

, GB ← gb𝑖 ; 
10 end 
11 end 
12 return GB ; 

The detailed algorithms for generating multi-granularity granular-balls are presented in Algorithm 1 and Algorithm 2.

Algorithm 1 primarily consists of a binary search loop and a subsequent loop through attribute sets. The binary search operates 
between 𝑀 and 𝑀 , resulting in a time complexity of 𝑂(log(𝑀 −𝑀)) iterations. Within each iteration, the dominant operation is the 
k-nearest neighbors query, which we assume has a time complexity of 𝑓 . The subsequent for-loop iterates over 𝐴𝑃 , which contains 
at most 𝑁 elements, and performs another k-nearest neighbors query in each iteration. Therefore, the overall time complexity of this 
algorithm is 𝑂(log(𝑀 −𝑀) ⋅ 𝑓 + |𝐴𝑃 | ⋅ 𝑓 ).

Algorithm 2 has an outer while-loop that continues until all samples in 𝑈 are processed. In the worst case, this could be 𝑂(|𝑈 |)
iterations if each iteration only processes one sample. Each iteration calls the first algorithm and performs some set operations. The 
dominant term comes from the calls to the first algorithm, making the overall time complexity 𝑂(|𝑈 | ⋅ (log(𝑀 −𝑀) ⋅ 𝑓 + |𝐴𝑃 | ⋅ 𝑓 )).
4. GMG-GBRS: generalized multi-granularity granular-balls rough set

The rough set theory is a crucial method for feature selection and represents a significant application within granular computing. 
However, prior research about granular-ball rough set has predominantly focused on single-granularity granular-balls, overlooking 
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the potential of multiple granular space. This limitation hinders the integration of granular-ball computing with multi-granularity 
rough set. To address this gap, and building on the multi-granularity granular-balls generation method introduced in the previous 
section, we propose the generalized multi-granularity granular-balls rough set (GMG-GBRS), which combines the strengths of multi-

granularity granular-balls and generalized multi-granularity rough set.

Definition 3. Consider an information system 𝐼𝑆 = (𝑈,𝐴𝑇 ∪𝐷,𝑉 ,𝑓 ) where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑚} and 𝐴𝑇 = {𝑎1, 𝑎2,… , 𝑎𝑛}. For any 
𝐴⊆𝐴𝑇 , the power set of 𝐴 is denoted as P(𝐴) = {𝐴1,𝐴2,… ,𝐴2|𝐴|}, and the multiple granular space is represented by 𝐴𝑃 ⊆P(𝐴).

The support characteristic function of the generalized multi-granularity granular-balls rough set (GMG-GBRS) is defined as:

𝑃
𝐴𝑗

𝑋𝑘
(𝑔𝑏𝐴𝑗

𝑖
) =

{
1, if R(𝑔𝑏𝐴𝑗

𝑖
) ⊆𝑋𝑘,

0, otherwise,
(20)

in which R(𝑔𝑏𝐴𝑗
𝑖
) = �̊�𝐴𝑗

𝑖
is granular-ball neighbors of 𝑔𝑏𝐴𝑗

𝑖
.

The generalized multi-granularity granular-ball lower and upper approximations are then expressed as follows:

𝐺𝑀
𝛽

𝐴𝑃
(𝑋𝑘) =

⎧⎪⎨⎪⎩𝑥 ∈𝑈 
|||||| 1 |𝐴𝑃 | ∑

𝐴𝑗∈𝐴𝑃
𝑃
𝐴𝑗

𝑋𝑘
(𝑔𝑏𝐴𝑗

𝑖
) ≥ 𝛽

⎫⎪⎬⎪⎭ , (21)

𝐺𝑀
𝛽

𝐴𝑃
(𝑋𝑘) =

⎧⎪⎨⎪⎩𝑥 ∈𝑈 
|||||| 1 |𝐴𝑃 | ∑

𝐴𝑗∈𝐴𝑃

(
1 − 𝑃𝐴𝑗

𝑋𝑐
𝑘

(𝑔𝑏𝐴𝑗
𝑖
)
)
> 1 − 𝛽

⎫⎪⎬⎪⎭ . (22)

In feature selection algorithms based on rough set, accurately measuring the uncertainty of the information system is essential for 
effective feature selection. To address this, we incorporate Zentropy [34,35] into GMG-GBRS. Zentropy introduces a novel perspective 
on uncertainty measurement grounded in entropy theory, emphasizing uncertainty across multiple granular levels. This approach 
shifts the focus from analyzing a single granular level to providing a more comprehensive evaluation, enabling a deeper understanding 
of uncertainty.

Definition 4. Given an information system 𝐼𝑆 = (𝑈,𝐴𝑇 ∪𝐷,𝑉 ,𝑓 ), let 𝐴 ⊆ 𝐴𝑇 . Multi-granularity granular-balls, denoted as GB =
{gb1,gb2,… ,gb𝑝}, are generated using Algorithm 2. Here, gb𝑖 = {𝑔𝑏𝐴1

𝑖
, 𝑔𝑏

𝐴2
𝑖
,… , 𝑔𝑏

𝐴𝑞
𝑖
}. For a partition 𝑈∕𝐷 = {𝑋1,𝑋2,… ,𝑋𝑠}, let 

𝐴𝑃 =
⋂𝑝

𝑖=1 Ω(gb𝑖). The Zentropy is computed as follows:

𝑍(𝐴,𝐷) = −
𝑠 ∑
𝑘=1

𝑝𝑘 log2 𝑝𝑘 +
𝑠 ∑
𝑘=1

𝑝𝑘𝑍𝑘, (23)

where 𝑝𝑘 =
|𝑋𝑘||𝑈 | is the probability of the 𝑘-th class at the decision level, and 𝑍𝑘 represents the entropy of the 𝑘-th class, which can 

be further decomposed at finer granular levels.

The entropy 𝑍𝑘, reflecting the uncertainty at the approximation level, is represented as:

𝑍𝑘 = −
2 ∑
𝑙=1 
𝑝𝑘𝑙 log2 𝑝𝑘𝑙 +

2 ∑
𝑙=1 
𝑝𝑘𝑙𝑍𝑘𝑙, (24)

where 𝑝𝑘1 =
||||𝐺𝑀𝛽

𝐴𝑃
(𝑋𝑘)

|||||𝑋𝑘| and 𝑝𝑘2 =
||||𝑋𝑘−𝐺𝑀𝛽

𝐴𝑃
(𝑋𝑘)

|||||𝑋𝑘| represent the distribution of certainty and non-certainty sets in the class 𝐷𝑘 .

The certainty in different granularities is defined as:

𝑍𝑘𝑙 = −
|𝐴𝑃 |∑
𝑗=1 

𝑝𝑘𝑙𝑗 log2 𝑝𝑘𝑙𝑗 +
|𝐴𝑃 |∑
𝑗=1 

𝑝𝑘𝑙𝑗𝑍𝑘𝑙𝑗 , (25)

where 𝑝𝑘𝑙𝑗 =
||||�̊�𝐴𝑗𝑖 |||||𝑋𝑘| represents the probability in the 𝑗-th granularity.

The certainty of an object depends on the relationship between its granular-ball neighborhood class and the target concept. 
Therefore, 𝑍𝑘1𝑗 and 𝑍𝑘2𝑗 can be further defined using granular-ball neighborhood classes as:

𝑍𝑘𝑙𝑗 = −
|𝑁𝑘𝑙𝑗 |∑
𝑖=1 

𝑝𝑘𝑙𝑗𝑖 log2 𝑝𝑘𝑙𝑗𝑖 +
|𝑁𝑘𝑙𝑗 |∑
𝑖=1 

𝑝𝑘𝑙𝑗𝑖𝑍𝑘𝑙𝑗𝑖, (26)
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where 𝑁𝑘1𝑗 =𝐺𝑀
𝛽

𝐴𝑃
(𝑋𝑘), 𝑁𝑘2𝑗 =𝑋𝑘 −𝐺𝑀

𝛽

𝐴𝑃
(𝑋𝑘), and 𝑝𝑘𝑙𝑗𝑖 =

||||�̊�𝐴𝑗𝑖 ||||∑𝑝

𝑖=1
||||�̊�𝐴𝑗𝑖 ||||

represents the probability of the 𝑖-th granular-ball neigh-

borhood class �̊�𝐴𝑗
𝑖

among all granular-ball neighborhood classes in 𝑁𝑘𝑙𝑗 .

Finally, the uncertainty at a finer object-specific level is defined as:

𝑍𝑘𝑙𝑗𝑖 = −
2 ∑
𝑜=1 

𝑝𝑘𝑙𝑗𝑖𝑜 log2 𝑝𝑘𝑙𝑗𝑖𝑜, (27)

where 𝑝𝑘𝑙𝑗𝑖1 =
||||�̊�𝐴𝑗𝑖 ∩𝑋𝑘

|||||�̊�𝐴𝑗
𝑖

| and 𝑝𝑘𝑙𝑗𝑖2 =
||||�̊�𝐴𝑗𝑖 ∩𝑋𝑐

𝑘

|||||�̊�𝐴𝑗
𝑖

| reflect the distribution of objects with decision labels in the granular-ball neighborhood 

classes.

By using Zentropy, we can more precisely characterize the uncertainty within the information system. Next, by calculating both 
the inner and outer importance measures, as defined in Definition 5, we can assess the impact of each individual attribute on the 
system’s uncertainty. Furthermore, by combining these measures with a heuristic search algorithm, we can identify a near-optimal 
feature combination that minimizes the uncertainty of the information system. The details of this feature selection algorithm are 
presented in Algorithm 3.

Definition 5. For a given set of samples 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑚}, consider an attribute subset 𝑎 ∈ 𝐴 ⊆ 𝐴𝑇 , and let 𝑈∕𝐷 =
{𝑋1,𝑋2,… ,𝑋𝑠}. The inner and outer significance measures of attribute 𝑎 ∈𝐴 are defined as follows:

IM(𝑎,𝐴,𝐷) =𝑍(𝐴− {𝑎},𝐷) −𝑍(𝐴,𝐷), (28)

SM(𝑎,𝐴,𝐷) =𝑍(𝐴,𝐷) −𝑍(𝐴 ∪ {𝑎},𝐷). (29)

Algorithm 3: Generalized Multi-Granularity Granular-Balls Rough Set (GMG-GBRS).

Input: An Information System 𝐼𝑆 = (𝑈,𝐴𝑇 ∪𝐷,𝑉 ,𝑓 ).
Output: Selected features 𝐴.

1 Initialize 𝐴 = ∅; 
2 for 𝑎 ∈𝐴𝑇 do

3 Compute 𝑖𝑚 = IM(𝑎,𝐴𝑇 ,𝐷) via Definition 5; 
4 if 𝑖𝑚 > 0 then

5 𝐴← 𝑎; 
6 end 
7 end 
8 while 𝑍(𝐴,𝐷)>𝑍(𝐴𝑇 ,𝐷) do

9 for 𝑎 ∈ (𝐴𝑇 −𝐴) do

10 Compute 𝑠𝑚 = SM(𝑎,𝐴,𝐷) via Definition 5; 
11 end 
12 𝑎𝑚𝑎𝑥 = argmax

𝑎∈𝐴𝑇−𝐴 (𝑠𝑚); 
13 𝐴← 𝑎𝑚𝑎𝑥 ; 
14 end 
15 for 𝑎 ∈𝐴 do

16 if 𝑍(𝐴− {𝑎},𝐷) <𝑍(𝐴,𝐷) then

17 𝐴 =𝐴− {𝑎}; 
18 end 
19 end 
20 return 𝐴; 

Algorithm 3 features several loops over the attribute set 𝐴𝑇 . The initial for-loop computes importance measures for all attributes, 
resulting in 𝑂(|𝐴𝑇 |) iterations. The while-loop continues until a condition on 𝑍 is met, with the number of iterations being data-

dependent but bounded by 𝑂(|𝐴𝑇 |) in the worst case. Each iteration contains a for-loop over the remaining attributes, leading to a 
potential 𝑂(|𝐴𝑇 |2) operations. The final for-loop performs another pass over the selected attributes, contributing 𝑂(|𝐴|) operations. 
The overall time complexity is therefore 𝑂((|𝐴𝑇 |2 + |𝐴𝑇 |+ |𝐴|) ⋅ |𝑈 | ⋅ (log(𝑀 −𝑀) ⋅ 𝑓 + |𝐴𝑃 | ⋅ 𝑓 )).
5. Experimental results and analysis

In this section, we evaluate the efficiency and feature selection performance of our proposed algorithm through a series of exper-

iments.

In Subsection 5.1, we visualize the granular-balls generation process of our proposed algorithm, highlighting its differences and 
advantages compared to the original granular-balls generation algorithm.
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Fig. 4. Comparison of the Original Granular-Balls Generation and Our Method. 

Fig. 5. Visualization of Multi-Granularity Granular-Balls. 

In Subsection 5.2, we validate the effectiveness of the proposed feature selection algorithm by testing it alongside six existing 
feature selection methods on 18 datasets.

In Subsection 5.3, we assess the computational efficiency of our proposed generalized multi-granularity granular-balls rough 
set algorithm, comparing it with other feature selection algorithms. Additionally, we analyze the factors contributing to the high 
efficiency of our proposed approach.

All algorithms described in this paper are implemented in Python within the Anaconda Navigator environment. The experiments 
are conducted on a system equipped with an AMD Ryzen 7 5700G CPU operating at 3.80 GHz, 64.0 GB of memory, and running a 
64-bit Windows 11 operating system.

5.1. Visualization of multi-granularity granular-balls generation

Granular-balls can represent data at various scales, but the original granular-balls generation algorithm, which is based on par-

titioning (similar to the 𝑘-means clustering algorithm), cannot effectively represent partially distributed datasets. To address this 
limitation, we propose a new granular-balls generation method based on neighbor search (Algorithm 2), which incorporates density-

based clustering methods such as DBSCAN. This new method is more applicable to distributed datasets compared to the original 
granular-balls generation algorithm. The comparison between the original granular-balls generation method and our proposed neigh-

bor search-based granular-balls generation method on several datasets is shown in Fig. 4.

From Fig. 4, we observe that, at the finest granularity level, our proposed granular-balls generation algorithm exhibits a stronger 
ability to represent data compared to the original method.

Furthermore, we introduce the concept of multi-granularity into granular-balls, allowing our granular-balls generation algorithm 
to generate granular-balls in multiple granular space, as shown in Fig. 5. This is a key distinction between the multi-granularity 
granular-balls we propose and the original single-granularity granular-balls, as our method can generate granular-balls across multiple 
granular space. This extension enables the use of our method in multi-granularity rough set, which is not possible with the original 
single-granularity granular-balls.
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Table 2
Details of Datasets.

No. Dataset Samples Features Classes 
1 Cancer 116 9 2 
2 Darwin 174 450 2 
3 Wine 178 13 3 
4 Sonar 208 60 2 
5 Heart1 294 13 2 
6 Ionosphere 351 34 2 
7 Urban 675 147 9 
8 Qsar 1055 41 2 
9 Svmguide3 1284 22 2 

No. Dataset Samples Features Classes 
10 Semeion 1593 256 10 
11 Tunadromd 4464 241 2 
12 Spambase 4601 57 2 
13 Quality 4898 11 7 
14 Mushroom 7535 22 2 
15 Htru3 8011 8 2 
16 Mushroom1 8124 22 2 
17 Bean 13611 16 7 
18 Telescope 19020 10 2 

Meanwhile, in the original multi-granularity rough set, the multiple granular space considered encompasses the power set of the 
attribute set. For instance, given the attribute set {𝑥, 𝑦, 𝑧}, the power set would be {{𝑥, 𝑦, 𝑧},{𝑥, 𝑦},{𝑥, 𝑧},{𝑦, 𝑧},{𝑥},{𝑦},{𝑧},∅}. 
However, as illustrated in Fig. 5, our multi-granularity granular-balls generation algorithm generates granular-balls only within a 
subset of this power set, specifically {{𝑥, 𝑦, 𝑧},{𝑥, 𝑧},{𝑦, 𝑧},{𝑧}}. This is because our algorithm screens the granularity during the 
generation process, eliminating invalid granularities. Consequently, the subsequent multi-granularity feature selection algorithm no 
longer needs to consider the entire multiple granular space, resulting in a significant improvement in computational efficiency.

5.2. Feature selection evaluation of GMG-GBRS

In this section, we evaluate the effectiveness of the feature selection performance of our proposed GMG-GBRS algorithm. We 
selected 18 datasets for feature selection, which are described in Table 2, and they can be accessed via GitHub and UCI repositories.

During the data pre-processing stage, we applied min-max normalization to standardize all data and replaced any missing values 
with 0. The normalization formula is given as:

𝑎(𝑥𝑖) =
𝑎(𝑥𝑖) − min𝑎(𝑥) 

max𝑎(𝑥) − min𝑎(𝑥)
, (30)

where 𝑎(𝑥𝑖) represents the value of attribute 𝑎 for sample 𝑥𝑖.
This normalization technique is effective for eliminating dimensional discrepancies, accelerating convergence in machine learning 

algorithms, and enhancing the performance of distance-based algorithms such as 𝑘-means clustering and 𝑘-nearest neighbors. It is 
especially useful when feature values vary significantly and a comprehensive comparison across features is required.

To evaluate the effectiveness of our proposed feature selection algorithm, we selected six other feature selection algorithms for 
comparison. These include two single-granularity rough set based on granular-balls (GBRS [21], GBNRS [20]), two traditional multi-

granularity rough set without granular-balls (GMDNRS [30], FNPME-FS [29]), one single-granularity rough set using zentropy as a 
metric (Ze-FS [34]), and one non-rough set feature selection algorithm (MEL [37]). Additionally, we also tested the classification 
effect without feature selection (Raw).

After feature selection, the processed data were classified using three classifiers, namely the Extra Trees Classifier (ETC [38]), 
Gradient Boosting Classifier (GBC [39]), and Support Vector Classifier (SVC [40]). All classifiers were implemented using the sklearn 
package with default parameters. Specifically, for the Extra Trees Classifier, the number of trees in the forest was set to 100; other 
parameter details can be found in the Extra Trees Classifier Documentation. For the Gradient Boosting Classifier, the learning rate 
was set to 0.1, and the number of boosting stages to perform was 100; additional parameters are described in the Gradient Boosting 
Classifier Documentation. For the Support Vector Classifier, the regularization parameter 𝐶 was set to 1.0, the kernel function was 
set to rbf, and the polynomial degree was set to 3; further settings can be found in the Support Vector Classifier Documentation.

For the above algorithms, we set the 𝛿 and 𝛽 parameters of GMDNRS to range from 0.1 to 0.5 and 0.6 to 0.9, respectively, with a 
step size of 0.1. We set the 𝛼 parameter of FNPME-FS to range from 0.1 to 0.5, with a step size of 0.1, and also set 𝛿 for FNPME-FS 
from 0.1 to 0.5, with a step size of 0.1. For our algorithm (GMG-GBRS), we set the minimum and maximum size of multiple granular 
space to 100 and 5000, and a minimum granular-ball size of 2. The value of 𝛽 was varied from 0.6 to 1, with a step size of 0.1. The 
maximum granular-ball size was set as 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 times the sample size. Other algorithms do not need to set 
parameters.

It is important to note that considering the multiple granular space for GMDNRS and FNPME-FS is extremely time-consuming, 
given that their size is 2|𝐴|. Therefore, in this subsection, we have limited the size of the multiple granular space calculated by these 
two algorithms by setting the maximum size of multiple granular space to 100, which is substantially lower than that of GMG-GBRS, 
which is 5000. Setting the maximum size of multiple granular space to 5000 for GMDNRS and FNPME-FS would result in excessive 
computation time and make it impractical to obtain results.

For all experiments, we performed 10-fold cross-validation and calculated the mean and standard deviation of the results.

The performance of each feature selection algorithm across different datasets, using the three classifiers, is presented in Table 3, 
Table 4, and Table 5. The number of selected features is shown in Table 6.

As evident from the results, the algorithm we proposed demonstrates outstanding performance across all classifiers. Additionally, 
it effectively extracts features and simplifies the attributes.
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Table 3
Classification Accuracy and Its Standard Deviation (%) with Extra Trees Classifier.

Raw GBRS GBNRS GMDNRS FNPME-FS Ze-FS MEL GMG-GBRS 
Cancer 74.39±14.44 77.95±17.06 75.91±12.22 72.50±14.83 77.73±10.39 77.73±10.39 42.42±16.01 78.64±12.46 
Darwin 89.71±7.46 90.33±8.74 90.82±4.89 89.71±7.46 90.29±5.91 67.35±14.99 89.12±5.65 91.44±6.63 
Wine 98.89±2.34 97.78±3.88 98.89±2.34 78.76±8.88 98.89±2.34 98.89±2.34 97.75±3.92 98.89±2.34 
Sonar 85.07±8.29 82.67±7.27 88.40±9.95 82.64±6.98 84.12±9.88 61.55±7.70 73.95±11.19 90.88±6.89 
Heart1 73.84±5.36 70.72±4.40 74.49±2.81 61.91±3.39 74.56±6.50 73.86±7.65 74.13±4.46 75.47±7.76 
Ionosphere 94.01±3.92 94.29±3.31 94.29±3.02 92.29±5.06 94.58±3.43 87.46±6.49 92.30±3.32 94.59±2.84 
Urban 86.38±3.46 86.67±1.71 87.84±3.64 86.38±3.46 86.66±3.72 67.43±4.26 86.37±3.61 87.99±3.26 
Qsar 87.49±3.13 82.94±2.66 87.87±2.69 86.35±2.38 87.02±2.50 86.06±3.00 85.97±2.81 87.87±2.48 
Svmguide3 85.28±1.70 82.09±1.38 85.83±1.79 82.55±2.92 85.51±2.00 85.51±2.21 73.75±0.33 85.04±2.44 
Semeion 94.10±1.40 89.71±1.45 94.85±1.60 94.10±1.40 95.04±1.27 63.72±5.73 75.27±2.54 94.91±1.84 
Tunadromd 99.57±0.22 99.53±0.25 99.57±0.22 99.57±0.22 98.61±0.41 98.95±0.40 98.90±0.39 99.53±0.29 
Spambase 95.72±0.74 90.89±1.17 95.94±0.71 78.50±2.26 94.20±0.83 94.57±1.13 93.61±0.81 95.72±0.74 
Quality 69.93±1.55 70.13±2.28 70.15±1.66 64.54±2.23 57.08±1.43 70.13±1.68 64.23±1.49 69.93±1.55 
Mushroom 100.00±0.00 100.00±0.00 100.00±0.00 98.21±0.63 100.00±0.00 100.00±0.00 99.89±0.10 100.00±0.00 
Htru3 97.53±0.59 97.48±0.66 97.58±0.59 92.17±0.90 96.85±0.68 97.53±0.59 94.99±0.90 97.63±0.45 
Mushroom1 100.00±0.00 100.00±0.00 100.00±0.00 99.21±0.19 100.00±0.00 100.00±0.00 98.57±0.37 100.00±0.00 
Bean 92.25±0.95 91.91±0.83 92.23±0.86 92.44±0.72 91.29±0.74 92.79±0.67 92.76±0.82 92.43±0.84 
Telesope 87.85±0.63 87.40±0.64 87.52±0.60 74.58±1.19 61.62±0.92 87.85±0.63 83.20±0.78 87.85±0.63 

Table 4
Classification Accuracy and Its Standard Deviation (%) with Gradient Boosting Classifier.

Raw GBRS GBNRS GMDNRS FNPME-FS Ze-FS MEL GMG-GBRS 
Cancer 77.05±14.44 77.88±13.45 77.05±14.44 75.83±12.94 76.89±10.95 77.05±14.44 40.83±19.55 79.47±9.68 
Darwin 87.52±8.48 87.55±9.28 88.59±6.97 87.52±8.48 84.61±9.09 61.63±10.65 87.42±6.80 89.31±11.19 
Wine 93.89±7.15 97.22±2.93 95.56±6.31 77.48±9.47 95.00±7.15 95.00±6.11 95.52±6.84 96.63±3.91 
Sonar 85.14±9.07 81.76±12.02 84.64±8.36 82.17±11.02 83.17±12.88 56.12±12.80 75.98±8.11 85.19±10.13 
Heart1 73.46±4.80 70.34±5.85 74.14±4.05 61.91±3.39 74.90±6.51 74.55±7.29 74.46±5.22 74.90±5.89 
Ionosphere 94.00±3.92 92.87±3.88 93.72±3.25 90.59±4.49 94.00±4.56 88.33±7.15 91.44±4.87 94.02±3.15 
Urban 88.15±3.70 88.31±3.21 88.30±2.73 88.15±3.70 87.86±3.71 67.88±4.91 87.27±3.19 88.89±3.30 
Qsar 85.69±2.78 82.94±3.41 86.45±2.60 85.97±3.20 86.35±2.32 85.59±1.52 86.08±3.53 87.30±3.30 
Svmguide3 85.44±2.01 82.40±1.73 86.29±1.63 79.98±2.85 85.12±1.90 86.06±1.73 73.75±0.33 85.74±2.54 
Semeion 92.72±2.11 90.27±1.48 93.16±1.93 92.72±2.11 92.84±1.70 65.35±3.67 74.64±3.79 93.22±1.42 
Tunadromd 98.72±0.48 98.16±0.55 98.84±0.41 98.72±0.48 97.49±0.41 97.45±0.78 98.07±0.50 98.75±0.46 
Spambase 94.50±0.84 88.79±1.41 94.72±1.00 79.68±1.68 92.70±1.16 93.46±0.90 93.02±0.97 94.50±0.84 
Quality 59.13±1.38 59.13±1.71 59.47±1.81 52.00±1.80 48.92±1.84 59.39±1.67 54.98±1.15 59.13±1.38 
Mushroom 100.00±0.00 100.00±0.00 100.00±0.00 98.04±0.58 100.00±0.00 99.62±0.22 99.89±0.10 100.00±0.00 
Htru3 97.25±0.69 97.27±0.73 97.30±0.60 93.15±1.09 96.93±0.74 97.25±0.69 96.53±0.87 97.30±0.68 
Mushroom1 99.98±0.08 100.00±0.00 100.00±0.00 98.88±0.33 99.83±0.19 100.00±0.00 98.57±0.37 100.00±0.00 
Bean 92.59±0.61 92.01±0.87 92.61±0.61 92.53±0.82 91.24±0.82 92.65±0.65 92.33±0.80 92.59±0.72 
Telesope 87.16±0.62 86.75±0.47 87.05±0.53 74.64±0.54 66.70±0.46 87.16±0.62 84.06±0.56 87.16±0.62 

Table 5
Classification Accuracy and Its Standard Deviation (%) with Support Vector Classifier.

Raw GBRS GBNRS GMDNRS FNPME-FS Ze-FS MEL GMG-GBRS 
Cancer 72.65±14.97 78.71±12.43 73.48±13.07 78.56±12.23 75.98±12.21 75.98±12.21 61.36±16.76 78.71±16.20 
Darwin 86.86±7.49 86.86±7.49 86.86±8.09 86.86±7.49 86.24±8.21 68.46±11.32 83.99±7.96 88.63±9.45 
Wine 98.33±3.75 97.78±2.87 98.33±2.68 82.12±9.27 98.33±3.75 98.33±3.75 97.78±3.88 98.33±2.68 
Sonar 84.10±10.23 81.21±10.72 84.57±11.57 79.19±9.79 79.79±11.71 66.38±11.13 76.93±12.77 86.00±9.87 
Heart1 74.85±6.29 74.55±6.94 76.89±6.30 61.91±3.39 75.25±6.81 74.55±6.94 74.52±4.37 78.87±4.36 
Ionosphere 93.15±3.62 94.58±3.92 93.72±3.52 92.87±3.38 93.72±3.25 90.30±6.90 91.45±3.56 94.58±2.51 
Urban 84.30±1.67 84.30±1.67 84.31±2.15 84.30±1.67 83.85±1.89 63.27±4.59 84.60±3.70 84.46±2.55 
Qsar 85.41±2.81 78.49±3.11 86.16±3.13 83.90±3.96 85.41±2.22 83.42±3.11 84.27±2.66 85.79±1.86 
Svmguide3 79.75±1.60 78.58±1.76 80.06±1.78 76.72±1.70 80.45±1.87 81.07±1.53 73.75±0.33 80.53±1.17 
Semeion 95.60±1.60 91.40±1.12 95.61±1.45 95.60±1.60 95.48±1.65 65.47±4.99 74.90±2.55 95.17±1.54 
Tunadromd 98.77±0.28 98.88±0.52 98.81±0.32 98.77±0.28 98.07±0.40 98.19±0.58 98.34±0.40 98.97±0.19 
Spambase 93.31±0.75 86.20±1.37 93.26±0.71 79.22±1.53 90.65±1.12 91.24±1.31 91.11±1.02 93.31±0.75 
Quality 55.06±1.35 54.84±1.01 55.06±1.35 47.49±0.88 45.24±1.27 55.10±1.32 53.23±1.66 55.06±1.35 
Mushroom 100.00±0.00 99.93±0.17 98.96±0.40 96.10±0.98 99.89±0.15 97.86±0.33 99.59±0.16 100.00±0.00 
Htru3 97.27±0.68 97.27±0.75 97.27±0.68 93.30±0.68 97.18±0.74 97.30±0.67 96.98±0.71 97.33±0.74 
Mushroom1 100.00±0.00 99.63±0.22 99.46±0.25 98.97±0.23 100.00±0.00 99.90±0.13 98.55±0.40 100.00±0.00 
Bean 92.44±0.80 92.01±0.54 92.54±0.76 92.49±0.73 90.79±0.81 92.48±0.78 92.52±0.76 92.62±0.74 
Telesope 85.98±0.61 85.02±0.60 85.69±0.62 72.88±0.63 66.49±0.37 85.98±0.61 81.69±0.84 85.98±0.61 
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Table 6
The Number of Selected Features.

Raw GBRS GBNRS GMDNRS FNPME-FS Ze-FS MEL GMG-GBRS 
- ETC GBC SVC ETC GBC SVC ETC GBC SVC ETC GBC SVC ETC GBC SVC ETC GBC SVC ETC GBC SVC 

Cancer 9 7 7 5 6 9 5 3 3 3 6 6 6 6 9 6 2 2 2 4 4 8 
Darwin 450 449 449 449 319 319 319 450 450 450 327 327 327 2 2 2 172 172 172 255 245 211 
Wine 13 8 9 9 11 10 10 2 2 2 9 9 13 13 9 13 5 5 5 12 9 12 
Sonar 60 25 23 10 57 58 54 15 15 15 33 33 33 2 2 2 3 3 3 46 32 52 
Heart1 13 8 8 4 11 10 10 3 3 3 2 2 2 4 4 4 7 7 7 5 4 4 
Ionosphere 34 15 11 15 32 13 29 11 6 6 30 31 30 4 4 4 7 7 7 26 22 26 
Urban 147 145 145 145 142 141 130 147 147 147 124 138 138 9 9 9 41 41 41 56 54 55 
Qsar 41 8 5 5 38 37 38 20 20 20 31 10 31 20 20 20 14 14 14 26 30 30 
Svmguide3 22 9 9 9 19 21 19 5 5 5 17 17 17 21 20 20 2 2 2 11 8 8 
Semeion 256 76 76 76 250 241 245 256 256 256 241 249 250 7 7 7 35 35 35 46 45 45 
Tunadromd 241 187 187 187 119 183 183 241 241 241 81 81 81 27 27 27 56 56 56 29 59 33 
Spambase 57 15 15 15 56 52 56 2 2 2 24 24 24 35 39 39 20 20 20 57 57 57 
Quality 11 10 10 10 9 9 11 4 4 4 2 2 2 10 10 10 3 3 3 11 11 11 
Mushroom 22 20 20 20 6 6 9 5 5 5 12 18 18 9 9 9 4 4 4 22 22 22 
Htru3 8 4 7 7 7 7 8 2 2 2 2 2 2 8 8 7 2 2 2 5 4 4 
Mushroom1 22 12 12 19 5 5 5 11 11 11 10 10 10 10 10 13 2 2 2 12 17 17 
Bean 16 8 8 8 13 15 13 13 13 13 8 8 8 7 7 7 5 5 5 11 11 12 
Telesope 10 8 8 9 8 8 9 3 3 2 2 2 2 10 10 10 3 3 3 10 10 10 

Table 7
Statistical Test of Feature Selection Algorithms.

Raw GBRS GBNRS GMDNRS FNPME-FS Ze-FS MEL GMG-GBRS P-Value CD 
ETC 4.00 4.94 2.72 6.19 4.42 4.78 6.56 2.39 2.12 × 10−8 2.47 
GBC 3.97 4.64 2.47 6.33 5.39 5.11 6.17 1.92 6.40 × 10−10 2.47 
SVC 3.69 4.75 3.33 6.00 5.14 5.22 6.11 1.75 5.03 × 10−8 2.47 

Fig. 6. Accuracy performance on different classifiers. 

To assess whether there is a statistical difference in classification performance, the Friedman test was conducted at a significance 
level of 𝑃 = 0.05. Table 7 presents the average rankings of the eight methods along with the results of the Friedman test. The p-

values are all significantly smaller than 0.05, indicating that there are significant differences among the eight methods for the three 
classifiers. Therefore, the Nemenyi post hoc test was performed to further investigate if there are substantial differences between any 
three methods. In the Nemenyi test, the critical distance (CD) is calculated as follows:

𝐶𝐷 = 𝑞𝛼

√
𝑘(𝑘+ 1)
6𝑁 

, (31)

where 𝑞0.05 = 3.031 when 𝑘 = 8 and 𝑁 = 18. A significant difference is considered to exist when the distance between two compared 
methods exceeds the critical distance (𝐶𝐷 ≈ 2.47).
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Table 8
Runtime (s) for Computing Uncertainty Measures in Multi-Granularity Rough Set-Based Feature Selection.

No. Dataset GMDNRS FNPME-FS GMG-GBRS 
1 Cancer 0.24 0.10 1.34 
2 Darwin 72.69 31.14 28.84 
3 Wine 4.07 1.39 4.17 
4 Sonar 18.73 5.40 13.11 
5 Heart1 6.94 3.66 8.42 
6 Ionosphere 23.99 10.75 13.87 
7 Urban 286.56 161.87 44.21 
8 Qsar 224.01 89.93 23.11 
9 Svmguide3 268.31 112.56 17.54 

No. Dataset GMDNRS FNPME-FS GMG-GBRS 
10 Semeion 3097.27 1604.07 157.99 
11 Tunadromd 23598.12 17721.29 365.88 
12 Spambase 7191.95 3068.37 108.85 
13 Quality 1095.20 549.72 54.95 
14 Mushroom 8040.25 3119.56 64.44 
15 Htru3 269.17 134.27 53.17 
16 Mushroom1 9505.26 3663.98 102.62 
17 Bean 16066.28 10010.58 534.16 
18 Telescope 6159.78 3786.78 486.99 

Fig. 7. Runtime (s) of Computing Lower Approximations. 

The results of the Nemenyi test are presented in Fig. 6a, Fig. 6b, and Fig. 6c, which show the critical distance diagrams reflecting 
the rankings of the eight methods. The methods with lower ranks perform better. As shown in these figures, GMG-GBRS ranks first 
across all metrics and is statistically superior to the other compared methods in most cases.

5.3. Efficiency of GMG-GBRS

To ensure a fair and meaningful comparison, we exclusively select baseline algorithms that are based on traditional multi-

granularity rough set (MGRS) frameworks. This is because our proposed multi-granularity granular-balls is specifically designed 
to enhance the multi-granularity rough set model, and comparing it with fundamentally different approaches would obscure the 
advantages it brings to this particular class of algorithms.

Compared to traditional MGRS methods, our proposed generalized multi-granularity granular-balls rough set (GMG-GBRS) not 
only achieves superior feature selection performance, but also demonstrates significantly improved computational efficiency. As 
shown in Table 8, the time required to compute uncertainty measures with GMG-GBRS is markedly lower than that of GMDNRS and 
FNPME-FS—two representative MGRS-based methods that do not leverage multi-granularity granular-balls. This substantial reduction 
in computation time greatly accelerates the overall feature selection process.

It is noteworthy that, in contrast to the findings presented in Table 3, Table 4, and Table 5, the maximum size of multiple granular 
space for GMDNRS and FNPME-FS in Table 8 has been set to 5000, aligning with the setting used for GMG-GBRS, rather than 100. 
This adjustment was made to facilitate the comparison of results under uniform conditions and to uphold the rigor of the derived 
conclusions.

To explain the high efficiency of GMG-GBRS, we tested it on datasets with 100, 1000, 5000, and 10,000 samples. As shown in Fig. 7, 
we measured the time required for the traditional multi-granularity rough set to compute the multi-granularity lower approximation 
across all granularities, the size of which is the cardinality of the power set of the attribute set. Additionally, we tested the time taken 
when the multiple granular space was restricted to 32.

From Fig. 7, we observe that when the multiple granular space of the traditional multi-granularity rough set is unrestricted, 
the running time grows exponentially with the number of features. However, when the multiple granular space is limited to 32, the 
running time becomes primarily dependent on the number of samples. We then used GMG-GBRS to calculate the lower approximation 
under the same conditions, with the minimum size of multiple granular space set to 32 and no restriction on the maximum size of 
multiple granular space. The results show that the running time of GMG-GBRS grows similarly to the traditional rough set when the 
multiple granular space is restricted, but since our algorithm screens the granularity during the granular-balls generation process, it 
avoids considering certain granularities when computing the lower approximation, thereby suppressing the exponential growth in 
running time as the number of features increases.
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Fig. 8. The Time Required (s) Each Step of Algorithms. 

Next, we analyzed the time required for each step of the algorithms when calculating the lower approximation with 10,000 
samples and 6 features, as shown in Fig. 8. We found that for the traditional multi-granularity rough set algorithm without limiting 
the multiple granular space, most of the time was spent calculating the lower approximation (as defined in Definition 3). This trend 
also applies when the multiple granular space is restricted. However, for GMG-GBRS, most of the computing time is spent generating 
multi-granularity granular-balls, and the time spent calculating the lower approximation is relatively small. This is because after 
generating the granular-balls, our domain size is reduced from the sample size |𝑈 | to the number of multi-granularity granular-balls |GB|, which significantly speeds up the computation of the lower approximation.

These two findings demonstrate that our algorithm effectively overcomes the limitations of traditional multi-granularity rough 
set and enables efficient feature selection based on multi-granularity rough set.

6. Summary and future research directions

In this paper, we propose a algorithm that advances granular-balls generation and enables effective multi-granularity modeling. 
Our contributions are threefold. First, we introduce a neighbor search-based granular-balls generation algorithm that incrementally 
forms granular-balls by grouping each data point with its local neighbors. This method is agnostic to data distribution and supports 
more accurate modeling of local neighborhoods. Second, we extend this approach to define and construct multi-granularity granular-

balls, which facilitate data representation across multiple granular levels. By filtering out invalid granularities during the generation 
process, our method significantly reduces granularity complexity while accelerating downstream tasks such as feature selection. Third, 
we develop a feature selection algorithm grounded in generalized multi-granularity granular-ball rough set, incorporating Zentropy 
[34,35] as a robust uncertainty measure. This framework jointly reduces the domain size and the granularity search space, thereby 
improving computational efficiency without sacrificing selection accuracy.

In the experiments presented in Section 5, our algorithm demonstrated strong performance in both feature selection effectiveness 
and computational efficiency. We attribute these results to the following key advantages and their underlying reasons:

1. By leveraging neighbor-based generation, our method constructs granular-balls even in datasets with arbitrary or irregular dis-

tributions, enabling more accurate neighborhood relations and tighter approximations. When combined with Zentropy, it allows 
for more precise uncertainty quantification across different granular levels.

2. Unlike conventional multi-granularity rough set that require exhaustive exploration of the power set of attributes, our algorithm 
selectively filters out ineffective granularities during granular-ball generation, thereby reducing the computational burden and 
improving overall efficiency.

3. In line with the original granular-balls, our method compresses the universe from the full sample space to the space of granular-

balls, significantly accelerating rough set computations across all levels of granularity.

Despite the promising performance of the proposed method, several important challenges remain to be addressed:

1. Although our approach improves the efficiency of multi-granularity granular-ball rough set, it still faces difficulties when ap-

plied to ultra-large-scale or continuously evolving (incremental) datasets. These scenarios, commonly encountered in real-world 
applications such as streaming data analysis, demand more lightweight, scalable, and adaptive solutions.
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2. The quality and speed of granular-ball generation—especially in establishing neighborhood relationships—directly influence the 
effectiveness of subsequent tasks like feature selection. Developing faster and more accurate construction strategies remains an 
open challenge, particularly for high-dimensional or noisy datasets.

3. Although Zentropy is effective for multi-granularity uncertainty estimation, further research is needed to design more expressive 
or task-specific entropy-based measures that can better capture structural information across diverse granularities.

These open issues suggest several promising directions for future research:

1. Develop incremental algorithms for both granular-ball generation and multi-granularity rough set computation, enabling real-

time adaptation to streaming or dynamically changing data without requiring full recomputation.

2. Investigate novel granular-ball generation strategies beyond neighbor-based methods. In parallel, explore advanced entropy 
models that support finer-grained and task-aware uncertainty assessment.

3. Expand the application of multi-granularity granular-balls to other machine learning problems—such as classification, clustering, 
and anomaly detection—building on their demonstrated effectiveness in feature selection to enhance both model performance 
and interpretability within granular computing frameworks.

In summary, our work bridges the methodological gap between granular-ball rough set and multi-granularity modeling by intro-

ducing a unified, efficient, and robust framework. Beyond enhancing the performance of feature selection, it lays a solid foundation 
for future research and broader applications in granular computing and data mining.
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