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classification accuracy and robustness. Traditional multi-granularity fuzzy rough set (MFRS)
models are often highly sensitive to noisy samples, which hinders the acquisition of reliable
knowledge. To address this issue, we design a heuristic feature selection algorithm within
the framework of the weighted multi-granulation neighborhood-constrained fuzzy rough set
(WMNCFRS) model. The algorithm first utilizes graph theory to evaluate inter-feature correlation
and redundancy, enabling efficient partitioning of multi-granularity spaces. It then introduces
a granularity-weighted strategy that ranks and prioritizes granularities based on approximation
precision, thereby improving approximation capability. Finally, the feature selection strategy
is formulated using the fuzzy dependency measure defined in the WMNCcFRS model, which
effectively suppresses noise interference, reduces the computational costs, and enhances the
model’s generalization ability. Extensive experiments on fifteen publicly available datasets
demonstrate that, compared to six state-of-the-art algorithms, the proposed method exhibits
superior robustness and classification performance, validating its effectiveness in practical
applications.

1. Introduction

Feature selection [1], a robust data preprocessing tool, has found extensive applications in areas like data mining and image
processing. It can extract key features from high-dimensional and redundant data, thereby enhancing the efficiency of models [2,3].

The Fuzzy Rough Set (FRS) model, recognized for its unique approach to rough approximation in managing uncertainty, has
gained significant popularity in feature selection. Tsang et al. [4] utilize discernibility matrices based on FRS for feature selection. Hu
et al. [5] use an evaluative function of separability to assess attributes and subsequently perform attribute reduction. Al-shami [6]
introduced containment neighborhood rough sets and applied them to classification tasks in medical data. In practical applications,
data commonly contain noise. The FRS model is highly sensitive to this noise due to its close dependence on the distance between
fuzzy relations and sample data. To tackle this issue, An et al. [7] developed the Relative FRS model, which utilizes relative fuzzy
membership degrees for attribute reduction. Zhang et al. [8] proposed a feature selection and image edge detection method based
on an improved overlap-function fuzzy rough set model. Furthermore, Beynon [9] devised a method for f-reduction in decision
information systems, employing f-reduction criteria within variable precision rough sets. Hu et al. [10] utilized particle swarm
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Table 1
The summary of existing methods.
Methods Categories Disadvantages
Fuzzy rough set Feature selection based on fuzzy rough sets. [4-6] The model is highly sensitive to noise.
Fuzzy rough sets that focus on sample relations. [7,8] The model lacks sufficient robustness and fails to address the

inclusiveness between information granules and concepts.

Approaches considering the relationship between information The influence of decision information on neighborhood relationships
granules and concepts. [9-11] is overlooked.

Methods adjusting the relationships between samples. [12,13]

Multi-granulation Methods assuming all granularities are equally important. The importance of granularity is different in actual scenarios.
rough set [14-17]
Weighted multi-granulation rough set [18-21] These methods are not applied to fuzzy sets and involve high

computational complexity.

Graph theory Methods using a priori information about graph structures to These methods rely heavily on prior knowledge.
construct the feature space. [23-26]

optimization to develop a granular fuzzy model, incorporating mixed granules and incomplete data. Meanwhile, Hu et al. [11]
investigated multi-view data through anchors and graph subspace clustering, employing information granules for fuzzy modeling.
The models mentioned above aim to bolster robustness by prioritizing information granules and conceptual relationships. In contrast,
some scholars have improved the robustness of fuzzy rough sets (FRS) by adjusting inter-sample relationships. For example, An et al.
[12] explored similarity measurement through probability density and introduced the concept of probability granule distance, Hu et
al. [13] quantified object similarity using the k-nearest neighbor samples of each object. However, these studies generally overlook the
influence of decision information on neighborhood construction. Therefore, this paper places particular emphasis on investigating
neighborhood structures guided by decision information, aiming to improve both the discriminative power and robustness of the
model—an aspect that remains largely underexplored in existing research.

Furthermore, models based on a single binary relation fail to meet the diversity requirements of complex decision systems. To
address this limitation, Qian et al. [14] extended the classical rough set model into a multi-granulation framework. Building on this
idea, Feng et al. [15] proposed two variable precision multi-granulation fuzzy rough set models, introducing the concepts of maximum
and minimum membership degrees. To further enhance decision modeling, Sun et al. [16] integrated the multi-granulation perspective
into the decision-theoretic rough set model and proposed a variable precision multi-granulation fuzzy decision-theoretic rough set for
handling complex decision-making tasks. Jiang et al. [17] have conducted extensive research on covering-based multi-granulation
(Z,T) fuzzy rough sets and their variable-precision variants. All of the above models assume equal importance across multiple
granularities. However, in practical scenarios, it is crucial to assign distinct weights to different granular sources. To this end, Xu [18]
introduced a series of granularity weighting strategies and constructed a generalized multi-granularity rough set model. Building upon
this work, Guo et al. [19] proposed a double-weighted generalized multi-granularity decision-theoretic rough set model tailored for
multi-source decision systems. In a related study, Ji et al. [20] investigated a multi-granularity intuitionistic fuzzy rough set model
with a specific emphasis on granularity weighting. More recently, Yu et al. [21] presented a multi-label feature selection method based
on variable-degree multi-granulation decision-theoretic rough sets, Zhang et al. [22] proposed a feature selection algorithm based on
generalized multigranulation fuzzy neighborhood rough sets, demonstrating its flexibility and effectiveness in handling uncertainty.
Nevertheless, there remains a significant gap in the integration of granularity weighting mechanisms into multi-granulation fuzzy
rough set (MFRS) models. In large-scale data environments requiring efficient processing, incorporating granularity weighting offers
a promising solution by filtering out low-importance granular sources and reducing computational complexity. Therefore, fusing
granularity weighting with MFRS not only addresses this research gap but also opens a new direction for developing robust and
scalable feature selection frameworks.

It is noteworthy that with the expansion of data sample size and the increase in feature dimensionality, the aforementioned
models and methodologies face the significant challenge of escalating computational complexity. Graphs, being a highly effective
and commonly used means for representing data relationships, are increasingly being utilized in feature selection methods owing
to their exceptional performance [23,24]. Feature selection algorithms based on graphs can be divided into two critical stages. The
first is graph construction, which focuses on generating a graph structure that accurately maps the distribution of the actual sample
space, in order to capture the complex relationships between data features. The second is the feature evaluation stage, where through
in-depth analysis performed on this structural graph, features that contain important information are retained, while those with high
redundancy are removed, thereby optimizing the feature subset [25,26].

Table 1 presents a classification and summary of existing studies based on different methods and application scenarios. A com-
prehensive analysis of prior work reveals that current feature selection approaches exhibit significant limitations when dealing with
noisy data and complex fuzzy information systems. To address the aforementioned issues, this paper proposes a heuristic feature selec-
tion method based on weighted multi-granulation neighborhood-constrained fuzzy rough sets (WMNCcFRS), from a multi-granularity
perspective and guided by the two key entry points illustrated in Fig. 1. Unlike existing methods, our approach addresses the lack
of decision-guided neighborhood construction and the assumption of equal granularity importance. It effectively reduces noise by
leveraging decision information to refine neighborhood relationships and constructs an undirected graph in the fuzzy information
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Fig. 1. The motivation framework of feature selection.

system to evaluate feature importance based on both relevance and redundancy. Furthermore, by introducing granularity weighting,
a new weighted MFRS model is developed, which significantly reduces computational complexity and improves efficiency. The main
innovations and contributions of this paper are summarized as follows:

1. By leveraging information from nearest neighbors within the same class to measure distances between different classes, the
interference of noisy samples on attribute approximation ability is mitigated.

2. A graph is constructed in the fuzzy information system based on graph theory. Features are first processed according to correlation
and non-redundancy principles, while the use of matrix power series properties significantly reduces computational complexity.

3. Incorporating the granularity weighting approach based on approximation precision, a novel WMNcFRS model is proposed, and
a heuristic feature selection algorithm is devised using weighted optimistic multi-granularity fuzzy dependency.

The framework of the paper is outlined as follows. Section 2 presents a comprehensive overview of several related concepts,
including neighborhood-constrained fuzzy rough sets, graph theory, and classical multi-granularity rough sets. In Section 3, a graph
within the fuzzy information system is constructed, introducing a weighted multi-granularity neighborhood-constrained fuzzy rough
set model and devising a corresponding feature extraction algorithm. Section 5 validates the effectiveness and efficiency of the
proposed approach through experimentation on UCI datasets. The paper concludes by summarizing the findings and outlining future
research directions in Section 6.

2. Preliminaries

In this section, we systematically introduce concepts related to neighborhood-constrained fuzzy rough sets, graph theory, and
multi-granularity rough sets.

2.1. Neighborhood-constrained fuzzy rough set

Neighborhood-constrained fuzzy rough sets are capable of capturing local similarities among samples and effectively identifying
decision regions with ambiguous boundaries and complex distributions, especially in scenarios involving uncertainty or fuzziness.

Let FIS =(0,BUd,G) denote a fuzzy information system, where O = {0},0,,::,0,,} is the set of objects, B = {b,b,,--,b,}
is the set of conditional attributes, and d is the decision attribute. Each g(o,a) denotes the value of attribute a for object o, and the
collection of all such values is represented as G = {g(0,a)lo€ O,a€e BUd}

Based on the given fuzzy information system, where Vx,y € O, b € B, and « represents a positive number, the k-nearest neighbor
distance between x and y within b can be expressed as

1 1
d,(x,y)= )= >0 @
e |]N;c(x)| x,.e%‘:(x)g(x : |]NK(Y)| y,.e%:(y)g(y )

where IN_(x) represents the k nearest samples including x, and these k samples belong to the same class as x, that is g(x,d) = g(y,d).
Let IN(x) represent all samples of the same class as object x, and |IN(x)| is the number of samples in that class. If |IN(x)| < k, then
IN,.(x) = IN(x). Otherwise, the nearest x neighbors of x within the same class will be chosen based on their order of occurrence.

Given F1S5 =(0,Bud,G), Vx,y € O, and b € B, the neighborhood-constrained fuzzy similarity relation between x and y with
respect to attribute b is defined as

RE(x.y)=1-d,(x.y) @

The neighborhood-constrained fuzzy similarity matrix of a over O is derived according to Eq. (2). Thus, for A C B, the
neighborhood-constrained fuzzy similarity matrix is designated as R"A(x, y) =minye 4 R’; (x,¥).

For A C B, with R 4 represents the fuzzy similarity relation on A, the fuzzy lower and upper approximations of .# € F(0), with
F(O) signifies the set of all fuzzy sets on O, are defined as
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B F)(x) =inf max(1 — RY (x,), Z (),
—_— yeO

— 3)
R5(F)(x) = sup min(RY (x,), F (¥)).
ye0O
Additionally, for U C O, express Eq. (3) in simplified form as
BT = inf (1= RE(x, ).
— e @

B(FNX) = sup(RE (x. ).

2.2. Graph theory

In [27], the attribute set B = {bl,bz, O b,,} can be depicted using weighted undirected fully connected graphs G = (V, E) with
an equal number of nodes, where the relationships between attributes are characterized by the edges in the graph. Graph G is
represented by its adjacency matrix M, where M (i, ), 1 <i,j < n, denotes the relationship between features b; and b 5 (the node 0;
and ¥;), encapsulating the information among nodes. Each element M (i, ) can be described using a weight function defined as a
weighted linear combination of two statistical measures, specified as follows:

ll/(ﬁp U_;) = aHij +(1— Q)Q,‘j
where a € [0,1] is the load indicator, its value is estimated through ten-fold cross-validation in classification tasks. H; j reflects
the correlation information between the two samples, with higher values being better. Conversely, the term Q;; =1 — |£(b;,b;)] is
used to control non-redundancy and is opposite to the first term, where ¢ denotes the spearman correlation coefficient, defined as
follows:

_ 6 X7
m(m2 —1)

m denotes the number of samples, while r indicates the difference in ranks among two objects. It can be seen that &£ € [-1, 1], with
values closer to the extremes indicating stronger correlation.

=1

2.3. Weighted multi-granulation rough sets

Let FIS =(0,BUd,G) denote a fuzzy information system, A; C B, i =1,2, -+, k(k < 21Bly represent a granularity composed of
some attributes, for Vo € O, X C O, the support feature function expressed as

A\ 1, RA[(U)QX,
Py'(0)= { 0, others,
where the feature support function illustrates the inclusion relationship between the equivalence class R A (o) and X, that is, it
determines whether the sample o belongs to the equivalence class defined by granularity .A; within the set X.
Given FIS =(0,Bud,G), P)’?i(o) as the support feature function, for A, C B, i = 1,2, -, k(k < 2!Bl), the weighted optimistic
multi-granulation rough set lower and upper approximations of any X C O on A;, respectively, are defined as

w,.P;"(o)>0},

i=1 Ai :

k
i=

OM?, (X)= {x =X
— ! (5)

OMZf.‘:]A,-(X): {XEO

likewise, the weighted pessimistic multi-granulation rough set lower and upper approximations of any X € O on A; C B(i =
1,2, -,k <21Bly, respectively, are defined as

@ P02 1 } ,

k
i=

(1 =P (o) 21 }

1

k
PMY,  (X)= {xEO
i=1 7" —

1

k
> @1 =P o) > 0} ,

1

6

k
Yici A

PM® (X)={x€0
i=1

where w; stands for the weight of granularity A;, with 21"(:0 w; =1.

i=0 Vi i=0 Vi ,':()-Ax i=0 i

Only when PM? 4 (X)#PM?, 4 (X), the set X is both pessimistic and rough. This pair { PMZ (X),PMZ, 4 X ))

is referred to as the weighted pessimistic multi-granulation rough set model. The scenario is equally applicable in optimistic contexts.
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Fig. 2. The architecture of feature selection. Features are ranked using graph theory, divided into multi-granularity spaces, and selected based on granularity weights
to construct the final subset.

It is worth noting that in the optimistic multi-granulation model, an object is considered to belong to the target concept if it is
supported by at least one granularity. In contrast, the pessimistic model requires all granularities to support the membership decision.

Furthermore, this paper provides a concise overview of an approximate precision-based approach for granularity weighting. Other
notable methods include approximate quality weighting and granularity entropy weighting, detailed further in reference [18].

Given FIS =(0,BUd,G), A;CB,i=12,- k(k< 21Bly, 0/d = {dl,dz, ,ds}, the approximate accuracy associated with
granularity A, is designated as

2;=1 7,(d j)
TiToh N g @

RS =1 %))

IR A,( d;)|

IR, (@)
lower and upper approximations of the classical Pawlak rough set on d;. It is stipulated that when 2:;1 2;=1 7,(d;) =0, then w; = 0.

where 7,(d;) = signifies the approximate precision weight of .A; on d;, while R 4 (d;) and R_A,-(d ;) respectively denote the

3. Our approach

The proposed feature selection method consists of three main steps, as illustrated in Fig. 2. First, a graph is constructed based on the
fuzzy information system, and graph-theoretic principles are applied to determine the granularity levels. Second, the granularities are
reordered according to their computed weights. Finally, a certain proportion of features is selected based on the granularity ranking,
and further refinement is performed to obtain the final feature subset.

3.1. Graph building and feature prioritizing for F1.S

To build the graph, it’s crucial to first establish the correlation and non-redundancy indices. Therefore, we initially define the
dominance set based on neighborhood constraints to derive the ranking cardinality of attributes.

Definition 1. Given a FI.S =(0, Bu d, G), for Yo;,0 , €0 and A C B, the dominance relation based on neighborhood constraints is
designated as

Z 8(0;,

0;€IN,.(0;)

PINE

OG]N (0)

D%, =1(0,0)€0%0 | —— T (O)I £(0,,b) ¢, ®

b2 ——
1 <))

where IN, (0;) denotes the set of k nearest neighbors of object o; (including itself), and |IN,.(0;)| indicates the number of elements in
this set. The same interpretation applies to object o;.

Then, the neighborhood-constrained dominating and dominated sets of 0; € O on A are designated as
D* (o) = {o,— € 0lo,D%0, } ,
D)= {oj € 0lo; D%, } .

through the defined neighborhood constraints of dominating and dominated sets, we can ascertain the ranking of sample o; within
feature b;. Consequently, the Spearman rank correlation coefficient can be calculated as follows:
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Table 2
A fuzzy information system.

o b by b, by bs b d
o, 026 028 063 029 037 060 1
0, 041 042 089 028 055 040 1
o 023 024 088 042 046 030 1
o, 018 018 033 046 009 022 1
o5 045 042 072 030 018 045 1
os 045 043 084 043 018 046 2
o, 027 029 058 058 091 080 2
os 033 033 092 080 073 040 2
0, 014 015 047 059 046 009 2
oo 024 032 061 062 033 041 2

)2

Dy )

6 XLy (|Pg 00 -
- m(m? — 1)

For FIS =(0, BUd,G), the conditional attribute set B = {b,,b,, -, b, } is depicted as nodes V' = {0}, 0, -+, 0, } in a graph. The
edges that connect these nodes represent relationships between attributes, thereby forming the adjacency matrix M of the graph G.
Each element M (i, j) in the matrix is defined using a weight function as follows:

":i,j =1

M(isj)=W(’5;=17j)=aHij+(1_a)Qij' ©

H,;; denotes the larger value of the max-min normalized standard deviations of the two objects distributions, i.e., H;; = max(s;, s;),
where s; refers to the standard deviation of objects with respect to attribute b;. Q;; =1 — |§bi,b,| is a non-redundant metric that is
inversely related to the correlation coefficient.

After constructing the adjacency matrix using the weight function, we employ the Matrix Power Series (MPS) method for path
selection to obtain an initial ranking of feature scores. Specifically, the implementation begins as follows. Given the identity matrix
£ and the eigenvalues {4, 4,,:+, 4, } of matrix M, the parameter »x = 0.9/0(M) serves as a real-valued regularization factor, where
o(M) = max; gy, ;,..4,)(I4;]) represents the spectral radius. Consequently, the partial score matrix for the attribute set can be
calculated as

d=E-xM)-¢,

next, with a unit column vector I where all components are 1, the final score for each feature can be derived by marginalizing the
resulting partial score matrix

$G) =[I;.

Next, a straightforward example will be presented to demonstrate the graph-based feature scoring calculation described above.

Example 1. Table 2 illustrates a FI.S = (0, BUd,G), where O = {01,02, ,010} represents the set of objects, B = {bl,b2, ,bé}
denotes the set of conditional attributes, and d is the decision attribute with O/d = {d,, d,}. Assuming the neighborhood constraint
radius x = 3, then we have
s(by) =0.0121, s(b,) =0.0097, s(b3) =0.0392, s5(by) =0.0288, s(bs) = 0.0656, s(bs) = 0.0381,
Hy =Hy =0.0421, Hi3 = Hy =0.5264, H 4, = Hy; =0.3407, H,5 = H5, = 1.0000,
H\g =Hg; =0.5077, Hy3 = Hiyp = 0.5264, Hy, = Hyy =0.3407, H,5 = Hs, = 1.0000,
Hye = Hgy =0.5077, Hay = Hyy = 0.5264, Hi5 = Hsz = 1.0000, Hzq = Hgsy = 0.5264,
Hys = Hsy = 1.0000, Hyq = Hey = 0.5077, Hsq = Hgs = 1.0000.
According to Definition 3, the Spearman correlation matrix & is given by
1.0000  0.9273 0.6000 -0.3576 0.0303 0.6121
09273  1.0000 0.6485 —0.2485 -0.0061 0.5152
0.6000  0.6485 1.0000 —0.2364 0.3818  0.0909
—-0.3576 —-0.2485 -0.2364 1.0000 0.1515 -0.2727 |
0.0303 -0.0061 0.3818 0.1515 1.0000  0.1030
0.6121 05152  0.0909 -0.2727 0.1030  1.0000
0.0295 0.0513 0.4885 0.4312 0.9909 0.4717
0.0513 0.0000 0.4739 0.4639 0.9982 0.5008
0.4885 0.4739 0.3685 0.5976 0.8855 0.6412
0.4312 0.4639 0.5976 0.2385 0.9545 0.5736 |
0.9909 0.9982 0.8855 0.9545 0.7000 0.9691
0.4717 0.5008 0.6412 0.5736 0.9691 0.3554
Subsequently, we can calculate the eigenvalues of M and the final feature scores as follows

When a = 0.7, the adjacency matrix M is
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{ A1, Ay, A3, A4, A5, Ag} = {3.6730,—-1.0742, -0.0330, -0.3670, —0.2332, -0.2738};
x=0.9/0(M)=0.24502961;

0.8151 0.8301 1.1194 1.0704 1.6994 1.1409
0.8301 0.8276 1.1277 1.0890 1.7179 1.1594
1.1194 1.1277 1.3547 1.3599 2.0766 1.4481
1.0704 1.0890 1.3599 1.2333 2.0188 1.3849 |
1.6994 1.7179 2.0766 2.0188 2.9390 2.1388
1.1409 1.1594 1.4481 1.3849 2.1388 1.4144
@(i) = [®I1;, = (6.6753,6.7517,8.4864,8.1563, 12.5904, 8.6864).

Consequently, the resulting final feature score sequence is bs, bg, b3, b4, 0,,0;.

O=(E-xM)y-€=

3.2. Weighted multi-granulation neighborhood-constrained fuzzy rough sets based on graph partition

In fuzzy information systems, feature scores are first obtained through graph-based construction. These scores are then sorted in
descending order to generate a score sequence. Subsequently, the granularity space is partitioned. Unlike previous methods that adopt
a fixed granularity scheme, the proposed approach introduces a tunable parameter t to flexibly control the granularity level. Based
on this flexible partitioning, a weighted multi-granularity rough set model is further constructed to enhance the feature evaluation
process.

Definition 2. Let FIS = (0,BuUd,G) denote a fuzzy information system, A; C B, i = 1,2, ,k(k < 21Bl), where w,; represents
the approximation precision weight under .A;, the weighted optimistic multi-granulation neighborhood-constrained fuzzy lower and
upper approximations are designated as

k
OMF® . A(y)(x) = \/ w,%ft,(y)(X),
= =

k

OMFy, (P = \w (P,

1o

i=1

where “\/” and “/\” signify the disjunction and conjunction operators, respectively, while 2% (F)(x) and Z% (F)(x) denote the

neighborhood constraint fuzzy lower and upper approximations on .A;. Therefore, the pair OMF“Z’ - (F)(x), OMF“Z’ - (Z )(x)>

i=1 7" i=1 7"

is referred to as the weighted optimistic multi-granular neighborhood-constrained fuzzy rough set (WOMNCFRS).

Property 1. Given a FI1S =(0,Bud,G), A;C B, i=1,2,---,k <2!Bl. For any %, ¥ € F(O), then

g . 1] @ AN
L UCY SOMFY,  (COMFY, (V)

i=1"" i=1""

g P 2] g @ P
2. % C V:OMFZ’F A'(ZZ)QOMFZ’F 4 ).

=1 =17

Proof. 1. Let %, €F(O)such that % C and x € 0. Then OMF?,  (%)(x)= Vi, @, A (U)(x) = Viei Ayeo @imax(l -

i=1 " _

RE, Gy, % () < Vf-;l Nyeo wimax(1 - R (x3), V() = OMP%L " (7)(x).

2. The proof is analogous to that of 1).

Suppose O/d = {dl ,dy, e, ds}, for A;,CB,i=1,2,-,k(k< 21Bly, then the weighted optimistic positive region and fuzzy depen-
dency degree for d concerning A; are designated as

N
POSG (d) = U OMP“Z’ A
i=1 =17
O,k
1POSS* ()]
|O|

a1

o d)=

Definition 3. Let FIS = (0, BU d, G) denote a fuzzy information system, A; C B, i =1,2, - k(k < 2181y, where w; represents the
approximation precision weight under .A;, the weighted pessimistic multi-granulation neighborhood-constrained fuzzy lower and
upper approximations are designated as
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k

PMF?, 4P = N @ (P,
=l =l =

12

k
PMF?, (F)x) =\ @75 (F)x),
Zizi A i=1 '

the pair (PMP“’k 4 (F)x), PMF?, 4 (F )(x)) is referred to as the weighted pessimistic multi-granulation neighborhood-
i=17" i=1 7"

constrained fuzzy rough set (WPMNCcFRS).

Suppose O/d = {dl,dz, ,ds}, for A; C B, i=1,2,--,k(k <2!Bl), then the weighted pessimistic positive region and fuzzy de-
pendency degree for d concerning A; are designated as

s
POS" (d) = PMF?, L @),
=1 &=l (13)
P,k
P |POS" ()
A 10|

Property 2. Let FIS =(0O, BUd,G) denote a fuzzy information system, A, C A, C B, O/d = {d,,dz, ,ds}. Therefore, the fol-
lowing property holds:
O,k O,k O8NS .
L TN (@) <TG (@) <TG @)

2. I < T8 (d) < T ().

Proof. 1. Following the extension of Eq. (2), for any x,y € O, R’(Al (x,y) = R"Al X, ) A Rf&tz— 4 (x,y) < R"Al (x,y). Consequently,
A% (d;) € A% (d)), which implies POST"(d) € POST¥(d) and T'G*(d) < TG¥(d). Likewise, it can be demonstrated that

Fes @ <T@
2. Similarly, it can employ the approach described in (1) for proof.

Example 2. Continuing with Example 1, we have obtained the feature score ranking as bs, bg, b3, by, b,,b;. With the granularity
parameter t =2, three granularities are partitioned, denoted as A; = {bs,bg}, A, = {b3,b4} and A3 = {b,,b;}.

The subsequent calculations are based on WOMNCFRS. Firstly, using Eq. (7), we can compute the approximation precision weight
for each granularity as w; =0.124, w, =0.210, w3 =0.039;

As observed, the ranking sequence based on graph theory can shift after partitioning granularity and reordering according to
granularity weights. This indicates that features with higher rankings might also include some redundant attributes, causing a decrease
in their respective granularity weights. As a result, the new granularity partitions are .A; = {b3,b,}, A, = {bs,bs} and A3 = {b,,b;}.

Next, using the updated granularities, we can calculate the lower approximations of each granularity concerning the decision as
follows

OMF?,

z

i=1

(d))=1073, (‘)MF“}E .

i=1

(dy) = 1.027, OMF“Z’ .

(d) = 0493, OMF?,  (dy)=0.747,
Ay z

Ay Ay Ay

OMF? d,)=0.107, OMF®
4, w

i=1 i=1

d,)=0.283.
i=1 i=1 A3( 2)

3.3. Significance based on WOMNCcFRS

To make effective decisions across various dimensions, [28] adopted a conservative approach. Building on this, we will delve
deeper into the WOMNCFRS model, focusing on extracting rules based on weighted optimistic multi-granulation fuzzy dependency
degrees (WOMFD), as well as inner and outer importance.

Definition 4. Given a F1S =(0,BuUd,G), for AC B and b € 4, if l"i‘fb(d) = Fi’”(d), then b is called a redundant attribute of A
with respect to d, conversely, b is considered a necessary attribute of A concerning d. With respect to d, we can thus obtain the
reduction of B satisfying:

1. T9%(d) =T (d)
O,k O,k
2. Vb e A, TG (d) <T5"(d)

Definition 4 guarantees that in the process of reducing a feature set, the resulting subset maintains equivalent discriminatory
capabilities to the original set while encompassing all essential attributes.
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Next, the internal and external significance of attribute .A C B concerning d is designated as
_ 10Ok O,k
(0, B,d)=T," (d) —T' ;" (d),

O, O,
S0, A,d) =T (d) = TE (d).

When the value of .7},,(b, B, d) is higher, it demonstrates that attribute b is more crucial relative to B. On the other hand, a higher
Z,.(6, A, d) value signifies the importance of attribute b to A.

The above significance measures are used as evaluation criteria to guide the feature selection process. In the implementation,
both internal and external significance are considered, and the feature with the highest combined significance is selected and added
to the current feature subset. This process continues iteratively until no further feature yields a significant improvement, resulting
in the final optimal feature subset. This approach effectively ensures that the selected features maintain strong dependency with the
decision attributes while minimizing redundancy.

4. WOMEFD-based feature selection algorithm

In this section, we provide a comprehensive description of the feature selection algorithm based on WOMFD. To enhance feature
selection efficiency, we employ a heuristic search strategy. Initially, we select the attribute b, that satisfies argmax,c.7;,(b, B,d) as
the initial set, and then proceed to select other important features based on the highest .#,,, value principle, where 9 is set to 0.0.
The detailed selection process is presented in Algorithm 1. Furthermore, the complexity of the algorithm is examined.

Firstly, regarding the construction of the FZ.S graph and the calculation of feature scores, the time complexity for steps 1 through
10 is O(n® - m), where m denotes the number of objects and n represents the number of features. Step 11, which computes the
eigenvalues and the real-valued factors of the adjacency matrix, has a time complexity of O(n?). Then, step 12 involves calculating
the partial score matrix, which requires the computation of the inverse matrix, resulting in a time complexity of O(n?). Lastly, step
13, where the final scores are computed, has a time complexity of O(n?).

In terms of the further heuristic feature selection process, step 15, encompassing sorting and granularity partitioning, carries a
time complexity of O(n - logn). Step 16, calculating weights, exhibits a time complexity of O(n). Additionally, both step 17 and step 18
possess a time complexity of O(n - m). The complexity of step 19, which involves selecting the initial set b, is O(n). The while loop,
when executed in its worst-case scenario, iterates n times, thereby contributing to the overall time complexity of steps 21 through 32
amounts to O(n® - m). As a result, the overall complexity of the algorithm is O(#> + n? - m). From this, it can be seen that even with a
large data sample, our algorithm significantly improves the reduction efficiency and greatly reduces the time consumption.

5. Experiment

In this section, we assess the efficiency and effectiveness of the feature selection algorithm based on W OM F D proposed in this
paper through validation on fifteen datasets sourced from the UCI database and Kaggle. Table 4 illustrates the detailed information
of the selected datasets. All experiments were performed using the hardware and software configuration outlined in Table 3. We
compared the classification accuracy of our two algorithms with six other algorithms, including Hybrid Kernel-based Fuzzy Comple-
mentary Entropy Algorithm (HKCMI) [29], Granular-Rectangular Neighborhood Feature Selection Method (GRRS) [30], Matrix-based
incremental feature selection method (W-MGMN) [31], Graph-based Local Search Feature Selection (GLSFS) [32], Back Propagation
Neural Network (BPNN), and Graph Theory-based Interval Value Feature Selection Method (IGUFS) [27], on four classifiers, namely
K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Naive Bayes (NB), and Random Forest (RF), in terms of their classifi-
cation accuracy.

5.1. Experimental design

At first, the reduction times of the two proposed algorithms relative to a faster algorithm, among others are presented, along with
a comparison of the optimal subset sizes achieved by these algorithms across various datasets. Secondly, the classification accuracy
of our two algorithms was compared with six contrasting algorithms and the original dataset. Finally, two hypothesis tests were
devised to further substantiate the distinctions between WOMFD and the comparative algorithms. Three parameters, a, k, and t,
are considered in the design of WOMFD. Parameter « is used to govern a balance between correlation and non-redundancy, while
parameter k determines the radius of neighborhood constraints, and the level of granularity is regulated by parameter t. According to
the definition, changes in different parameters will inevitably have varying effects on classification accuracy. Therefore, for parameter
a, we define its range from O to 1 with a step size of 0.1. Similarly, parameter x spans from 1 to 9 with increments of 2. Regarding
parameter t, depending on the number of features in the dataset, for datasets with more features, it can be set to 3, 6, and 9, and
for datasets with fewer features, it can be set to 1, 2, and 3. Furthermore, for more flexible feature extraction, predefined granularity
ratios of 65% and 85% are designated for the WOMFD algorithm selection. Moreover, the reason for not choosing a larger proportion
is that our method involves directly selecting and discarding granularities. Choosing a larger proportion of granularities may result
in too many redundant features, greatly increasing the time cost for subsequent feature selection. Similarly, not choosing a smaller
proportion is due to the uncertainty of the features contained within each granularity. With fewer features, a smaller proportion
might result in the loss of essential features. Ultimately, the optimal parameters are determined based on ten-fold cross-validation
performed on the training dataset.
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Algorithm 1 Feature Selection Algorithm Based on WOMFD.

Input: IS =(0,BUd,G), a, x, t, where O={0,,05,+,0,,}, B={b,,b,,,

Output: The optimal reduced set C.

1:

23:

30:
31:
32:
33:

fori=1-ndo

for j=1-ndo
for k=1-mdo
Compute D;’ (0,) and D;/ (04);
end for
Compute H;; < max(s(b;),s(b,));
Compute Q;; < |1 —&(b,.b,)];
M@, j) < aH; +(1 - a)Q;;;
end for
: end for
:x=09/0(M).
s d=(E-xM) -¢£.

: (i) = [DI;.

: Initialize C « @.

: Partitioning granularity .A; based on t after sorting.

: Compute the approximation precision weight w, for each granularity A,.
: Compute the I‘g“ (d) of feature set B.

: Compute the Fgfh(d) for b € B.

: Choose attribute b, = argmBax Z,(b, B, d).

: C < by. °

: while rag =1 do

for each b € B—-C do
Compute l"‘(?j'h (d) and .#,,,(b, B,d);
end for
Choose b, = argmax .#,,,(b, B,d);
beB-C
if #,,(b,, B,d)>9 then
C—Cufo,);
tag=1;
else
tag =0;
end if
end while
return C.

b, }, 0/d ={d,dy,

.d,}, a€[0,1], k> 0.

Table 3

Configuration of experimental environment.

Name Model Parameter
System Window 10 64 bit
CPU Intel(R) Core(TM) i5-8250U 1.60 GHz
Platform  Python 3.10
Memory DDR4 8.00 GB

Table 4
The exhibition of datasets details.

No. Data sets Abbreviation Instances Features Class
1 Immunotherapy Immu 90 8 2
2 Concrete Compressive Strength CCS 1030 9 14
3 Abalone Aba 4177 9 3
4 Breast cancer Breast 699 10 2
5 Shill Bidding Bid 6321 11 2
6 Dry Bean DB 13611 16 7
7 Cardiotocography Card 2126 20 3
8 Wisconsin diagnostic breast cancer =~ Wdbc 569 31 2
9 Ionosphere Tono 351 34 2
10 Ultrasonic flowmeter diagnostics UFD 181 43 4
11 Turkish Music Emotion TME 400 50 4
12 Connectionist Bench Sonar 208 60 2
13 Gait Classification Gait 48 321 16
14 DARWIN DARW 174 451 2
15 Period Changer PC 90 1177 2

10
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Fig. 3. The comparison of reduction time for WOMFD and IGUFS.

Table 5
The count of selected features by various algorithms.

Datasets RAW HKCMI GRRS W-MGMN GLSFS BPNN IGUFS WOMFD(65%) WOMFD(85%)

Immu 7 2.6 3 5 4 3 3 3 4
UFD 43 2 2 3 27 19 19 6 10
Sonar 60 1 2 13 39 27 21 40 49
Iono 34 4 5 12 22 15 14 17 27
TME 50 1.4 2 17 32 23 22 24 39
Wdbc 31 2 - 16 20 20 13 20 26
Breast 10 3 - 8 6 5 4 3 5
CCS 8 2 7 5 5 4 3 2 3
Card 20 2 6 9 13 9 9 5 5
Average 29.2 2.2 1 23.2 12 13.9 12 13.3 18.7
Aba 8 2 3 8 5 4 3 3 6
Bid 11 2 - 5 7 4 4 3 4
Gait 321 1 1 16 208 232 144 79 110
DARW 451 - - 18 293 380 202 290 383
PC 1177 - 1 25 765 792 529 764 998
DB 16 - 2 7 10 13 7 8 13

5.2. Experimental analysis

If an algorithm takes more than 24 hours to process a dataset, the experiment will be terminated due to excessive time consumption.
If a comparison algorithm fails to handle the dataset, the experiment will also be stopped. The time consumption of our algorithm
WOMEFD across 12 low-dimensional datasets is depicted in Fig. 3. The reduction time of the algorithm is taken as the maximum
runtime among all parameters in this paper. For the dataset DB with the largest sample size of 13611 and 16 attributes, WOMFD
incurs a time consumption of 1308.01 seconds at a granularity ratio of 85%, equivalent to approximately 22 minutes. And for the
high-dimensional dataset, PC with 1177 features, it has an approximate simplification time of 25106.65 seconds, which is about seven
hours. Nevertheless, there are still three comparison algorithms on this dataset that exceed a runtime of 24 hours. Except for the
longer time consumption on datasets WDBC and DB compared to the IGUFS algorithm, our algorithm performs two to four times
faster than IGUFS in all other cases. The extended time on these two datasets is due to significant time spent in preprocessing and
clustering during the initial stages, thereby increasing the overall time cost.

Table 5 presents the number of features selected by our proposed algorithm and the comparison algorithms across 15 datasets,
illustrating the varying effectiveness of feature reduction. Compared with other methods, IGUFS and GLSFS offer greater flexibility
in controlling the proportion of selected features, enabling customization based on specific needs. However, our algorithm, WOMFD,
introduces a novel perspective by incorporating multigranulation, allowing flexible granularity proportions to be selected according
to practical requirements. This makes WOMFD more adaptable to real-world applications. For instance, in datasets with a large
number of attributes (e.g., Sonar and TME), reducing the selection ratio proportionally can be beneficial. Conversely, datasets with
fewer attributes may benefit from increasing the selection ratio appropriately.

11
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Table 6
The classification of various algorithms based on KNN (%).

Datasets RAW HKCMI GRRS W-MGMN GLSFS BPNN IGUFS WOMFD(65%)  WOMFD(85%)
Immu 76.67+11.6 77.78+7.03 78.75+£1.57  70.97+1.48 76.67+1.59 72.22+7.03 75.56+10.30  86.67+1.19 84.44+2.02
UFD 78.45+9.44 46.67+£13.43  72.22+0.86  91.67+0.26  79.04+0.46 71.67+5.67 90.00+4.16 81.17+0.52 82.37+0.27
Sonar 84.19+7.65 56.86+17.33  63.29+0.64  77.83+0.31 82.31+0.81 80.77+4.28 83.18+4.25 88.02+0.33 87.57+0.41
Iono 85.17+4.60 78.03+8.20 84.57+0.25  86.29+0.36 86.31+0.24 87.74+4.12 91.16+2.93 87.74+0.44 85.44+0.43
TME 63.75+8.08 30.25+3.39 37.11+£0.69  55.41+0.83 58.00+0.41 46.75+2.81 62.50+2.96 69.50+0.61 70.00+0.91
Wdbc 97.01+1.58 90.70+3.67 - 93.50+0.14 96.14+0.08 94.73+2.48 95.08+3.02 96.13+0.03 97.37+0.03
Breast 96.64+2.26 94.58+2.18 - 62.44+0.35 95.32+0.05 95.47+2.10 94.74+2.91 96.19+0.02 96.78+0.03
CCS 35.73+3.06 41.26+5.48 24.10+0.18  41.79+0.27 38.25+0.12 36.50+3.79 23.59+4.12 37.96+0.20 45.15+0.16
Card 80.99+2.51 48.82+1.95 84.75+0.04  73.88+0.02 75.25+£0.10 86.31+2.97 80.71+2.03 87.58+0.05 85.56+0.06
Aba 52.98+2.23 46.23+1.28 47.70£0.11  52.95+ 0.07  52.81+0.04 49.37+1.11 50.42+1.72 50.47+0.05 51.74+0.05
Bid 98.48+0.42 89.32+0.93 - 97.85+0.00 87.38+0.01 89.86+0.73 98.83+0.21 98.01+0.00 98.88:+0.00
Gait 43.50+4.20 6.50+1.80 13.00+1.96  29.50+2.82 43.50+5.00 41.50+4.70 40.00+3.80 74.50+5.92 70.50+6.92
DARW 72.32+9.21 - - 68.07+1.49 71.73+1.28 71.21+8.54 71.24+6.32 75.23+0.84 74.05+0.87
PC 63.33+12.22 - 59.58+0.75  52.78+2.18 63.33 +1.49 58.89+199 63.33+0.75 67.78+1.10 67.78+1.59
DB 91.56+0.67 - 57.26+0.01  69.60+0.01 76.22+0.01 91.62+0.56 88.26+0.81 92.15+0.00 91.97+0.00

Average  77.62+5.64 62.77+6.96 56.58+0.64  68.30+0.71 72.15+0.78 74.68+3.92 77.39+4.08 81.22+0.38 81.63+0.48

Table 7
The classification of various algorithms based on SVM (%).

Datasets ~ RAW HKCMI GRRS W-MGMN GLSFS BPNN IGUFS WOMFD(65%)  WOMFD(85%)
Immu 77.78+16.48 78.89+8.89  78.75+1.57  78.75+1.57  78.89+2.58 78.89+8.89 80.00+9.03 84.44+1.04 81.11+2.48
UFD 47.54+11.53 58.89+6.43  40.00+0.42  41.11+0.44  46.43+1.63 21.22+4.51 65.56+4.84  53.65+1.72 51.43+1.65
Sonar 84.19+5.25 71.21+£8.37  66.31+1.28  78.33+0.59  78.90+0.46 82.22+2.83 81.78+6.09 84.62+0.46 86.10+0.76
Tono 93.71+3.79 85.74+7.74  87.43+0.26  93.43+0.07  93.44+0.13 91.16+2.93 93.44+3.34 94.87+0.08 94.86+0.13
TME 78.00+3.67 30.00+6.52  39.63+0.48  54.37+0.36  73.75+0.27 52.00+2.57 70.75+1.27 79.00+0.22 81.75+0.44
Wdbce 97.89+2.05 91.92+2.62 - 91.55+0.05  96.84+0.04 95.44+2.38 97.19+1.40 96.48+0.03 97.54+0.03
Breast 96.19+1.88 93.85+1.12 - 64.95+0.21 95.76+0.04 95.77+2.93 94.88+2.44 96.35+0.09 97.22+0.02
CCs 41.26+3.29 44.47+4.61 41.21+0.31 41.21+0.31 41.26+0.11 41.26+3.29 41.26+3.29 45.24+0.16 46.31+0.19
Card 86.36+2.29 53.43+2.30  80.24+0.06  59.90+0.08  74.36+0.10 89.04+1.25  81.84+2.28 90.26+0.04 89.04+0.03
Aba 55.18+2.25 54.32+2.15  51.29+0.01 53.57+0.03  55.42+0.07 51.33+1.50 54.66+2.12 54.68+0.06 55.52+0.07
Bid 98.05+0.55 89.32+0.93 - 98.20+0.00  89.32+0.02 90.21+0.33 98.77+0.43 98.20+0.00 98.91+0.00
Gait 24.50+3.02 0.00+0.00 0.00 + 0.00  0.00+0.00 20.50+1.62 18.50+1.20 10.50+1.12 54.50+4.42 48.00+3.16
DARW 93.73+5.91 - - 71.60+£0.85  87.94+0.57 93.17+6.08 96.05+5.02 97.12+0.08 94.25+0.34
PC 71.11+13.33 - 69.58+1.54  69.58+1.54  71.11+1.78 71.11+9.16 71.11x1.78 71.11+1.78 71.11+1.78
DB 91.39+0.57 - 63.49+0.01 70.02+0.02  63.27+0.01 91.43+0.55 89.55+1.05 92.32+0.00 92.47+0.00
Average 78.10+5.58 67.60+5.40  56.18+0.54  64.44+0.41 69.95+0.63 71.89+3.51 78.52+3.78 80.55+0.43 80.60+0.64

The classification accuracy of the original data and nine algorithms—including our two proposed methods—under KNN, SVM,
NB, and RF classifiers are shown in Tables 6, 7, 8, and 9, respectively. In each table, the algorithm achieving the highest accu-
racy for each dataset is highlighted in bold. Analysis of these tables shows that our proposed method consistently delivers superior
performance in most cases. Under the KNN classifier, WOMFD(85%) fails to achieve the highest accuracy only on the UFD, Iono,
Card, and Aba datasets. Although WOMFD(65%) outperforms other algorithms on only 8 datasets, its average classification accu-
racy still exceeds the best average accuracy of other methods by 3.82%. For SVM, both variants of WOMFD continue to outperform
competitors on most datasets, with WOMFD(85%) maintaining the highest accuracy across three large-scale datasets. In the case of
the NB classifier, WOMFD(85%) achieves top accuracy on 5 datasets, while WOMFD(65%) leads in 10 cases. Despite this, WOMFD
still records the highest overall average accuracy under NB. For RF, WOMFD(65%) yields slightly lower accuracy on only 5 datasets,
while WOMFD(85%) underperforms on just 3, achieving an impressive average accuracy of 87.19%. It is worth noting that under
all four classifiers, our proposed WOMEFD algorithm consistently achieves the highest classification accuracy on large-scale datasets,
demonstrating its outstanding capability in handling complex and high-dimensional data.

Across all four classifiers and datasets, WOMFD consistently achieves the highest classification performance in the majority of
cases. In comparison, IGUFS attains the best results on 8 datasets, while other algorithms lead in only 2 or 3 cases. The results of this
comprehensive analysis indicate that WOMFD significantly enhances classification performance while accurately selecting the most
informative features, leading to more robust and efficient feature selection outcomes.

5.3. Statistical test
To further verify the effectiveness of the proposed algorithms, this study adopts the Friedman test and the Wilcoxon signed-rank
test to statistically evaluate the classification performance of nine algorithms across four types of classifiers, namely KNN, SVM, NB,

and RF. Since some experiments on specific datasets required more than 24 hours to complete or failed to generate valid results, all
subsequent statistical tests were conducted only on datasets where all algorithms successfully produced outputs.
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Datasets ~RAW HKCMI GRRS W-MGMN GLSFS BPNN IGUFS WOMFD(65%)  WOMFD(85%)
Immu 80.00+9.69 78.89+8.39  84.31+2.01 76.53+2.30  77.78+2.22  70.00+8.31 81.11+9.67 84.44+1.53 81.11+1.49
UFD 63.6+10.59 70.56+4.16 62.22+0.60 74.44+0.69 61.93+1.58 76.67+9.40 87.22+6.71 73.54+1.18 77.98+1.36
Sonar 67.29+10.20  64.52+8.56  69.07+1.66 66.76+1.34  68.79+0.76  73.61+5.63 71.63+4.67 70.74+0.85 68.74+1.31
Tono 88.02+6.11 74.10+7.80  70.86+0.23 77.14+0.62  88.60+0.28  88.60+4.70 87.46+3.43 90.31+0.15 87.76+0.16
TME 75.75+5.13 33.50+3.42  40.60+0.67 61.12+0.67  65.25+0.46  66.75+2.81 78.25+3.76  75.00+0.37 76.00+0.21
Wdbc 93.14+3.38 90.34+3.61 - 92.07+0.16  92.97+0.14  92.79+3.38 94.37+3.32  93.67+0.12 93.32+0.14
Breast 95.91+1.81 93.70+2.80 - 87.40+0.17  94.15+0.03  95.32+2.23 94.73+1.75 96.49+0.04 96.64+0.04
CCS 31.75+4.66 43.01+5.44  25.36+0.34 36.83+0.23  29.22+0.26  42.14+5.36 21.26+4.75 43.88+0.18 38.93+0.08
Card 53.25+2.32 53.95+1.81 65.88+0.12 58.21+0.09 52.92+0.07 62.75+2.50 53.15+2.12 73.75+0.06 75.31+0.02
Aba 52.05+1.86 51.86+1.61  52.11+0.04 51.56+0.03  52.43+0.05  49.37+1.11 51.33+1.39 53.39+0.04 53.36+0.08
Bid 97.07+0.51 88.55+0.65 - 68.71+0.01  97.39+0.00  89.86+0.73 97.18+0.71 98.04+0.00 98.04+0.00
Gait 0.00+0.00 6.50+1.00 14.50+3.32 16.5+15.17 0.00+0.00 0.00+0.00 2.00+0.36 16.00+4.44 17.00+1.56
DARW 88.04+6.20 - - 73.37+0.30  85.13+0.51  86.86+8.31 89.74+7.37  89.74+0.55 88.59+0.36
PC 36.67+13.19 - 56.67+14.44  39.17+3.68  36.67+1.74  56.67+12.86  34.44+1.84 57.78+4.40 44.44+3.21
DB 89.71+0.65 - 63.67+0.01 68.71+0.01 80.89+0.01 89.66+0.73 86.57+0.85 90.69+0.00 90.11+0.00
Average 72.08+5.99 66.95+5.11 55.02+2.13 63.23+1.70 65.61+0.54 74.29+4.92 74.35+4.46 77.98+0.50 77.31+0.53
Table 9
The classification of various algorithms based on RF (%).
Datasets RAW HKCMI GRRS W-MGMN GLSFS BPNN IGUFS WOMFD(65%) WOMFD(85%)
Immu 86.67+10.89  74.44+8.31 85.42+2.47  85.42+1.49 76.67+2.33 71.11+9.56  80.00+8.31 87.78+2.09 88.89+1.48
UFD 97.78+2.72 66.11+9.20 76.67+1.04  95.56+0.17 95.58+0.17 80.00+5.67  88.89+6.09 98.33+0.06 98.89+0.05
Sonar 82.74+8.02 57.84+13.24  67.17+0.53  77.40+1.02 79.86+0.16 86.49+4.60  86.04+3.58 87.98+0.19 85.62+0.31
Tono 92.87+4.10 85.75+5.72 86.57+0.46  91.14+0.12 92.87+0.10 92.87+2.40  94.02+3.18  94.02+0.07 94.02+0.17
TME 79.00+6.44 34.50+5.28 43.37+0.68  67.43+0.81 76.25+0.64 74.25+5.79  78.75+3.71 82.50+0.34 83.25+0.33
Wdbc 95.79+3.44 90.51+2.95 - 94.54+0.11 95.26+0.14 94.91+2.76  95.78+2.74 95.95+0.06 96.66+0.11
Breast 96.64+1.45 93.85+2.44 - 97.50+0.03 96.34+0.03 95.77+2.77 95.03+2.35 96.05+0.03 96.78+0.02
CCS 46.41+5.47 46.21+4.62 23.72+0.21  49.71+5.95  49.71+0.25 48.25+3.96  23.30+4.43 39.61+0.18 49.71+6.85
Card 88.43+2.72 49.95+3.79 85.83+0.03  82.63+0.05 81.18+0.13 90.12+2.30  86.41+2.15 90.88+0.04 90.92+0.05
Aba 54.27+1.23 50.05+1.47 49.31+0.06 54.26+0.06 54.11+0.04 51.33+1.50 53.77+2.30 53.75+0.05 55.21+0.02
Bid 99.43+0.32 88.85+0.35 - 76.33+0.01 99.65+0.00 90.21+0.33  98.80+0.19 98.04+0.00 98.91+0.00
Gait 91.50+1.90 6.00+0.84 17.00+1.56  72.00+3.16 92.00+ 2.56  90.00+1.80  88.00+1.76 92.00+1.76 92.00+3.36
DARW 93.73+5.30 - - 78.59+1.25 88.56+0.59 94.28+4.39  95.42+4.28 98.30+0.13 97.75+0.14
PC 68.89+10.89 - 59.86+2.19  69.72+0.72 66.67+ 1.48 66.67+0.74  70.00+0.51 74.44+1.49 73.33+2.02
DB 92.40+0.68 - 86.99+0.01  76.33+0.01 89.87+0.01 92.41+0.64  89.97+0.84 92.48+0.00 92.66+0.01
Average  85.15+5.03 66.57+6.17 61.99+0.84  77.90+1.00 82.31+0.58 81.53+4.42  80.91+4.06 85.90+0.34 87.19+1.04
Table 10
Average ranking of classification accuracy among different classifiers across various algorithms.
HKCMI GRRS W-MGMN  GLSFS BPNN IGUFS  WOMFD(65%)  WOMFD(85%)

KNN  6.93 6.53 5.20 4.13 4.87 4.00 2.13 2.13

SVM  6.27 7.00 5.93 4.20 4.67 3.27 2.07 1.53

NB 6.27 5.93 5.73 5.07 4.20 4.20 1.87 2.53

RF 7.33 6.93 4.80 4.00 4.67 4.07 2.40 1.73

Table 10 presents the average classification accuracy rankings for the two proposed algorithms and six comparative methods
across the four classifiers mentioned above. For algorithms that failed to generate results, the lowest possible rank was assigned for
the corresponding dataset. Based on these average rankings, the Friedman statistics and corresponding P-values are provided in the
Table 11. With the significance level set at 0.05, all P-values fall below the threshold, allowing the rejection of the null hypothesis
that all algorithms perform equally. This indicates significant differences in classification performance among the algorithms.

Furthermore, to examine pairwise differences between algorithms, the Wilcoxon signed-rank test was conducted to compare the
proposed method with six competing algorithms. The significance level was also set at 0.05. The Wilcoxon test results are shown in
the Table 12. Except for a few comparisons with the IGUFS algorithm under specific classifiers where the null hypothesis could not
be rejected, most of the remaining comparisons show statistically significant differences. This indicates that the proposed algorithm
outperforms most of the competing methods in terms of classification performance. The failure to reject the null hypothesis in some

cases may be attributed to insufficient sample size.
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Table 11
Friedman test results for various classifiers.

7 F P Value

KNN 53.88 1476 248x10~°
SVM 4561 10.75 1.04x 1077
NB 40.48  8.78 1.02x 10°¢
RF 64.80 2257  1.65x107!!

Table 12

P-Values of Wilcoxon tests on various classifiers.
Algorithms KNN SVM NB RF

65% 85% 65% 85% 65% 85% 65% 85%

HKCMI <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
GRRS <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
W-MGMN 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 0.07 <0.05
GLSFS <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.16 <0.05
BPNN <0.05 <0.05 <0.05 <0.05 0.07 0.13 0.07 <0.05
IGUFS 0.06 0.13 0.10 0.10 0.20 0.40 <0.05 <0.05

%

(i) Card(t = 4) (j) Aba(t = 3) (k) Bid(t = 4) (1) DBt =2)

Fig. 4. The classification accuracy across different neighborhood constraint radii ¥ and parameter « under the optimal granularity t of RF classifier.
5.4. Parameter analysis

This section the impact of varying the neighborhood constraint radius x and correlation index « on the classification performance
of our algorithm WOMFD under the RF classifier is investigated, with Fig. 4 illustrating the classification accuracy across different
parameter for various datasets at their respective optimal granularities t. The graph demonstrates that varied performance is observed
among different datasets under various parameter combinations, underscoring the importance of selecting the best parameters to
optimize classification efficiency. For instance, the small-sample datasets Immu, UFD, and Sonar tend to prefer smaller values for
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a, specifically 0.2, 0.4, and 0, respectively. Conversely, they require larger values for the constraint radius «, specifically 7 and 9.
For the Card and DB datasets, achieving optimal classification performance requires larger values for both x and a. Moreover, the
classification results are influenced by the granularity levels applied to different datasets. The selection of granularity is determined
based on the number of features in the dataset. For datasets with a larger number of features, the parameter t can be set to 3, 6, and
9, whereas for datasets with fewer features, values of 1, 2, and 3 are recommended.

This study annotates the optimal granularity specifications for each dataset in parentheses within the figure, revealing the diverse
granularity preferences across datasets. Datasets with a larger number of features require coarser granularity to achieve better re-
sults, whereas those with fewer features need finer granularity. In conclusion, the choice of different parameters can lead to diverse
outcomes, underscoring the importance of selecting appropriate parameter values based on specific requirements.

6. Conclusions

This paper proposes a feature selection method for fuzzy information systems that integrates graph theory with granularity weight-
ing in the Weighted Optimistic Multi-Granulation Neighborhood-Constrained Fuzzy Rough Set (WOMNCcFRS) model. The approach
first ranks features using graph-theoretic measures, which guide the partitioning of the granularity space. Then, a granularity-weighted
approximation precision strategy is introduced, leading to the construction of a weighted multi-granulation fuzzy rough set model.
Based on this, a heuristic feature selection algorithm is refined by incorporating two different feature selection ratios. The proposed al-
gorithm fully leverages decision information to guide neighborhood construction, significantly enhancing noise resistance. Moreover,
by combining graph-based evaluation with granularity weighting, the computational complexity is effectively reduced. Extensive
experiments conducted on 12 publicly available datasets, along with comparisons against six alternative algorithms, demonstrate the
superior classification performance of the proposed method.

Despite these promising results, several limitations remain. First, the proposed method is built upon the optimistic WOMNCcFRS
framework, which may retain redundant features due to its inclusive approximation criteria. Exploring a pessimistic or hybrid granu-
lation strategy could help mitigate this limitation and improve selection precision. Second, our approach is designed for static datasets
and lacks adaptability to real-time or evolving environments. Future work could investigate incremental or streaming feature selection
mechanisms under multi-granular fuzzy settings.

Overall, this study contributes a unified and robust framework for fuzzy feature selection, offering enhanced granularity discrim-
ination and noise resilience, while opening avenues for further exploration in dynamic, hybrid, and adaptive fuzzy systems.
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