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Abstract—Recently, multi-view data have grown significantly
in practical scenarios. Compared with single-view data, they
can comprehensively describe objects through diverse types
of features. However, their inherent heterogeneity introduces
new challenges for knowledge discovery, especially in dynamic
environments. To effectively represent knowledge in dynamic
multi-view data, this paper proposes a dynamic multi-view
concept-cognitive learning (DMVCCL) model. First, a multi-
view knowledge representation framework is established, which
uses fuzzy three-way concepts as basic carriers. The natural
hierarchical relationship between concepts is utilized to precisely
represent knowledge in multi-view data. Then, for dynamic multi-
view data, a clue-based dynamic concept updating mechanism is
designed. This mechanism leverages the varying sensitivities of
concepts at different granularity levels to data changes, enabling
learning concepts at the optimal granularity level. Moreover, the
weights of each view are assigned based on the representation
capability of the learned concepts, and a multi-view classification
method is designed using the similarity between concepts and
data. Finally, a series of comparative experiments are conducted
to verify the effectiveness of the proposed method.

Index Terms—Concept-cognitive learning, fuzzy concept, gran-
ular computing, knowledge discovery, multi-view classification.

I. INTRODUCTION

ITH the advancement of information technology, many

industries have generated complex multi-view data,
which can describe objects from multiple views. For example,
a scene can be represented by multiple views such as visual
images, audio recordings, and textual descriptions. Notice that
humans can naturally process multi-view data, enabling a
comprehensive understanding by integrating visual, tactile, and
other sensory inputs. Consequently, researching computational
paradigms for multi-view data is of significant importance, as
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it enables models to understand objects more comprehensively.
This reality has driven the emergence and development of
multi-view learning [1], [2].

Broadly speaking, multi-view data encompasses not only
information represented through different media but also data
obtained through various descriptive methods [3], [4]. For
example, an image can be described by scale-invariant fea-
tures, and it can also be depicted by texture features. After
obtaining multi-view data, a key issue is how to integrate data
from multiple views to make a prediction. Many researchers
have conducted studies on this issue. For example, by con-
sidering the correlations and higher-order information among
features within each view, Liang et al. proposed an intra-
view feature fusion method to enhance multi-view classifi-
cation performance [3]. Zhang et al. [5] introduced a metric
learning method that improves classification performance by
considering both intra-view class separability and inter-view
correlation. Hu et al. [6] characterized the distribution of
multi-view data using anchor points, establishing a multi-view
fuzzy classification model. Han et al. [7], [8] investigated
trusted multi-view classification methods by assessing the
uncertainty of each view. Additionally, several studies have
explored multi-view fusion methods that incorporate deep
learning techniques and have been used in fields such as
image fusion [9], [10] and epilepsy electroencephalographic
recognition [11], [12].

It is noteworthy that humans can flexibly process multi-view
data, abstracting essential features from different views and
analyzing phenomena at varying levels of granularity [13]-
[15] to achieve a comprehensive understanding of objects.
Therefore, processing multi-view data by simulating the way
humans cognize things is of significant importance. One
prominent characteristic of human cognition is the ability to
abstract the common features of objects, and represents them
in the form of concepts [16]. The fundamental elements of a
concept are its extent and intent. The extent refers to a set of
objects, while the intent is the set of the common features of
these objects. For example, for the concept “prime numbers”,
the intent is defined as natural numbers that have no divisors
other than 1 and themselves, while the extent is the set of
all prime numbers {2,3,5,7,...}. Inspired by the concept in
philosophy, Wille [17] first proposed a formal definition of
concepts for extracting valuable information from tabular data.
Subsequently, formal concept analysis theory (FCA) was de-
veloped. In FCA, the extent of a concept is defined as a set of
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Fig. 1. Procedure of fuzzy concept-cognitive learning model for dynamic multi-view classification

objects, whereas the intent is constituted by the set of features
that are shared among these objects. The main tool of FCA
is the concept lattice, which is a partially ordered structure
formed by concepts. Although concept lattice can reflect the
relationship between objects and features comprehensively,
generating a concept lattice is extremely time-consuming.
Therefore, some studies attempted to combine machine learn-
ing methods and granular computing theory to efficiently
learn concepts from data. These studies have given rise to a
novel knowledge representation paradigm, known as concept-
cognitive learning (CCL) [18]-[21]. CCL aims to explore a
more efficient and precise method for discovering knowledge
embedded in data through concepts as carriers. A series of
CCL models were developed subsequently. On one hand, some
studies investigated mechanisms for quickly learning concepts
from data. For example, Xu et al. explored concept learning
mechanisms from a progressive cognition perspective [22] and
a movement perspective [23]. Zhang et al. [24] used variable
precision cognitive operators to learn concepts from fuzzy
data. On the other hand, some studies utilized concepts as
knowledge carriers for various tasks. For instance, Yuan et al.
[25] created a dynamic classification model using fuzzy three-
way concepts. Guo et al. [26] introduced a memory-based CCL
model focused on big concepts for dynamic knowledge fusion.
The dynamic updating mechanisms of concepts were designed
in [25] and [26], which both emphasized learning concept at
different granularity levels to capture knowledge from data.
These mechanisms also demonstrated good performance in
dynamic environments. One major reason is that concepts
learned at different granularity levels have varying degrees
of sensitivity to data changes, and concepts with stronger
representation capabilities can be obtained by searching for
the optimal granularity level. Besides, Ding et al. [27] defined
the interval fuzzy concept for classification. Wang et al. [28]
proposed a multi-view knowledge representation framework
based on the idea of CCL. Deng et al. [29] used concepts
as carriers for hierarchical classification. Wu et al. [30], [31]

developed CCL models for multi-label classification . Zhou et
al. [32], [33] investigated CCL models for skill assessment
by combining knowledge space theory. Furthermore, some
CCL models were developed for clique identification [34] and
knowledge reasoning [35].

By summarizing existing CCL models, several advantages
of using concepts as carriers for knowledge representation can
be identified:

1) Interpretability. Concepts are the fundamental units of
human cognition in philosophy [19]. Therefore, using
concepts as carriers of knowledge aligns with the way
humans cognize objects. Besides, the development of
FCA theory provides a solid mathematical foundation
for knowledge discovery with concepts as knowledge
carriers.

Flexibility. Concepts are learned through cognitive oper-
ators, allowing flexible definitions for various situations.
Existing research indicates that CCL models can effec-
tively address knowledge representation challenges in
dynamic environments [25], incomplete scenarios [36],
and other contexts.

Multi-granularity — characteristic. There exists a
specialization-generalization  relationship  between
concepts. The generalized concept reflects the common
features, while the specialized concept reflects the
unique features. Thus, concepts can simultaneously
convey both common and unique features of objects,
which naturally stimulates the multi-granularity
characteristic of human thought.

2)

3)

Based on the above analysis, it can be observed that: On the
one hand, existing CCL models focus on knowledge discov-
ery from single-view data, and have demonstrated excellent
classification results for various data types and in various en-
vironments. However, few studies have focused on developing
CCL models for multi-view data. A key feature of CCL is its
emphasis on discovering and integrating knowledge in data
through a manner that simulates human cognition. Intuitively,
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humans naturally cognize things from multiple views. From
this perspective, when CCL models can handle multi-view
data can they obtain higher cognitive levels. On the other
hand, although existing multi-view learning methods achieved
remark performance on numerous tasks, these methods lack
interpretability, and seldom address dynamic multi-view data
systematically. Based on previous discussions, CCL has strong
interpretability and can flexibly handle dynamic data. There-
fore, exploring CCL models for dynamic multi-view data is
a meaningful research topic. Based on these observations,
this paper proposes a dynamic multi-view concept-cognitive
learning model, and Fig. 1 describes the overall procedure.
The specific innovations are as follows:

1) It proposes a framework for effectively representing the
knowledge in multi-view data in the form of fuzzy three-
way concepts.

2) It leverages the hierarchical relationships among con-
cepts to accurately characterize the common and unique
features of objects.

3) It utilizes extent information to update concepts at the
optimal granularity level to maintain the representational
capacity of concepts.

4) It designs a multi-view classification method, by consid-
ering the representational capability of concepts across
different views and the similarity between objects and
concepts.

The arrangement of this paper is as follows. The next section
introduces some basic definitions about concepts. Section III
discusses the proposed method in detail. Section IV presents
and analyzes the experimental results. The conclusions are
presented in Section V.

II. PRELIMINARIES

This section provides some basic notations with respect to
fuzzy concepts. More detailed illustrations can be found in
[25], [371, [38].

A. Fuzzy concepts
Formally, a tuple < U, A, C' > is known as a dataset, where
1) U ={u1,usa,...,upr} is the set of objects;
2) A={a1,az,...,an} is the set of features;
3) C:Ux A —[0,1] is a mapping that reflects the values
of objects under features.

For any u € U and a € A, C(u,a) is the value of v under
feature a. This paper assumes that C(u,a) € [0,1], or can
be scaled to fall within [0, 1]. C'(u,a) can be understood as
the degree to which object u possesses feature a. The larger
C(u,a) is, the higher the degree of possession of a by wu.

To extract valuable information from data, some studies
have proposed methods for representing knowledge in data
through fuzzy concepts. Generally, a fuzzy concept is a
pair (E,I), where E C U denotes the extent, reflecting
object information, and I represents the intent, reflecting
feature information. According to fuzzy set theory [39], I =
{I(a1),I(az),...,I(an)} can be regarded as a fuzzy set on
A. For any a,, € A, I(a,) € [0,1] denotes the membership

degree of a, to I. The set of all fuzzy sets on A is denoted
as 24, and the power set of U is represented by 2Y. For
any I, I, € 24, the intersection operation N and the union
operation U between I; and I, are defined as follows. If
I = I NIy, then I(a,) = min{li(ay),l2(ay,)}, and if
I =1, U, then I(a,) = max{li(ay), I2(an)}.

To learn fuzzy concepts from data, a pair of cognitive
operators £ : 2V — 24 and F : 24 — 2V can be defined.

Definition 1. For a dataset < U, A,C >, suppose E € 2V
and I € 2%, a pair of operators L and F is defined as follows:

E(E)(a) - /\ C’(u,a),a €A,
ucek (1)
F(I)={ueUll(a) < C(u,a),Va € A},

where |\ represents the minimum operation.

For any E € 2V and [ € 24, (E,I) is referred to as a
fuzzy concept if L(E) = I and F(I) = E. Intuitively, I can
be understood as the features jointly possessed by the objects
in E.

B. Fuzzy three-way concepts

To enable a comprehensive representation of knowledge, the
definition of three-way concepts is proposed [40]. The intent of
a three-way concept consists of two parts. The first part reflects
the set of features that are jointly possessed by the objects in
the extent, while the second part reflects the set of features that
are jointly not possessed. In this way, the relationship between
objects and features can be fully represented. Besides, Yuan
et al. [25] further investigated fuzzy three-way concepts for
dynamic knowledge discovery.

For a dataset < U, A,C >, let < U, A,C~ > be the
complement of < U, A,C >, where C~ (u,a) =1 — C(u,a)
for any u € U and a € A. It can be observed that C~ (u, a)
reflects the degree to which u does not possess a. Then, a
pair of negative cognitive operators can be defined to learn
the complementary information.

Definition 2. For £ € 2V and I~ ¢ 2‘3, a pair of negative
operator L~ and F~ is defined as follows:

L (E)a) = )\ C(w.a).a€ 4,
uel (2)
F(I7)={ueU|I (a) <C (u,a),Va € A}.
The definition of positive operators have been given Def-

inition 1. Then, a pair of three-way cognitive operators is
generated to learn fuzzy three-way concepts.

Definition 3. For E € U and I*,I- € 24, a pair of three-
way cognitive operators L* and F* is defined as follows:

£1(E) = (£(B), £7(E)). "
FIT I ) =FINHNF ().

According to Definition 3, (E, (I, 7)) is referred to as a
fuzzy three-way concept if

LNE)=I"1"),F*I",I")=E. )

Authorized licensed use limited to: Southwest University. Downloaded on August 13,2025 at 08:03:53 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2025.3595926

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO.

It is noteworthy that fuzzy three-way concepts can simul-
taneously characterize the degree to which the features are
possessed and not possessed by the objects in E. In the follow-
ing, fuzzy three-way concepts will be utilized for knowledge
representation of multi-view data. Without causing confusion,
we will refer to the fuzzy three-way concepts simply as
concepts in the subsequent discussion.

There exists a partial order relationship < among concepts,
defined as follows:

(Br, (If,1I7)) 2 (Bo, (IF,15)) & E1 C B, (5)

(Ey, (If,17)) is referred to as a specialized concept of
(Bo, (I, 1)), and (Es, (I, 1)) is called a generalized
concept of (Ey, (I;, I;)). The extent of a generalized concept
includes more objects, and therefore its intent reflects the
common features of these objects. In contrast, the extent of a
specialized concept includes fewer objects, and thus its intent
reflects the specific features of a relatively smaller group of
objects.

III. THE PROPOSED METHOD

This section discusses in detail the proposed dynamic multi-
view concept-cognitive learning model. It consists of three
parts: the construction of multi-view concept spaces, concept-
based multi-view classification, and the dynamic updating
mechanism of concepts. These parts correspond to Subsections
III-A, 1II-B, and III-C, respectively.

A. Construction of multi-view concept spaces

First, a multi-view dataset D with P views is composed
of multiple single-view datasets, i.e., D = {D;1,Da,...,Dp}.
For any D, € D, D, =< U, A,,Cy, L >, where

1) U ={u1,ua,...,upr} is the set of objects;

2) A, ={ai,as,...,an,} is the set of features under the
p-th view, and [V, is the number of features under the
p-th view;

3) C,:UxA, —[0,1] is a mapping, and C},(u, a) denotes
the value of object u on feature a;

4 L = {l,l,...,lx} is the set of labels, where
each object only has one label. It forms a partition
{U1,Us,...,Uk} on U, where Up(k = 1,2,...,K) is
the set of objects with label .

For convenience, we divide the multi-view dataset into
K x P parts based on view and label information, denoted
as {D’If|p = 1,2,...,Pk = 1,2,...,K}. For any p €
{1,2,...,P} and k € {1,2,..., K}, Df =< Uy, A,,Ck >
is the data subset associated with label [;, under the p-th view.
For any u € Uy and a € A,, C¥(u,a) is the value of u
on feature a under the p-th view. Then, we attempt to learn
concepts from DZ’; to represent the knowledge associated with
label I; under the p-th view.

A characteristic of CCL is that concepts can be learned from
clues. These clues can be either a set of objects or a fuzzy set

on A,. In this paper, the set of object clues Obj;f and the set
of feature clues Fea]; are defined as follows, respectively.

{{u}|u€ Uk},
U {{u € Uk\C';f(u,a)

acA,

Objk

k(.
Feat = . maX(C;p(-,a))}}. 6)

Here, max(CF(:,a)) represents the maximum value under
feature a in the data subset DI’f. Then, the set of clues with
respect to D¥ is defined as Cluef = ObjF U Feal. If we
restrict the operators in Definition 3 on D’;, a pair of operators
LF* and FF* can be defined to learn concepts from D?.

Definition 4. Ler D =< Uy, A,,Cl > be the data subset
associated with label l; under the p-th view, for any E € 2Ux
and I, I~ € 2%», four operators can be define as follows:

LEE)a) = N Ck(u.a),a € Ay,

uel
FEIT) = {u € UplIt(a) < CE(u,a),Va € A,}, -
LE(B)(a) = )\ CE(u,a),a€ A,
ueE

]-";f*(lf) ={uec Ul (a) < C’Ilff(u, a),Va € A,},

where Cj,f*(u, a) =1—C}(u,a) for any a € A, and u € Uy,
Based on Eq. (7), the three-way cognitive operators Eﬁ* and
]:zlf* are defined as follows:

£k (B) = (Lh(B), L5 (B))

8
Fyr(It 1)y =FrIt)nFi-(I7). ®

To facilitate understanding of how to learn concepts from
clues, the following properties are provided, which have been
proved in [25].

Property 1. For any E, E,,FEs € C’lue’;, we have:
1) EC Fk* oLt (E);
2) By C By & Fi* o LE*(Ey) C FF* o L+ (Es);
3) LF(E) = E’;* o }';f* o E’;*(E);
1) LE(E, UE) = 8(Ey) O L5 (By);
5) L‘I’ff (E1UEy) = £§7(E1) N E’If (E2).

Property 1 indicates that starting from clues, concepts can
be learned by /3’;* and ]—"I’f*. Specifically, for any E € C’lue,’;,
(FF* o LE*(E), LE*(E)) is a concept. Intuitively, concepts
learned based on clues from Obj;f tend to be specialized
concepts, meaning they include fewer objects in their extents,
and their intents reflect the unique features of a relatively
small group of objects. Besides, the set of feature-generating
clues are also introduced to further enhance the richness of
the generated concepts. In the following, we consider using
concepts as carriers to progressively refine the knowledge with
respect to D;f. First, the initial concept subspace GC’SI’f is
defined as follows:

GOSE = {(Fy* o L5 (E), L5 (E))|E € Cluek}.  (9)

Based on GC’S{;, we can initially learn the concepts associated
with label [; under the p-th view. And define GCS =
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{GCSkp = 1,2,...
concept space.

Then, we aim to learn concepts at different granularity
levels by continuously merging similar concepts. The follow-
ing equations are defined to measure the distance between
two concepts. Suppose Cpt; = (Ey, (I;,17)) and Cpty =
(B2, (I3, 1;)) are two concepts in GC'SE. Then, the extent
distance between them is defined as

,P,k = 1,2,...,K} as the initial

|E1 N Es

Edis(Cpt1,Cpty) =1 — —————
is(Cpty1, Cpts) By U B

(10)

where |-| represents the cardinality of a set. The intent distance
between them is defined as

I — 13 I — 1y
Id’LS(Cpt1,Cpt2)= || 1 2H2+H 1 2||2’ (11)
2N,
where || - ||2 represents 2-norm. Based on Egs. (10) and (11),

the total distance between C'pt; and C'pts is defined as

Tdis(Cpty,Cpts) = 5

12)
The smaller the value of T'dis(Cpty, Cpts), the higher the
similarity between C'pt; and Cpt,.

Here, a parameter ¢ is introduced, which represents the
number of concepts that are similar to a given concept.
More specifically, given a concept (E,(IT,17)) € GC’S}’;,
the distances between (F,(IT,I7)) and each concept in
GC’SII,f are calculated using Eq. (12), where a smaller dis-
tance indicates a higher similarity to (E,(I",17)). Sup-
pose (E17 (Irall_))’ (EQ, (I;_vIQ_))a . a( (Iz 7Iz )) are
the top-i concepts that are most similar to (F,(IT,17)).
Intuitively, the concepts in GCSI’; are specialized concepts,
reflecting unique features of the objects. By combining the
extents of these concepts as clues, we can learn a more
generalized concept. This process is described as follows,

(]-'I]f* o Lk* U

~.

[

ﬁk* U )

For each concept in GC'S¥, a fused concept can be obtained
according to Eq. (13) and parameter i. The updated concept
subspace CS;;” is then generated, i.e.,

13)

[

st = {(F o £ ]szl Ej), L5 ( U Ej))| ”

(F5* o LE*(E), L5 (E)) € Gcsj;}.

CSZ’f’i is called the concept subspace under the granularity
level ¢. And the learned multi-view concept space is denoted
as CS ={CS¥ip=1,2,...,Pk=1,2,... K}.

Property 2. For any (E, (It,17)) e CSy,
(E',(I"t,I'")) € CSFY, such that:

1) ECFE;

2) I+ C I"";

3 - C I

there exists

Edis(Cpty, Cpta) 4+ Idis(Cpty, Cpts)

5
Proof. e For 1), according to Eq.
(13), we know that there exists

{(El?(Ii‘r7[1_))7(E27(I;aI_)) "a(El+17(I7tk1aIz+1))}
C GCSF such that Fp* o Ek*(UJ L Ej) = E and

FhF*o E’;*(U;Hl Ej) = E’ Since U;_, Ej C U”l
according to Property 1. 2), it follows that EC E’
e 2) and 3) can be proved based on 1) and Property 1.

O

According to Property 2, as ¢ is continuously increased, the
number of objects in the extents of the generated concepts
grows larger, and the intents increasingly reflect the common
features of these objects. To find a balance between the
generalization and specialization of concepts, it is necessary
to select the optimal granularity level . This procedure is
illustrated in Fig. 2, which is similar to the process that humans
perceive objects at different levels of granularity, seeking a
balance between common and unique features to achieve a
comprehensive understanding of objects.

Based on the above discussion, the algorithm to learn a
multi-view concept space is presented in Algorithm 1, and the
time complexity is 0(25:1 S URHA + U] A, ]2). Tt
is noted that the set of extents of all concepts in CS;;J forms
a covering on Uy, i.e., the information provided by all objects
are considered when constructing a multi-view concept space.

Generalized concepts

20N .Tf._ N

RQY ‘RW2

Y RS RV
’ KA T g\

A
S x\f/ W

i=1 i=2

/N
RART

Fig. 2. Concepts generated at different granularity levels

B. Multi-view classification via concepts

After obtaining a multi-view concept space C'S, this subsec-
tion utilizes the concepts in C'S for multi-view classification.

Assume that v is a newly added object with A,(u) =
{a(u)la € Ap}p € {1,2,...,P}) as the corresponding
feature values of the p-th view. Define A (u) = {1—a(u)|a €
A,} as the complementary information. Then, a K x P-
dimensional matrix 7" is used to represent the nearest distance
between u and each concept subspace, where

T(k,p) =
(E,(It

Il'lll’l

A () =T [+ A ()= [|23}-
I-))eCsy

15)
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Algorithm 1 Construction of multi-view concept spaces

Algorithm 2 Multi-view classification via concepts

Input: A multi-view dataset D = {Dy,Da,...,Dp}, the
granularity level i;
QOutput: A multi-view concept space C'S.
1: Dividing D into {D[’f|p =12,....,.Pk=1,2,...,K};
2: for pe {1,2,...,P} do
32 for ke {1,2,...,K} do
4: Calculate the set of clues C’lue’; based on Eq. (6);
5 Calculate the initial concept subspace GC’S;; accord-
ing to Eq. (9);
for each (E, (I",17)) € GCSF do

7: Compute the top-¢ concept that are similar to
(E,(I*,I7)) in GCS} according to Eq. (12);

8: Obtain the fused concept according to Eq. (13) and
add it to C'Sk*;

9: end for

10:  end for

11: end for

12: Reture the multi-view concept space C'S = {CS,’;’i
1,2,...,Pk=1,2... K}

p:

The maximum value in the p-th column of 7T is denoted as
max(T'(:,p)). Based on T', we can then compute the similarity
matrix S between u and each concept subspace as

1'(k,p)

Sthp) =1 = T

(16)
Intuitively, a larger value of S(k,p) indicates a stronger
association between object v and the concept subspace CSZ’f’i
under the p-th view, i.e., a higher probability that the label of
u is l. Based on S, the label of u is given by the following
equation:
P
Iy = argmaxZW(p)S(k,p), (17)
k

p=1

I, is the label of u, W is a weight vector and W (p) € [0, 1]. In
order to obtain W, we first select 70% of the objects from the
training set for generating a multi-view concept space, while
the remaining 30% of the objects from the training set are used
as the test set. According to Eq. (17), the similarity matrix .S
of an object u of the test set can be calculated. The label of
u under the p-th view is given by the following equation:

Iy, = argmax S(k, p). (18)
k

By comparing the predicted labels with the ground-true labels,

the number of correctly predicted objects Z(p) for the p-

view is calculated. Then, W can be calculated based on the

following equations:

Z(p) — max(2)
Temp(n)

>y Temp(p)

),

Temp(p) = exp(

Wi(p) =

19)

)

Input: A multi-view concept space CS, new object with
multi-view features A,(u) = {a(u)la € A,}p =
1,2,..., P), the weight vector W;

Output: The label [ of u.

1: for pe {1,2,...,P} do

22 for ke {l,2,...,K} do

3: Calculate the minimum distance of u to each concept
space C'SF' based on Eq. (15);

4 Obtain the similarity matrix S according to Eq. (16);
5: Calculate the label of u according to Eq. (17);

6: end for

7: end for

8: Return the label [, of wu.

where o is a temperature parameter. The algorithm for assign-
ing a label to the object u is presented in Algorithm 2, and
the time complexity is 0(25:1 Z,ﬁil |Ug||Ap))-

C. Dynamic updating mechanism of concepts

All the concepts learned from a given dataset form a
concept lattice, which inherently exhibits multi-granularity
characteristic. Intuitively, specialized concepts in the concept
lattice reflect the unique features of fewer objects and are
more sensitive to data changes, while generalized concepts
reflect the common features of more objects and are less
sensitive to data changes. Based on this characteristic, by
leveraging the extent information of concepts, we can learn
concepts at different granularity levels, seeking a balance
between common and unique features.

First, the updating mechanism when objects are dynam-
ically increasing is considered. Assume we have already
obtained the original multi-view data partition {D}[p =
1,2,....,P,k = 1,2,...,K}, the initial set of clues
{Cluellp = 1,2...,P,k = 1,2,...,K}, and the optimal
granularity level i. Suppose there is an additional set of objects
AU whose multi-view features are known, but their labels are
unknown. We need to update these objects into the multi-view
concept space C'S.

The proposed updating mechanism can be divided into
two parts: 1) Label prediction and clue updating; 2) Concept
generation. For 1), the labels of each u € AU can be
predicted according to Algorithm 2. Suppose the label of
u € AU is predicted as I, then u is added to the data subsets
{Df|p = 1,2,...,P}. For any p € {1,2,..., P}, the clues
can also be updated as follows:

Objy « Obj¥ U {u},
Inax(CZ’f(:, a))
o1}
(20)
After giving the predicted labels for all v € AU, for

convenience, the added data subset is denoted as AD?’; and
the added set of clues is represented as AC’lue’; for any

Fea’; +— U {{v' e Uy U {u}|C£(u/,a) >
a€A,
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p€{1,2,...,P} and k € {1,2,..., K}. Then, the updated
data subsets and the updated set of clues is expressed as
DFUADY and Cluel U ACluef.

After updating all newly added objects to the clue set, we
proceed to 2), i.e., updating the concepts. We first calculate
the initial concept subspace GCSI’f that learned from the
updated data subset DY U AD¥ and the updated set of clues
Clue’; U AClue’;. Then, based on Eq. (12), we calculate the
similarity between any two concepts within GC’S}’;. Based
on the similarity between concepts in GCS;f, their update
mechanism at granularity level ¢ is provided by the following
Property 3. It should be noted that the weight vector W of each
view and the granularity level ¢ remain unchanged before and
after update.

Property 3. Let Dy U ADY and Clue; U AClue)

be the updated data subset and the set of
clues, and GCS}’; be the wupdated initial concept
subspace. For any (E,(IT,I7)) € GC’S;;, suppose
(B, (1 1), (Ba (I Iy )y (B (I 1)) are the

top-i concepts that are most similar to (E,(I7,17)) in
GC S{,f, then:

ﬁk*JLiJl _ :(ﬂﬁk

2y

g

FroLy (B = {ueu ﬂ £h(Ey) € £h({uh)}

Jj=1 Jj=1
ﬂ{u e Ul () L5 (B) C ﬁ’;*({u})}.
=1
’ (22)
Proof. It can be proved from Property 1. O

Eq. (21) and Eq. (22) correspond to the intent and extent of
the concept in Eq. (13), respectively. According to Eq. (22), we
can learn the intent of the concepts in a more convenient way.
Specifically, once the top-i similar concepts to (E, (I, 17))
are obtained, the intent of the generated concept can be directly
derived by performing the minimum operation in the intents
of {(E17 (Iii_vll_)% (E27 (I;’IQ_))v .- ’(E (Ij_7 7 ))} Fur-
thermore, since only the intent is effective for multi-view
classification, there is no need to calculate the extents of the
concepts for the next step of concept updating, which can
further save computational resources. In other words, under the
concept-updating mechanism introduced in this subsection, the
updated data subset, the updated set of clues, and the optimal
granularity level ¢ are the critical elements, while the updated
concept subspace can be derived via Property 3. Based on
the above discussion, we provide a corresponding algorithm
for the generation and updating mechanism of concepts when
objects are dynamically added in Algorithm 3, and the intent
part of C'S}" is denoted as IntC'Sk".

Second, we discuss the dynamic updating mechanism of
concepts when features are dynamically added. Since the
concepts are updated based on clues in this paper, only the
portion related to clue updates needs to be replaced, while

Algorithm 3 Dynamic updating mechanism of concepts with
the increase of objects

Input: The set of clues {Clueflp = 1,2,..., P K =
1,2,..., K}, the data partition {Df[p =1,2,...,P,K =
1,2,...,K}, a set of new objects AU, the granularity
level i;

Output: The intents of the updated multi-view concept space
IntCS.

1: Assign the label for each u € AU.
2: for p € {1,2,...,P} do
32 for ke {1,2,...,K} do

4 Obtain the updated data subset D U ADF;

5 Calculate updated set of clues Cluel U ACluef;

6: Learn the initial concept subspace GCS}]; based on

DF UADE and Cluef U ACluef;

7: for each (E (T+, 1~ )) € GCSY do

8: Find the top-¢ similar concept with respect to
(B, (T*,17));

9: Calculate the updated intent according to Eq. (21)
and add it to IntC’S;f*i;

10: end for

11:  end for

12: end for

13: Return the intents of the updated multi-view concept space
IntCS = {IntCS¥ilp=1,2,... ., P,k=1,2,...,K}.

the other parts remain the same as the mechanism for object
updates. Let {AAy|p = 1,2,..., P} be the added features,
where A A, is the updated features in the p-th view. For any

pe{l,2,...,P}and k € {1,2,..., K},
Objk + Obj¥,
max Ck
Feaﬁ(— U {{UEUk|C[]f(u,a) > ( }}
a€A,UAA,

(23)
Then, after adding the new features to the corresponding
positions in each data subset D’;, the other parts are updated
in the same way as objects, as in lines 2—13 of Algorithm 3.

The advantages of the dynamic updating mechanism for
multi-view concepts presented in this subsection are reflected
in the following aspects: 1) Greater flexibility: Compared to
other CCL models, it updates based on dynamic clues, making
it applicable to any concept update scenario, such as the
addition of objects, the addition of features, or both simul-
taneously. 2) Higher efficiency: Compared to more complex
concept updating mechanisms, it makes full use of the optimal
parameter 7, allowing for quick computation of the intents of
the updated concepts based on Property 3.

The overall process of DMVCCL can be divided into the
following three parts: 1) Constructing the multi-view concept
space based on Subsection III-A; 2) Dynamically updating
concepts in response to the dynamically increasing objects
and features, based on the discussion in this subsection; 3)
Predicting labels for new objects based on the discussion in

Authorized licensed use limited to: Southwest University. Downloaded on August 13,2025 at 08:03:53 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2025.3595926

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO.

TABLE I
DETAILED INFORMATION OF THE MULTI-VIEW DATASETS

ID Dataset Objects Views Labels
MF  Multiple features” 2000 (216, 76,64, 6,240,47) 10
100L 100leaves? 1600 (64,64,64) 100

LU Land use 217 2100 (20, 59, 40) 21

Pie Pieface? 680 (484,256, 279) 68
™ Two moon? 200 (2,2) 2
ALOI Aloil00? 10800 (77,13,64,12) 100

TR Tree ring? 300 (2,2) 3
COIL Coil100? 7200 (30,99, 30) 100
Minist Minist? 10000 (30,9, 30) 10
Wiki ~ Wikipedia [41] 2866 (1024, 100) 10

Subsection III-B. To facilitate understanding, a diagram is
presented in Fig. 1 to illustrate the proposed DMVCCL model.

IV. EXPERIMENTS

A series of experiments is conducted to demonstrate that
the proposed DMVCCL model can effectively represent and
fuse knowledge from multi-view data.

A. Experimental setup

Ten widely used multi-view classification datasets are used
in this paper, with detailed information presented in Table I. In
Table I, “Objects” denotes the number of objects in multi-view
datasets, “Views” indicates both the count of views and the
number of features in each view, and “Labels” represents the
number of labels. For example, for LU dataset, it contains 2100
objects, 21 labels, and three views, each containing 20, 59, and
40 features, respectively. All feature values in these datasets
are continuous. To obtain fuzzy data, they are normalized to
the interval [0.1,0.9] using the following equation:

C'(u,a) — min(.C"(:, a))
max(C'(:,a)) — min(C'(:, a()24)

C(u,a) =0.1+(0.9—-0.1)

where max(C’(:,a)) and min(C’(:,a)) are the maximum
and minimum values of feature a in the original dataset,
respectively.

Four typical metrics for measuring classification per-
formance are introduced: accuracy(ACC), precision(PRE),
recall(REC'), and Fl-score(F'1), where

TP+ TN
A =
ce FP+FN+TP+TN’
TP
PRE = —————
R TP+ FP’
TP (25)
FC=—"
REC TP+ FN’
Flf?xRECxPRE
~ REC + PRE

TP is the number of true positive objects, TN is the number
of true negatives objects, F'P is the number of false positive
objects and F'N is the number of false negative objects. The

Thttp://archive.ics.uci.edu/dataset/72/multiple-+features

Zhttps://github.com/JethroJames/Awesome-Multi-View-Learning-
Datasets?tab=readme-ov-file

larger the value of the above metric, the better the classification
performance.

The experiments are conducted on a personal computer with
Processor: Intel(R) Core(TM) i7-13700H; Memory: 32 GB;
Programming language: MATLAB R2020b.

B. Comparisons of static multi-view classification perfor-
mance

To demonstrate the effectiveness of the proposed method,
comparisons are made with the following two groups of
methods:

1) Four multi-view learning methods, including: (1) Multi-
view fuzzy concept-cognitive learning (MVFCCL) [28],
it establishes a framework for representing and inte-
grating knowledge in multi-view data using concepts as
carriers. (2) Association-based fusion method for multi-
modal classification (AF) [3], it provides an association-
based fusion method that simultaneously models the
high-order and correlation information of multi-view
data. (3) Multi-view classification with cohesion and
diversity (MCCD) [42], it improves classification perfor-
mance by mining the consistent and complementary in-
formation in multi-view data. (4) Independent prototypes
formed multi-view sub-space clustering (IPMVSC) [6],
it constructs an information-granule-based multi-view
TSK fuzzy classification model.

2) Three CCL models, including: (1) Fuzzy granular three-
way concept-cognitive learning (F3WG-CCL) [43], it
learns fuzzy three-way granular concepts form data and
utilize big concepts as knowledge carriers. (2) Incre-
mental learning mechanism based on progressive fuzzy
three-way concept (ILMPFTC) [25], it constructs clues
based on the distances between objects, and learns pro-
gressive concepts by fusing similar concepts to capture
the knowledge in the data. (3) Memory-based concept-
cognitive learning (MFCCL) [26], it constructs the ini-
tial learning clues using cosine similarity and designs
mechanisms for concept forgetting and recall based on
the extent information.

For AF, after obtaining the fused features, we concatenate
the data from all views and use the resulting combined
features as input to a classifier. We employ decision tree
(DT) and support vector machine (SVM) as base classifiers
for AF, referred to as AF-DT-C and AF-SVM-C, respectively.
Additionally, we report the results obtained by directly con-
catenating all features and supplying them to DT and SVM
classifiers, denoted as DT-C and SVM-C, respectively. For
F3WG-CCL, MFCCL, and ILMPFTC, we adopt the same
feature-concatenation strategy, and these CCL models are then
performed on the concatenated data to obtain the classification
results. The proposed method in this paper requires two
parameters, o and ¢. o controls the weight of each view and
it is selected in {1072,1072,101,0,1,10%,102,103}. When
o = 0, specify W (p) = 1 for all views in Eq. (19). i represents
the granularity level, which is adjusted in {1,2,3,4,5}. To
ensure fairness, all experiments are conducted using the same
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TABLE I
ACCURACY COMPARISON WITH MULTI-VIEW LEARNING MODELS
Dataset DMVCCL MCCD MVFCCL AF-SVM-C AF-DT-C IPMVSC
MF 98.95+0.37 98.00+0.75 98.30+0.79 97.05+1.26 95.30+1.84 98.8510.58
100L 99.44+0.55 84.56+2.21 98.06£0.95 90.69+£2.35 76.00£2.64 6.75£1.55
LU 75.29+3.11 44.76+4.44 73.95+3.20 65.621+3.89 46.57£3.60 63.241+3.66
Pie 87.35+4.11 93.38+3.75 87.794+3.92 57.06+7.36 32.50+5.39 81.031+4.83
™ 100.00+0.00 91.00£6.15 74.50+14.23 88.00+7.53 98.50+4.74 97.00+4.22
ALOI 99.63+0.18 80.87+1.49 98.95+0.31 96.9010.58 92.80+0.89 74.65+4.59
TR 100.00+-0.00 60.001+10.89 54.0019.66 60.001+10.89 96.67+5.67 70.00£9.43
COIL 99.75+0.22 80.87+1.49 99.81£0.15 99.22+0.32 84.94+1.39 99.82+0.15
Minist 88.32+1.11 79.35+1.16 86.88+1.28 86.79+1.33 76.60+£1.75 87.29+1.41
Wiki 80.7842.05 82.62+1.47 81.234+2.05 74.631+2.58 73.52+1.73 75.64+2.31

data partitioning with ten-fold cross-validation, and the mean
values and standard deviations are recorded.

The classification accuracy, precision, recall, and F1-score
of the DMVCCL and five multi-view classification methods
are shown in Tables II-V. Within each table, the best clas-
sification result for each dataset is represented in bold. As
summarized across all metrics, DMVCCL achieves the best
classification performance on eight of ten datasets, followed
by MCCD on two datasets and IPMVSC on one dataset. The
experimental results confirm the effectiveness of DMVCCL
for multi-view classification.

The classification performance of DMVCCL compared with
single-view CCL models is presented in Tables VI-IX, and
they represent classification accuracy, precision, recall, and
Fl-score, respectively. It can be observed that DMVCCL
achieves the best classification performance on 10 datasets,
and the three CCL models all achieve the best classification
performance on TM and TR datasets. The experimental results
demonstrate that DMVCCL outperforms single-view CCL
models with concatenation fusion method.

To ascertain the statistical significance of the differences
among these methods, the Friedman test [44] is employed.
Based on the experimental results in Tables II to IX, the
calculated p-values for accuracy, precision, recall and F1-score
are 3.9231x107°,2.9076x107°, 1.9126x 10>, and 2.1105 x
1075, respectively. These p-value are all below 0.05, indicating
a significant difference in classification performance among
these methods at the 0.05 significance level. Subsequently,
the Nemenyi post hoc test [45] is utilized to elucidate the
differences between each pair of methods. The corresponding
critical difference diagrams are presented in Fig. 3, where
the horizontal axis denotes the average rank of each method.
Methods that are not connected by horizontal lines are deemed
to exhibit significant differences. The aforementioned analysis
demonstrates that DMVCCL achieves remarkable performance
for multi-view classification.

C. Performance evaluation with objects dynamic increase

In this subsection, we aim to demonstrate that the proposed
clue-based dynamic classification model outperforms existing
CCL methods. To our knowledge, few existing CCL methods
can handle dynamic multi-view data. Hence, we compare our
proposed method with single-view CCL methods, including
F3WGCCL, MFCCL, and ILMPFTC. Since these CCL mod-
els are limited to single-view data, we still employ feature

concatenation to transform multi-view data into a dataset that
can be processed by these single-view CCL methods.

The experimental setup is as follows: Firstly, to simulate a
dynamic environment, the objects in the multi-view dataset are
first partitioned into ten equal parts. Five of these parts are used
as the initial training data to learn an initial multi-view concept
space, while the remaining five are treated as incremental
data blocks that arrive sequentially over different time periods.
Notably, the labels of these five sequentially added blocks are
unknown. Then, the remaining five data blocks are then treated
as sequentially arriving data at times t; to t5. For each data
block, we assign labels using the multi-view concept space
learned in the preceding stage together with the proposed
multi-view classification method. Based on the updated data,
the multi-view concept space is then updated. In this process,
the classification performance for each data block is computed
by comparing the ground-truth labels and the predicted labels.
The classification accuracy, precision, recall, and Fl-score at
each time point are recorded.

The experimental results are reported in Tables X, XI,
XII and XIII, which present classification accuracy, precision,
recall, and Fl-score, respectively. The notation “Ave.£Std.”
represents the average value and standard deviation calculated
over the 5 time points for each metric, and the best average
classification performance is highlighted in bold. The compar-
ison of classification accuracy at each time point is illustrated
in Fig. 4, which highlights the performance differences across
time points. According to the experimental results, DMVCCL
achieves the best classification performance on 8 out of the 10
datasets, MFCCL achieves the best classification performance
on TM and TR datasets, and ILMPFTC achieves the best clas-
sification performance on TR datasets. The results demonstrate
the effectiveness of DMVCCL in dynamic environments.

It should be noticed that for the three CCL models, we
employ feature concatenation as the fusion strategy. The
advantage is that it fully exploiting the information from each
view and achieve better classification performance. Moreover,
this fusion strategy delivers better classification results when
the number of views or features is small, such as TM and
TR datasets. When either the number of features or views
are large, their performance is weaker. One of the reasons
is that CCL models exhibit poor classification performance
for high-dimensional data. We also noticed that MFCCL and
ILMPFTC have similar classification performance. This is
because when there are many features, the clues generated by
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TABLE III
PRECISION COMPARISON WITH MULTI-VIEW LEARNING MODELS
Dataset DMVCCL MCCD MVFCCL AF-SVM-C AF-DT-C IPMVSC
MF 98.96+0.39 97.91£0.80 98.26£0.93 97.10£1.26 95.33+£1.86 98.83£0.47
100L 99.07+1.38 82.45+3.26 97.18+1.54 87.91+3.23 72.261+4.91 6.68+1.38
LU 76.28+2.12 46.79+5.17 74.95+3.31 66.741+2.94 47.94+£2.55 64.24+3.21
Pie 84.09+6.38 92.32+3.80 84.96+6.34 50.53+7.45 27.24+5.47 78.76£5.22
™ 100.00+0.00 91.68+5.53 77.89+£12.82 88.161+7.84 98.451+4.89 97.52+5.90
ALOI 99.69+0.15 83.321+1.66 98.95+0.30 96.99+0.60 93.1440.82 77.88+3.50
TR 100.00+0.00 20.00£3.63 59.66£7.64 20.00+£3.63 97.02+£5.68 54.50£4.96
COIL 99.771+0.22 83.32+1.66 99.83+0.13 99.26+£0.27 86.12+1.51 99.85+0.11
Minist 88.341+1.09 80.231+1.05 86.88+1.23 86.831+1.23 76.641+1.80 87.40+1.33
Wiki 80.76+2.91 84.06£1.66 80.98+1.98 75.09+£2.21 73.64+1.79 85.70£2.20
TABLE IV
RECALL COMPARISON WITH MULTI-VIEW LEARNING MODELS
Dataset DMVCCL MCCD MVFCCL AF-SVM-C AF-DT-C IPMVSC
MF 98.98+0.31 98.05+0.83 98.28+0.80 97.09+£1.37 95.51+1.84 98.91£0.55
100L 99.07+1.19 82.13+4.10 97.32+1.98 87.34+3.25 72.10+5.71 9.27+1.83
LU 75.47+2.20 45.48+3.07 74.17£2.74 65.50+£3.19 46.92+3.17 64.06+2.73
Pie 83.791+4.96 92.17+4.03 84.85+5.10 51.23+8.53 28.9245.52 75.66+5.50
™ 100.00+0.00 90.76+£6.43 73.92+13.84 87.724+8.29 98.194+5.73 97.18+3.88
ALOI 99.65+0.19 81.23+£1.19 99.00£0.29 96.86+0.66 92.88+0.72 75.07£5.04
TR 100.00+0.00 33.33+0.00 67.00+7.91 33.33+0.00 95.811+8.66 66.67+0.00
COIL 99.75+0.23 81.23+£1.19 99.80+£0.19 99.20+0.33 85.28+1.75 99.84+0.12
Minist 88.35+1.01 79.39£0.97 86.90+1.07 86.82+£1.23 76.64£1.70 87.32+1.26
Wiki 79.86+1.97 80.84+1.17 80.65+1.71 72.75+3.05 72.641+1.63 73.93+2.37
TABLE V
F1-SCORE COMPARISON WITH MULTI-VIEW LEARNING MODELS
Dataset DMVCCL MCCD MVFCCL AF-SVM-C AF-DT-C IPMVSC
MF 98.94-£0.35 97.93+0.83 98.2410.88 97.01+£1.34 95.291+1.94 98.83+0.58
100L 98.99+1.31 79.64+4.17 97.01£1.83 86.36+3.33 69.63£5.23 6.52+1.15
LU 74.39+2.15 38.84+3.78 72.90+3.03 64.861+2.93 45.96£2.81 61.60+3.37
Pie 82.5445.78 91.41+4.22 83.514+5.81 48.69+8.03 26.10+5.00 75.16+5.56
™ 100.00+0.00 90.46£6.51 72.04+15.57 87.40+£8.10 98.29+5.41 96.94+4.32
ALOI 99.65+0.18 78.95+1.58 98.924+0.30 96.77+0.67 92.571+0.82 72.94+5.24
TR 100.00+0.00 24.83+2.75 50.274+10.08 24.831+2.75 96.07+8.02 58.85+4.11
COIL 99.731+0.26 78.95£1.58 99.78+0.20 99.14+0.33 84.70+1.69 99.83+0.13
Minist 88.27+1.06 78.98+1.06 86.69+1.19 86.68+1.24 76.54+1.73 87.15+1.32
Wiki 79.81+£2.28 81.58+1.16 80.334+2.07 73.24+2.60 72.60+1.39 75.64+2.31
TABLE VI
ACCURACY COMPARISON WITH CONCEPT-COGNITIVE LEARNING MODELS AND CLASSICAL CLASSIFICATION METHODS
Dataset DMVCCL MFCCL-C F3WGCCL-C ILMPFTC-C DT-C SVM-C
MF 98.95+0.37 98.05£0.55 97.25+0.72 98.05£0.55 93.50£2.04 98.15+0.75
1001 99.44£0.55 98.69£0.69 96.06£1.62 98.81£0.69 68.061+4.47 96.37+1.64
LU 75.29+3.11 69.71+£2.90 25.00+2.50 69.71+£2.90 46.14+3.75 55.19+3.59
Pie 87.35 +4.11 79.12£7.49 58.09+7.38 79.12£7.49 55.29+£6.05 86.32+6.32
™ 100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00 96.50+3.37 88.00+7.53
ALOI 99.63+0.18 98.561+0.41 91.46+0.63 98.56+0.41 84.834+0.71 96.31+ 0.86
TR 100.00+0.00 100.00+0.00 73.67£10.24 100.00+0.00 98.33+3.24 60.00£10.89
COIL 99.75+0.22 98.68+0.45 83.92+1.18 98.82+0.38 81.53£1.95 99.15+0.32
Minist 88.32+1.11 86.14+1.11 77.04+£2.31 86.14+1.11 76.74£1.27 86.41+1.24
Wiki 80.78£2.05 32.13£1.98 27.0743.37 32.13+1.98 65.21£1.75 76.69+2.35
TABLE VII
PRECISION COMPARISON WITH CONCEPT-COGNITIVE LEARNING MODELS AND CLASSICAL CLASSIFICATION METHODS
Dataset DMVCCL MFCCL-C F3WGCCL-C ILMPFTC-C DT-C SVM-C
MF 98.96+0.39 98.13£0.55 97.32+0.79 98.13+0.55 93.61£2.14 98.16£0.86
1001 99.07+£1.38 97.95+£1.52 94.08+2.06 98.47+£1.20 65.13+5.89 96.03+2.25
LU 76.28+2.12 71.65+2.53 38.83£4.97 71.67£3.02 47.23+3.39 60.05£2.57
Pie 84.09+6.38 74.41£7.93 55.924+10.72 74.41£7.93 48.7245.59 83.70£7.68
™ 100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00 96.64+3.42 88.161+7.84
ALOI 99.69+0.15 98.58+0.38 93.48+0.83 98.59+0.35 84.83+0.74 96.50£0.82
TR 100.00+0.00 100.00+0.00 77.51£17.03 100.00+0.00 98.39+3.22 20.00+3.63
COIL 99.77+0.22 98.83+0.38 92.06+1.23 98.95+0.31 82.59+1.69 99.19+0.32
Minist 88.34+1.09 86.19+1.16 81.13+1.64 86.19+£1.16 76.84+£1.32 86.43£1.15
Wiki 80.76+2.91 30.62+2.08 34.744+5.70 30.6242.08 64.96+1.56 77.93+2.15
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TABLE VIII
RECALL COMPARISON WITH CONCEPT-COGNITIVE LEARNING MODELS AND CLASSICAL CLASSIFICATION METHODS
Dataset DMVCCL MFCCL-C F3WGCCL-C ILMPFTC-C DT-C SVM-C
MF 98.98+0.31 98.1540.60 97.40+0.69 98.1540.60 93.84+2.28 98.1740.81
100L 99.07+1.19 97.75+1.52 94.57+2.31 98.324+1.01 63.16+£5.24 95.7942.11
LU 75.47+2.20 69.8041.75 24.95+2.46 69.80+1.75 46.73+3.97 55.434+2.97
Pie 83.79+4.96 74.2547.64 54.59+8.52 74.2547.64 50.53+4.70 83.64+7.18
™ 100.00+0.00 100.00+0.00 100.00+0.00 100.00+0.00 96.2643.67 87.72+8.29
ALOI 99.65+0.19 98.56+0.34 91.35+0.72 98.56+0.33 84.83+0.81 96.28+0.88
TR 100.00+0.00 100.00+0.00 71.56+£9.27 100.00+0.00 97.90+£5.20 33.33+0.00
COIL 99.754+0.23 98.714+0.42 83.97+£1.10 98.8240.38 81.72+£1.66 99.1740.26
Minist 88.35+1.01 86.18+1.07 77.09+£1.81 86.18+1.07 76.74+1.16 86.43+1.11
Wiki 79.86+1.97 30.06+£2.33 24.79+2.84 30.06+2.33 64.73+1.65 T4.77+2.46
TABLE IX
F1-SCORE COMPARISON WITH CONCEPT-COGNITIVE LEARNING MODELS AND CLASSICAL CLASSIFICATION METHODS
Dataset DMVCCL MFCCL-C F3WGCCL-C ILMPFTC-C DT-C SVM-C
MF 98.9410.35 98.0940.58 97.2640.75 98.094+0.58 93.4742.30 98.1240.84
100L 98.99+1.31 97.64+1.53 93.78+2.34 98.15+1.08 61.24+5.50 95.2642.32
LU 74.39+2.15 68.43+1.89 21.51+£2.56 68.43+1.89 45.6943.50 55.5542.80
Pie 82.5445.78 72.4748.23 52.3749.13 72.4748.23 47.15+£5.25 82.18+7.72
™ 100.00+0.00 100.00+0.00 100.00£0.00 100.00+0.00 96.30£3.50 87.40+8.10
ALOI 99.65+0.18 98.49+0.36 90.79+0.57 98.50+0.34 84.83+0.87 96.154+0.91
TR 100.00+0.00 100.00+0.00 69.4249.49 100.00+0.00 98.0744.35 24.8342.75
COIL 99.73+0.26 98.61+0.45 84.691+1.02 98.7340.39 81.04+1.74 99.09+0.34
Minist 88.27+1.06 86.10+1.13 76.75+£2.09 86.10+1.13 76.70+1.24 86.29+1.13
Wiki 79.81+2.28 29.73+2.29 22.11+£2.88 29.73+£2.29 64.334+1.54 75.4942.34
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Fig. 3. Nemenyi post-hoc test of DMVCCL against other comparing methods with respect to classification performance at the 0.05 significance level

cosine similarity and those generated by Euclidean distance
tend to be similar. Whereas DMVCCL first learn concepts
under each view, and then integrates them by consider the
representational capacity of the concepts under each view. In
this way, the knowledge in multi-view data can be represented
and integrated accurately with concepts as carriers.

V. CONCLUSION

This paper has proposed a concept-cognitive learning model
for dynamic multi-view data. Firstly, based on the defini-
tion of multi-view concept space, a knowledge representation
method for multi-view data has been established. It uses fuzzy
three-way concepts as the basic carriers of knowledge, and
simultaneously uses positive information and complementary
information to depict the relationship between objects and
features. The similarity between concepts have been defined
based on the extent distance and the intent distance between

them. Based on the similarity of concepts, by continuously in-
tegrating similar concepts, the concepts at different granularity
levels are obtained. This process simulates the characteristic
of human cognition, which progresses from the concrete to
the abstract. Besides, the representation capability of concepts
learned under different views has been used to determine the
weight of each view. On this basis, the weight vector of each
view and the similarity between concepts and data within
each view have been considered for multi-view classification.
Furthermore, a clue-based dynamic update mechanism for
concepts have been developed to handle incremental multi-
view data by accounting for the varying sensitivity of concepts
at different granularity levels. Finally, some experiments have
been conducted to validate the effectiveness of the proposed
DMVCCL model.

It is noted that the definition of the extent of concepts in
this paper is classical, meaning that an object either belongs to
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Fig. 4. Classification accuracy comparison with the dynamic increase of objects on 10 datasets
TABLE X TABLE XI
COMPARISON OF ACCURACY AS THE NUMBER OF OBJECTS INCREASES COMPARISON OF PRECISION AS THE NUMBER OF OBJECTS INCREASES
Dataset Metrics t1 to t3 tg ts Ave.1£Std. Dataset Metrics t1 to t3 7 ts Ave.£Std.
DMVCCL | 98.50 98.50 98.50 97.00 97.50 | 98.00+0.71 DMVCCL | 97.99 98.61 97.76 97.46 97.82 | 97.931+0.43
MF ILMPFTC | 98.00 98.00 99.00 98.00 96.50 | 97.9040.89 MF ILMPFTC | 97.49 98.14 98.64 97.93 96.54 | 97.744+0.79
F3WGCCL| 96.50 96.00 98.00 94.00 93.00 | 95.50+2.00 F3WGCCL| 96.39 96.60 98.05 94.64 92.74 | 95.68+2.04
MFCCL | 98.00 98.00 99.00 98.00 96.50 | 97.90£0.89 MFCCL | 97.49 98.14 98.64 97.93 96.54 | 97.74%0.79
Our 99.38 98.75 100.00 98.13 100.00| 99.25+0.81 DMVCCL | 99.58 97.08 100.00 96.30 100.00| 98.59+1.77
100L ILMPFTC | 99.38 97.50 99.38 97.50 96.88 | 98.13+1.17 100L ILMPFTC | 99.58 95.41 98.42 97.36 95.88 | 97.33+1.73
F3WGCCL| 95.00 95.00 92.50 93.13 90.00 | 93.13+2.07 F3WGCCL| 93.13 89.58 90.72 89.51 87.69 | 90.124+2.00
MFCCL | 99.38 96.25 97.50 97.88 95.63 | 97.13+1.44 MFCCL | 99.37 92.84 97.22 96.50 96.41 | 96.47+2.35
Our 64.29 7238 62.86 68.10 70.95 | 67.71+£4.12 DMVCCL | 68.85 74.32 66.54 71.72 73.34 | 70.95+3.22
LU ILMPFTC | 59.52 67.62 62.86 60.48 63.33 | 62.76%3.15 LU ILMPFTC | 64.64 67.01 68.32 67.21 66.43 | 66.72+1.35
F3WGCCL| 22.86 23.81 15.71 14.29 16.19 | 18.57+4.42 F3WGCCL| 43.45 3594 2832 26.17 20.99 | 30.97+8.81
MFCCL | 59.52 66.19 61.43 60.48 61.43 |61.81+£2.57 MFCCL | 64.60 65.32 67.79 66.88 65.17 | 65.95+£1.33
Our 55.88 75.00 72.06 63.24 70.59 | 67.35+£7.74 DMVCCL | 4820 65.03 67.63 61.79 64.47 | 61.421+7.68
Pic ILMPFTC | 44.12 73.53 67.65 55.88 66.18 |61.47+11.60 Pic ILMPFTC | 40.10 63.83 65.00 53.94 61.95|56.96+£10.37
F3WGCCL| 27.94 36.76 3824 33.82 38.24 | 35.001+4.34 F3WGCCL| 26.24 33.50 37.86 37.79 32.54 | 33.59+4.77
MFCCL |44.12 73.53 67.65 55.88 66.18 [61.47+11.60 MFCCL | 40.10 63.83 65.00 53.94 61.95|56.96+10.37
Our 100.00 100.00 100.00 100.00 100.00|100.00£0.00 DMVCCL {100.00 100.00 100.00 100.00 100.00|100.00£0.00
™ ILMPFTC |100.00 100.00 100.00 100.00 100.00{100.00-+0.00 ™ ILMPFTC |100.00 100.00 100.00 100.00 100.00|{100.00+0.00
F3WGCCL| 90.00 95.00 85.00 95.00 100.00| 93.00%5.70 F3WGCCL| 90.00 93.75 85.42 95.45 100.00| 92.924+5.52
MEFCCL |100.00 100.00 100.00 100.00 100.00{100.00+-0.00 MEFCCL [100.00 100.00 100.00 100.00 100.00{100.00+0.00
Our 99.07 98.43 98.24 98.33 98.80 | 98.57+0.35 DMVCCL | 99.19 98.57 98.37 98.55 98.88 | 98.71+0.32
ALOI ILMPFTC | 97.87 96.20 97.04 97.13 97.22 | 97.0940.60 ALOI ILMPFTC | 98.00 96.32 97.14 97.09 97.14 | 97.1440.60
F3WGCCL| 92.59 87.69 84.72 82.50 81.57 | 85.81+4.46 F3WGCCL| 9391 90.07 89.94 88.03 86.14 | 89.621+2.89
MFCCL | 97.87 96.20 97.04 97.13 97.22 | 97.09£0.60 MFCCL | 98.00 96.32 97.14 97.09 97.14 | 97.14+0.60
Our 100.00 100.00 100.00 93.33 100.00| 98.67+2.98 DMVCCL |100.00 100.00 100.00 95.56 100.00| 99.11+1.99
TR ILMPFTC |100.00 100.00 100.00 93.33 100.00| 98.67+2.98 TR ILMPFTC |100.00 100.00 100.00 100.00 100.00|{100.00+0.00
F3WGCCL| 23.33 3.33 10.00 16.67 6.67 | 12.00£8.03 F3WGCCL| 1994 556 526 556 2.67 | 7.80%£6.89
MFCCL |100.00 100.00 100.00 100.00 100.00{100.00+0.00 MFCCL [100.00 100.00 100.00 100.00 100.00|{100.00+0.00
Our 98.61 99.86 99.72 98.19 98.61 | 99.00+0.74 DMVCCL | 98.90 99.83 99.69 98.33 98.71 | 99.09+0.65
COIL ILMPFTC | 97.36 98.19 98.06 97.64 98.47 | 97.9440.44 COIL ILMPFTC | 97.84 97.81 98.23 97.82 98.64 | 98.07+0.36
F3WGCCL| 79.17 83.61 83.47 81.39 85.14 | 82.56+2.32 F3WGCCL| 89.27 88.06 88.12 86.04 88.87 | 88.07%1.25
MFCCL | 97.08 98.19 97.50 97.22 98.19 | 97.64+0.53 MFCCL | 97.53 97.93 97.73 97.49 98.31 | 97.80+0.34
Our 86.50 88.40 87.10 85.30 88.60 | 87.18+1.37 DMVCCL | 86.35 88.32 87.17 85.44 88.36 | 87.13+1.27
Minist ILMPFTC | 84.30 86.30 84.50 83.70 85.10 | 84.7840.99 Minist ILMPFTC | 84.06 86.45 84.51 83.96 84.98 |84.79£1.01
F3WGCCL| 74.50 70.00 60.30 56.10 60.70 | 64.32+7.63 F3WGCCL| 78.16 78.80 76.01 76.70 77.20 | 77.37£1.12
MFCCL | 84.30 86.30 84.50 83.70 85.10 | 84.78+0.99 MFCCL | 84.06 86.45 84.51 83.96 84.98 | 84.79+1.01
Our 79.72 7526 7596 81.12 78.05 | 78.02+2.47 DMVCCL | 80.61 74.26 75.43 80.43 79.87 | 78.121+3.03
Wiki ILMPFTC | 32.17 28.92 27.87 25.17 27.87 | 28.4042.52 Wiki ILMPFTC | 31.02 28.19 26.68 25.72 25.09 | 27.3442.37
F3WGCCL| 25.87 25.09 26.83 20.98 22.65 | 24.28+2.41 F3WGCCL| 32.30 39.34 34.08 24.90 24.91 | 31.10+6.22
MFCCL |32.17 2892 27.87 25.17 27.87 | 28.40£2.52 MFCCL |31.02 28.19 26.68 25.72 25.09 | 27.34+2.37

the extent of a concept or does not belong to it. This limitation
results in a relatively poor representation ability of the learned
concepts, especially when dealing with high-dimensional data.
Therefore, exploring the CCL model when the degree to which
an object belongs to a concept is represented as a fuzzy
value is a worthwhile research issue. Additionally, some multi-

view data may have missing values in practical scenarios,
which can hinder concept learning. This paper takes advantage
of the inherent multi-granularity characteristic of concepts
and proposes a strategy for learning concepts at different
granularity levels. Intuitively, concepts at different granularity
levels are sensitive to missing data to varying degrees. For
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TABLE XII TABLE XIII

COMPARISON OF RECALL AS THE NUMBER OF OBJECTS INCREASES COMPARISON OF F1-SCORE AS THE NUMBER OF OBJECTS INCREASES
Dataset  Metrics t1 to t3 ta ts Ave.=£Std. Dataset Metrics t1 to t3 ta ts Ave.£Std.
DMVCCL | 98.29 98.42 98.64 96.57 98.01 | 97.9940.82 DMVCCL | 98.13 98.49 98.11 96.87 97.86 | 97.89+0.61

MF ILMPFTC | 98.08 97.90 99.05 97.92 97.13 | 98.02+0.69 MF ILMPFTC | 97.69 97.97 98.81 97.87 96.71 | 97.81%+0.75
F3WGCCL| 96.82 96.16 96.87 95.01 92.34 | 95.444+1.89 F3WGCCL| 96.36  96.31 97.26 94.13 92.19 | 95.25+2.06
MFCCL |98.08 97.90 99.05 97.92 97.13 | 98.02+0.69 MFCCL |97.69 97.97 98.81 97.87 96.71 | 97.81+0.75
DMVCCL | 99.58 97.08 100.00 97.22 100.00| 98.78+1.49 DMVCCL | 99.49 97.03 100.00 96.58 100.00| 98.62+1.68

100L ILMPFTC | 99.37 94.55 98.73 96.75 96.27 | 97.144+1.94 100L ILMPFTC | 99.32 94.68 98.55 96.34 95.69 | 96.92+1.96
F3WGCCL| 93.88 89.06 88.55 91.52 88.35|90.274+2.38 F3WGCCL| 92.65 88.86 88.50 89.53 86.22 | 89.15+2.32
MFCCL |99.75 9295 9547 97.49 95.64 | 96.26+2.53 MFCCL | 99.44 92.36 96.04 96.49 94.99 | 95.86+2.56
DMVCCL | 67.51 69.87 64.33 7041 70.72 | 68.57+2.68 DMVCCL | 65.35 69.66 63.39 69.40 70.19 | 67.60+3.04

LU ILMPFTC | 61.38 63.46 62.41 63.14 64.47 | 62.97+1.16 LU ILMPFTC | 59.63 63.36 62.31 62.69 64.08 | 62.411+1.69
F3WGCCL| 24.16 20.14 1521 16.44 15.79 | 18.35+3.78 F3WGCCL| 21.64 18.10 13.38 13.45 12.55]| 15.82+3.92
MFCCL |61.63 62.61 6228 63.14 59.72 | 61.88+1.33 MFCCL | 59.59 61.99 61.89 62.27 59.84 | 61.12+1.29
DMVCCL | 51.63 6895 63.14 59.72 66.67 | 62.02+6.78 DMVCCL | 47.12 6529 62.44 58.02 63.84 | 59.34+7.35

Pie ILMPFTC | 40.99 68.33 63.00 51.67 62.58 |57.31£10.95 Pie ILMPFTC | 37.49 64.40 60.87 50.30 60.20 [54.65+10.93
F3WGCCL| 27.48 32.03 33.33 36.46 36.06 | 33.07+3.63 F3WGCCL| 25.79 30.97 32.89 33.76 31.98 | 31.08+3.14
MFCCL |40.99 68.33 63.00 51.67 62.58 |57.314+10.95 MFCCL |37.49 64.40 60.87 50.30 60.20 |54.654+10.93

DMVCCL [100.00 100.00 100.00 100.00 100.00{100.00+-0.00

DMVCCL [100.00 100.00 100.00 100.00 100.00{100.00=£0.00

™ ILMPFTC |100.00 100.00 100.00 100.00 100.00{100.00+0.00 ™ ILMPFTC |100.00 100.00 100.00 100.00 100.00|{100.00+0.00
F3WGCCL| 90.00 96.15 84.34 95.00 100.00| 93.10+6.06 F3WGCCL| 90.00 94.67 84.65 94.99 100.00| 92.86+5.79
MFCCL [100.00 100.00 100.00 100.00 100.00|100.00+0.00 MFCCL |100.00 100.00 100.00 100.00 100.00|{100.00-0.00
DMVCCL | 98.95 98.45 98.47 98.33 98.69 | 98.57+0.25 DMVCCL | 98.99 98.43 98.33 98.35 98.72 | 98.56+0.28

ALOL ILMPFTC | 97.64 96.58 97.21 96.92 97.17 | 97.10£0.39 ALOI ILMPFTC | 97.67 96.30 97.04 96.84 96.97 | 96.96+0.49
F3WGCCL| 92.53 87.27 84.67 84.43 81.34|86.05+4.19 F3WGCCL| 91.98 86.08 83.05 82.15 79.67 | 84.58+4.73
MFCCL |97.64 96.58 97.21 96.92 97.17 | 97.10+0.39 MFCCL | 97.67 96.30 97.04 96.84 96.97 | 96.961+0.49
DMVCCL [100.00 100.00 100.00 86.67 100.00{ 97.33£5.96 DMVCCL |100.00 100.00 100.00 89.29 100.00| 97.86+4.79

TR ILMPFTC |100.00 100.00 100.00 100.00 100.00{100.00+0.00 TR ILMPFTC |100.00 100.00 100.00 100.00 100.00|{100.00+0.00
F3WGCCL| 38.89 33.33 33.33 33.33 33.33 | 34.44£2.48 F3WGCCL| 2620 9.52 9.09 9.52 494 | 11.85£8.25
MFCCL [100.00 100.00 100.00 100.00 100.00|100.00-+0.00 MFCCL |100.00 100.00 100.00 100.00 100.00|100.00+0.00
DMVCCL | 98.75 99.80 99.63 98.29 98.35 | 98.96+0.71 DMVCCL | 98.68 99.80 99.63 98.19 98.35 | 98.931+0.74

COIL ILMPFTC | 97.50 98.17 97.78 97.68 98.38 | 97.90+0.36 COIL ILMPFTC | 97.44 97.83 97.72 97.63 98.32 | 97.79+0.33
F3WGCCL| 7891 82.67 83.99 82.72 83.44 | 82.35+2.00 F3WGCCL| 80.43 82.28 82.64 81.34 83.05 | 81.95+1.06
MFCCL |97.34 98.06 97.30 97.34 98.08 | 97.624+0.41 MFCCL |97.20 97.83 97.19 97.23 97.99 | 97.49+0.39
DMVCCL | 86.38 88.29 87.10 8 5.71 88.40 | 87.17£1.17 DMVCCL | 86.26 88.23 87.09 8541 88.34 | 87.07+1.26

Minist ILMPFTC | 84.07 86.21 84.54 84.03 84.93 | 84.76+0.89 Minist ILMPFTC | 83.99 86.18 84.48 83.85 84.81 | 84.66+0.93
F3WGCCL| 74.45 69.38 60.02 57.65 60.18 | 64.34£7.22 F3WGCCL| 73.77 70.22 61.19 58.07 61.01 | 64.85+6.75
MFCCL | 84.07 86.21 84.54 84.03 84.93 | 84.76+0.89 MFCCL | 83.99 86.18 84.48 83.85 84.81 | 84.66+0.93
DMVCCL | 78.68 73.80 75.08 78.48 75.99 | 76.40+2.13 DMVCCL | 79.07 73.66 74.84 79.05 77.15 |76.75+2.45

Wiki ILMPFTC | 31.43 27.26 26.09 2399 23.78 | 26.51+£3.11 Wiki ILMPFTC | 30.83 27.38 26.11 24.37 24.03 |26.54%2.75
F3WGCCL| 26.78 22.60 22.55 18.80 19.01 |21.95£3.27 F3WGCCL| 22.84 20.64 21.98 15.19 15.79 | 19.294+3.56
MFCCL |31.43 2726 26.09 2399 23.78|26.51+3.11 MFCCL | 30.83 27.38 26.11 24.37 24.03 | 26.54+£2.75

example, concepts at coarser granularity are less sensitive to
missing values, while concepts at finer granularity are more
sensitive to missing values. Moreover, the extent of the concept
naturally provides a cross-view information that can be utilized
to guide the concept learning in incomplete views by lever-
aging the extents of concepts in complete views. Therefore,
exploring the methods for multi-view concept learning for
incomplete multi-view data based on these two characteristics
is an interesting topic.
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