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 a b s t r a c t

Concept-cognitive learning (CCL) provides an effective method for representing knowledge in data, with the use 
of concepts as knowledge carriers being its most significant characteristic. However, existing CCL models neglect 
the utilization of multi-scale information, resulting in insufficient representation capabilities of the learned con-
cepts. Therefore, this paper proposes a novel multi-scale concept-cognitive learning model to address this issue. 
Firstly, a rational multi-scale data construction method is provided based on the characteristics of CCL. Then, a 
multi-scale feature selection method is introduced, which considers both the inter-scale correlations and intra-
scale class distances. On this basis, progressive concepts are learned by integrating similar granular concepts at 
each scale to explicitly represent the knowledge in the data. Furthermore, a mechanism for the collaboration 
among progressive concepts at different scales is proposed to complete the classification task. Finally, a series of 
experiments are conducted to validate the effectiveness of the proposed CM-CCL model.

1.  Introduction

With the advancement of information technology, massive and com-
plex datasets data has been generated across various industries. Conse-
quently, extracting valuable information from this massive dataset has 
become a common challenge. Some methods were proposed to reveal 
valuable information in data in the form of knowledge by simulating 
the way humans perceive things.

Knowledge presentation in data can take various forms, with con-
cepts being a significant one [1]. Broadly speaking, concepts are the 
common characteristics of a group of entities [2]. They are derived 
through abstraction, allowing us to generalize the common features 
from a set of objects. Inspired by concepts in philosophy, Wille [3] uti-
lized lattice theory to learn concepts from tabular data and represent 
knowledge in the form of concepts. The basic elements of concepts are 
the extent, which reflects information about objects, and the intent, 
which reflects information about features. All concepts learned from 
a dataset form a lattice structure, known as a concept lattice. Subse-
quently, some studies attempted to learn all concepts from the data and 
represent knowledge in the form of concept lattices. Early research fo-
cused on theoretical aspects, particularly on the construction of concept 
lattices [4]. These studies have laid the theoretical foundation for knowl-
edge discovery with concepts as carriers. It is noted that, although con-
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cept lattices can fully reflect the relationships between objects and fea-
tures, on the one hand, it is difficult to learn all the concepts from data, 
especially when dealing with large-scale datasets. On the other hand, 
the applicability of concept lattices in practical scenarios is relatively 
weak. Therefore, inspired by the patterns of human cognition, some re-
search endeavored to learn concepts more efficiently, which leading to 
the development of the concept-cognitive learning (CCL) [5]. Notably, 
attempts to combine CCL with machine learning and granular comput-
ing theory have further enhanced its practicality [6]. In the theoretical 
domain, Xu et al. [7] explored the mechanism of information granula-
tion transformation from clues to concepts, and they [8] further investi-
gated concept learning method from movement viewpoint. The two-way 
concept learning models in fuzzy environment [9] were also studied. To 
enhance the representational power of concepts, a series of CCL methods 
were proposed, such as progressive concepts [10], three-way concepts 
[11], weighted concepts [12] and interval concepts [13]. In the appli-
cation fields, Wu et al. [14] introduced a CCL approach that utilizes 
concepts for multi-label classification. Guo et al. [15] proposed a mecha-
nism for the forgetting and recalling of concepts for dynamic knowledge 
fusion. Additionally, Wang et al. [16] presented a CCL model capable of 
processing multi-view data. These studies indicate that CCL can effec-
tively represent and integrate the knowledge in data, using concepts as 
the basic carriers.
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In the process of human cognition, multi-scale features are consis-
tently employed to achieve a comprehensive understanding of objects. 
This approach is crucial in fields such as computer vision, image process-
ing and machine learning. Multi-scale features enable models to better 
understand objects by capturing information at different levels of data. 
Inspired by the human ability to process multi-scale information, some 
studies attempted to incorporate similar strategies to accomplish vari-
ous tasks. For instance, deep neural networks are employed to extract 
multi-scale features from data, thereby enhancing the model’s ability to 
understand complex patterns. This approach is widely applied in tasks 
such as change detection [17], image detection [18], and multi-task 
learning [19]. Wu and Leung [20] proposed a multi-scale data analy-
sis model based on the idea of granular computing, in which objects 
can have multiple scale levels of values under each feature. This model 
is also referred to as the Wu-Leung model. On this basis, Li et al. [21] 
introduced a lattice-based generalized multi-scale data analysis model. 
Subsequently, based on the foundations laid in Wu and Leung[20], a 
series of methods were proposed to extract valuable information from 
multi-scale information systems.  On the one hand, some studies tried to 
select the optimal scales from multi-scale information systems, based on 
the consistency between the binary relations formed by the features at 
different scales and the binary relations formed with decision informa-
tion. Consequently, decision rules with improved generalization can be 
extracted at the optimal scale. For example, Yang et al. [22] proposed a 
method for selecting the optimal scale based on genetic algorithm. Wang 
et al. [23] investigated optimal scale selection for mixed data. Wang et 
al. [24] selected the optimal scale combination from multi-scale infor-
mation systems and extracted decision rules based on multi-granulation 
rough set theory. On the other hand, there are also some studies that 
explored the use of multi-scale information to address knowledge dis-
covery issues under various circumstances. For example, Zhang et al. 
[25] designed an unsupervised attribute reduction method by utilizing 
both multi-scale information and multiple correlations. Zhou et al. [26] 
proposed a semi-supervised feature selection method based on multi-
scale fuzzy information. Wang et al. [27] performed feature selection 
by defining multi-scale fuzzy entropy. Zhang et al. [28] utilized multi-
scale information to integrate multi-source data. Yin et al. [29] applied 
multi-scale information for multi-label learning. Yuan et al. [30] defined 
a novel zentropy uncertainty measure for multi-scale feature selection.

These studies demonstrate that multi-scale data play a significant 
role in knowledge discovery, which is mainly reflected in multi-scale 
data can provide richer measurement information. Compared with 
single-scale data, multi-scale data can characterize the relationships be-
tween objects and features at multiple scale levels. As a result, multi-
scale data have stronger representation ability. By employing appropri-
ate knowledge discovery methods, the knowledge hidden in the data 
can be effectively mined.

1.1.  Motivation

Previous research on CCL has been conducted on tabular data at a 
single scale, meaning that an object is assigned a single value for a given 
feature. However, multi-scale data are more widely used in practice. For 
example, a student’s grade can be precisely recorded on a percentage 
scale or roughly recorded as pass or fail. In fact, the ability to handle 
multi-scale information flexibly is a significant characteristic of human 
cognition. When recognizing an object, on the one hand, we need to 
grasp the overall characteristics from a coarser scale; on the other hand, 
we also need to learn some specific features from a finer-scale perspec-
tive. Intuitively, concept-cognitive learning, as a novel computational 
paradigm that simulates the process of human perception and under-
standing of objects, would significantly benefit from the incorporation 
of multi-scale information in the CCL process. Moreover, it should be 
noted that Wu et al. [20] have theoretically proposed a multi-scale data 
analysis model based on rough set theory, and numerous studies have 
been carried out on this basis. However, these studies have primarily 

focused on the theoretical selection of optimal scales while neglecting 
how to actively construct multi-scale data from single-scale data. There-
fore, it is meaningful to explore multi-scale data construction methods 
applicable to CCL, starting with single-scale data. Based on the above 
analysis, in order to introduce multi-scale information into CCL mod-
els, this paper proposes a method for constructing multi-scale data, and 
further discusses how to learn and integrate concepts across multiple 
scales.

1.2.  Contribution

Based on the above analysis, this paper proposes a novel collab-
orative multi-scale concept-cognitive learning model, and the overall 
framework of the proposed model is shown in Fig. 1. The main innova-
tions are as follows:

(1) By considering the characteristics of CCL, a reasonable multi-scale 
data construction method is presented. It fully exploits the measure-
ment information provided by each feature, thereby enhancing the 
representation ability of concepts at the data level.

(2) To enhance the efficiency of concept learning and eliminate redun-
dant information, a multi-scale feature selection method is proposed 
that simultaneously considers intra-scale class distances and inter-
scale correlations.

(3) By integrating similar concepts, a method for generating progressive 
concepts with enhanced knowledge representation capabilities from 
multi-scale data is studied. And the collaborative mechanism across 
progressive concepts at different scales is investigated to for classifi-
cation.

(4) A multi-scale knowledge representation framework based on con-
cepts is established, and its effectiveness is verified through a serious 
of experiments.

This paper is organized as follows. Section 2 reviews the basic no-
tations relevant to this paper. Section 3 provides a detailed discus-
sion of the proposed collaborative multi-scale concept-cognitive learn-
ing model. The experimental analysis is presented in Section 4, and Sec-
tion 5 concluded this paper.

2.  Preliminaries

In this section, foundational notations regarding fuzzy sets and fuzzy 
concepts are reviewed, which are discussed in detail in References [3] 
and [31].

2.1.  Concepts

A dataset can be described as a triplet 𝐹 = (𝐸,𝐴, 𝐼), where 𝐸 =
{𝑒1, 𝑒2,… , 𝑒𝑀} represents the set of objects, 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑁} denotes 
the set of features, and 𝐼 ∶ 𝐸 × 𝐴 → {0, 1} is a Boolean relation on the 
Cartesian product 𝐸 × 𝐴. 𝐹  is also called a formal context in formal con-
cept analysis theory. Here, for any 𝑒 ∈ 𝐸 and 𝑎 ∈ 𝐴, 𝐼(𝑒, 𝑎) = 1 indicates 
that object 𝑒 possesses feature 𝑎, while 𝐼(𝑒, 𝑎) = 0 represents that object 
𝑒 does not possess feature 𝑎. 

To represent the knowledge in the data in the form of concept, a 
pair of operators 𝑓 ∶ 2𝐸 → 2𝐴 and 𝑔 ∶ 2𝐴 → 2𝐸 can be defined [3]. More 
specifically, for any 𝑋 ∈ 2𝐸 and 𝐵 ∈ 2𝐴,

𝑓 (𝑋) = {𝑎 ∈ 𝐴|𝐼(𝑒, 𝑎) = 1,∀𝑒 ∈ 𝑋},

𝑔(𝐵) = {𝑒 ∈ 𝐸|𝐼(𝑒, 𝑎) = 1,∀𝑎 ∈ 𝐵}.
(1)

2𝐸 and 2𝐴 are, respectively, the power set of 𝐸 and 𝐴. Then, a pair (𝑋,𝐵)
is called a concept if and only if 𝑓 (𝑋) = 𝐵 and 𝑔(𝐵) = 𝑋. 𝑋 and 𝐵 are, 
respectively, referred to as the extent and intent of (𝑋,𝐵). Intuitively, 
𝑋 is the set of objects that possess all the features in 𝐵, and 𝐵 is the 
shared feature set that possessed by the objects in 𝑋. Concepts have the 
following properties [3].
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Fig. 1. Procedure of collaborative multi-scale concept-cognitive learning model.

Property 1. For 𝑋1, 𝑋2 ∈ 2𝐸 and 𝐵1, 𝐵2 ∈ 2𝐴, we have:

(1) 𝑋1 ⊆ 𝑋2 ⇒ 𝑓 (𝑋2) ⊆ 𝑓 (𝑋1), 𝐵1 ⊆ 𝐵2 ⇒ 𝑔(𝐵2) ⊆ 𝑔(𝐵1);
(2) 𝑓𝑔𝑓 (𝑋1) = 𝑓 (𝑋1), 𝑔𝑓𝑔(𝐵1) = 𝑔(𝐵1);
(3) (𝑔𝑓 (𝑋1), 𝑓 (𝑋1)) and (𝑔(𝐵1), 𝑓𝑔(𝐵1)) are concepts.

In Property 1, 𝑓 (𝑋1) ∈ 2𝐴, 𝑔𝑓 (𝑋1) ∈ 2𝐸 , and 𝑓𝑔𝑓 (𝑋1) ∈ 2𝐴. Accord-
ing to (3), we know that starting from the given learning clues (which 
can be a set of objects or a set of features), the concept can be learned 
after two mappings through the operators 𝑓 and 𝑔. 

A dataset containing label information can be further represented as 
a quintuple 𝐹 = (𝐸,𝐴, 𝐼,𝐷, 𝐽 ), where 𝐷 = {𝑑1, 𝑑2,… , 𝑑𝐾} is the set of 
labels, and 𝐽 ∶ 𝐸 ×𝐷 → {0, 1} is a Boolean relation on 𝐸 ×𝐷. Specifi-
cally, for 𝑒 ∈ 𝐸 and 𝑑𝑘 ∈ 𝐷, 𝐽 (𝑒, 𝑑𝑘) = 1 denotes that object 𝑒 possesses 
label 𝑑𝑘, while 𝐽 (𝑒, 𝑑𝑘) = 0 indicates that object 𝑒 does not possess label 
𝑑𝑘. In this paper, it is assumed that each object has and only has one 
label. Therefore, the objects in 𝐸 form a partition {𝐷1, 𝐷2,… , 𝐷𝐾} with 
respect to the label set 𝐷, where for each 𝑘 ∈ {1, 2,… , 𝐾}), 𝐷𝑘 = {𝑒 ∈
𝐸|𝐽 (𝑒, 𝑑𝑘) = 1}.

In order to learn the concepts associated with a given label, some 
studies attempt to learn concept from a local perspective. Given a dataset 
𝐹 = (𝐸,𝐴, 𝐼,𝐷, 𝐽 ), for any 𝑑𝑘 ∈ 𝐷, 𝑋 ∈ 2𝐷𝑘  and 𝐵 ∈ 2𝐴, a pair of local 
operators 𝑓𝑘 ∶ 2𝐷𝑘 → 2𝐴 and 𝑔𝑘 ∶ 2𝐴 → 2𝐷𝑘  is defined as follows:
𝑓𝑘(𝑋) = {𝑎 ∈ 𝐴|𝐼(𝑒, 𝑎) = 1,∀𝑒 ∈ 𝐷𝑘},

𝑔𝑘(𝐵) = {𝑒 ∈ 𝐷𝑘|𝐼(𝑒, 𝑎) = 1,∀𝑎 ∈ 𝐵}.
(2)

Based on 𝑓𝑘 and 𝑔𝑘, the concepts that associated with the label 𝑑𝑘 can 
be learned.

2.2.  Fuzzy concepts

In the dataset defined in Section 2.1, an object either possesses a fea-
ture or does not possess a feature. However, in practical applications, an 
object may possess a feature to a certain degree. Therefore, the defini-
tion of fuzzy concepts was developed to learn concepts from such fuzzy 
data.

Given a feature set 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑁}, the collection of all fuzzy 
sets on 𝐴 is denoted as 𝐴. For any 𝐵 ∈ 𝐴, 𝐵 = {𝐵(𝑎1)

𝑎1
, 𝐵(𝑎2)𝑎2

,… , 𝐵(𝑎𝑁 )
𝑎𝑁

}, 

where 𝐵(𝑎𝑛) ∈ [0, 1] (𝑛 ∈ {1, 2,… , 𝑁}) is degree of membership of 𝑎𝑛 in 
𝐵. It can also be understood as the degree to which 𝐵 possesses the 
feature 𝑎𝑛. For 𝐵1, 𝐵2 ∈ 𝐴, the inclusion relationship ⊆ between 𝐵1
and 𝐵2 is defined as follows:
𝐵1 ⊆ 𝐵2 ⇔ 𝐵1(𝑎) ≤ 𝐵2(𝑎),∀𝑎 ∈ 𝐴. (3)

A fuzzy dataset can be represented as a quintuple 𝐹 = (𝐸,𝐴, 𝐼,𝐷, 𝐽 ). 
The definitions of 𝐸, 𝐴, 𝐷, and 𝐽 are the same as that in Section 2.1. 
𝐼 ∶ 𝐸 × 𝐴 → [0, 1] is a fuzzy binary relation on 𝐸 × 𝐴. For 𝑒 ∈ 𝐸 and 
𝑎 ∈ 𝐴, 𝐼(𝑒, 𝑎) represents the degree to which 𝑒 possesses the feature 𝑎, it 
can also be understood as the value of object 𝑒 under feature 𝑎.

To learn concepts from fuzzy datasets, a pair of local operators 𝑓𝑘
and 𝑔𝑘 can be defined [4,31]. For 𝑑𝑘 ∈ 𝐷, 𝐵 ∈ 𝐴 and 𝑋 ∈ 2𝐷𝑘 ,

𝑓𝑘(𝑋)(𝑎) =
⋀

𝑒∈𝑋
𝐼(𝑒, 𝑎), 𝑎 ∈ 𝐴,

𝑔𝑘(𝐵) = {𝑒 ∈ 𝐷𝑘|𝐵(𝑎) ≤ 𝐼(𝑒, 𝑎),∀𝑎 ∈ 𝐴}.
(4)

The symbol ⋀ denotes the minimum operation. Specifically, given a 
feature 𝑎, ⋀𝑒∈𝑋 𝐼(𝑒, 𝑎) denotes the minimum value in the set {𝐼(𝑒, 𝑎)|𝑒 ∈
𝑋}. It should be noticed that 𝑔𝑘(𝐵) is a crisp set, and ̃𝑓𝑘(𝑋) is a fuzzy set 
where ̃𝑓𝑘(𝑋)(𝑎) represent the  degree to which ̃𝑓𝑘(𝑋) possesses 𝑎. Based 
on ̃𝑓𝑘 and 𝑔𝑘, a type of fuzzy concept can be learned. For 𝑋 ∈ 2𝐷𝑘  and 
𝐵 ∈ 𝐴, a pair (𝑋,𝐵) is referred to as a fuzzy concept if
𝑓𝑘(𝑋) = 𝐵, 𝑔𝑘(𝐵) = 𝑋. (5)

Let 𝑘 be the set of all fuzzy concepts learned from the data asso-
ciated with label 𝑑𝑘. A partial order ⪯ can be defined on 𝑘. For any 
(𝑋1, 𝐵1), (𝑋2, 𝐵2) ∈ 𝑘,

(𝑋1, 𝐵1) ⪯ (𝑋2, 𝐵2) ⇔ 𝑋1 ⊆ 𝑋2 ⇔ 𝐵2 ⊆ 𝐵1. (6)

According to the above formula, there is a generalization-specialization 
relationship between (𝑋1, 𝐵1) and (𝑋2, 𝐵2), where (𝑋1, 𝐵1) is called the 
specialization concept of (𝑋2, 𝐵2), and (𝑋2, 𝐵2) is called the generaliza-
tion concept of (𝑋1, 𝐵1). (𝑋1, 𝐵1) is also called a sub-concept of (𝑋2, 𝐵2)
Intuitively, the more objects a fuzzy concept’s extent contains, the fewer 
common features they share.

When the values of objects under features degenerate from the in-
terval [0, 1] to the set {0, 1}, the fuzzy concepts defined in this section 
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degenerate into the concepts described in Section 2.1. Therefore, the ap-
plication range of fuzzy concepts is broader. In the subsequent discus-
sion, we will refer to fuzzy concepts simply as concepts without caus-
ing confusion. Moreover, as fuzzy data is more frequently encountered 
in real-world scenarios, the datasets discussed subsequently are fuzzy 
datasets.

3.  Collaborative multi-scale concept-cognitive learning

Human cognition is inherently multi-scale, and concept-cognitive 
learning, as a novel computational paradigm that simulates human per-
ception and understanding of objects, would significantly benefit from 
the incorporation of multi-scale information. Thus, this section attempts 
to introduce multi-scale information into the concept learning process, 
according to the characteristics of CCL.

3.1.  Construction of multi-scale data

By combining the characteristics of CCL, the definition of how to 
generate multi-scale data is presented in Definition 1.
Definition 1. Let 𝐹 = (𝐸,𝐴, 𝐼,𝐷, 𝐽 ) be a dataset, where 𝐸 =
{𝑒1, 𝑒2,… , 𝑒𝑀}, 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑁}, and 𝐷 = {𝑑1, 𝑑2,… , 𝑑𝐾}. The multi-
scale dataset obtained from 𝐹  is defined as 𝑀𝐹 = {𝐹1, 𝐹2,… , 𝐹𝐿}, 
where:

(1) 𝐿 is the parameter representing the number of scales, which takes 
on positive integer values;

(2) 𝐹𝑙 = (𝐸,𝐴𝑙 , 𝐼𝑙 , 𝐷, 𝐽 ) is the dataset under the 𝑙th scale, where 𝐴𝑙 =
{𝑎𝑙𝑛|𝑛 = 1, 2,… , 𝑁}. The notation 𝑎𝑙𝑛 represents the feature of 𝑎𝑛 at 
the 𝑙th scale. 𝐼𝑙 ∶ 𝐸 × 𝐴𝑙 → [0, 1] is the fuzzy binary relation on 𝐸 ×
𝐴𝑙, where 𝐼𝑙(𝑒, 𝑎𝑙𝑛) represents the degree to which object 𝑒 possesses 
feature 𝑎𝑙𝑛;

(3) For any 𝑒 ∈ 𝐸 and 𝑎𝑛 ∈ 𝐴, 

𝐼𝑙(𝑒, 𝑎𝑙𝑛) = 𝑏 + (𝑐 − 𝑏)

(

𝐼(𝑒, 𝑎𝑛)
)𝑙 − 𝑏𝑙

𝑐𝑙 − 𝑏𝑙
, (7)

where (⋅)𝑙 represents the 𝑙th power, and 𝑐 and 𝑏 are the maximum and 
minimum values of all objects in 𝐸 under feature 𝑎𝑛, respectively.
Since the label information is already encoded in 𝑎𝑙𝑛, for simplicity 

we use 𝐼(𝑒, 𝑎𝑙𝑛) to denote 𝐼𝑙(𝑒, 𝑎𝑙𝑛) in the following discussion. It should 
be noticed that the set of objects 𝐸, the set of labels 𝐷, and the binary 
relation 𝐽 are the same across all scales. The algorithm to generate multi-
scale datasets is given in Algorithm 1. If we apply the local operators in 
Eq.  (4) on 𝐹𝑙, concepts under the 𝑙th scale can be learned. For 𝑋 ∈ 2𝐷𝑘

and 𝐵 ∈ 𝐴𝑙 , the local operators are denoted as 𝑓 𝑙
𝑘 and ̃𝑔𝑙𝑘, where 

𝑓 𝑙
𝑘(𝑋)(𝑎𝑙𝑛) =

⋀

𝑒∈𝑋
𝐼(𝑒, 𝑎𝑙𝑛), 𝑎

𝑙
𝑛 ∈ 𝐴𝑙 ,

𝑔𝑙𝑘(𝐵) = {𝑒 ∈ 𝐷𝑘|𝐵(𝑎𝑙𝑛) ≤ 𝐼(𝑒, 𝑎𝑙𝑛),∀𝑎
𝑙
𝑛 ∈ 𝐴𝑙}.

(8)

Algorithm 1: Generating multi-scale datasets.
Input: A dataset 𝐹 = (𝐸,𝐴, 𝐼,𝐷, 𝐽 ), and the number of scales 𝐿.
Output: The generated multi-scale dataset 

𝑀𝐹 = {𝐹𝑙 , 𝐹2,… , 𝐹𝐿}.
for 𝑙 ∈ {1, 2,… , 𝐿} do

for 𝑎𝑛 ∈ {𝑎1, 𝑎2,… , 𝑎𝑁} do
for 𝑒 ∈ 𝐸 do

Obtain 𝐼𝑙(𝑒, 𝑎𝑙𝑛) according to Eq.  (7);

Obtain the dataset under the 𝑙th scale 𝐹𝑙 = (𝐸,𝐴𝑙 , 𝐼𝑙 , 𝐷, 𝐽 );
return the generated multi-scale dataset 
𝑀𝐹 = {𝐹1, 𝐹2,… , 𝐹𝐿}. 

Compared to 𝐹 , 𝑀𝐹  contains richer measurement information and 
has some special multi-scale properties.

Property 2.  Let 𝑀𝐹 = {𝐹1, 𝐹2,… , 𝐹𝐿} be a multi-scale dataset, we have:
(1) For any 𝑒𝑚1

, 𝑒𝑚2
∈ 𝐸, 𝑎𝑛 ∈ 𝐴, and 𝑙 ∈ {1, 2,… , 𝐿}, if 𝐼(𝑒𝑚1

, 𝑎𝑛) ≥
𝐼(𝑒𝑚2

, 𝑎𝑛), then
𝐼(𝑒𝑚1

, 𝑎𝑙𝑛) ≥ 𝐼(𝑒𝑚2
, 𝑎𝑙𝑛);

(2) For any 𝑒 ∈ 𝐸, 𝑎𝑛 ∈ 𝐴, and 𝑙1, 𝑙2 ∈ {1, 2,… , 𝐿}, if 𝑙2 ≥ 𝑙1, then
𝐼(𝑒, 𝑎𝑙1𝑛 ) ≥ 𝐼(𝑒, 𝑎𝑙2𝑛 );

(3) For 𝑋 ∈ 2𝐷𝑘  and 𝑙1, 𝑙2 ∈ {1, 2,… , 𝐿}, (𝑔𝑙1𝑘 𝑓
𝑙1
𝑘 (𝑋), 𝑓 𝑙1

𝑘 (𝑋)) and 
(𝑔𝑙2𝑘 𝑓

𝑙2
𝑘 (𝑋), 𝑓 𝑙2

𝑘 (𝑋)) are concepts, and
𝑔𝑙1𝑘 𝑓

𝑙1
𝑘 (𝑋) = 𝑔𝑙2𝑘 𝑓

𝑙2
𝑘 (𝑋).

Proof.

(1) It is obvious according to Eq.  (7).
(2) Since 𝑙2 ≥ 𝑙1, we have 

(

𝐼(𝑒, 𝑎𝑛)
)𝑙𝑙 ≥

(

𝐼(𝑒, 𝑎𝑛)
)𝑙2 . Then, according to 

Eq.  (7), 𝐼(𝑒, 𝑎𝑙1𝑛 ) ≥ 𝐼(𝑒, 𝑎𝑙2𝑛 ).
(3) According to Reference [4], (𝑔𝑙1𝑘 𝑓

𝑙1
𝑘 (𝑋), 𝑓 𝑙1

𝑘 (𝑋)) and 
(𝑔𝑙2𝑘 𝑓

𝑙2
𝑘 (𝑋), 𝑓 𝑙2

𝑘 (𝑋)) are concepts that can be proven.
We now prove ̃𝑔𝑙1𝑘 𝑓

𝑙1
𝑘 (𝑋) = 𝑔𝑙2𝑘 𝑓

𝑙2
𝑘 (𝑋) as follows. For any 𝑒𝑚1

, 𝑒𝑚2
∈

𝐷𝑘 and 𝑎𝑛 ∈ 𝐴, according to Eq.  (7), we get
𝐼(𝑒𝑚2

, 𝑎𝑛) ≤ 𝐼(𝑒𝑚1
, 𝑎𝑛) ⇔ 𝐼(𝑒𝑚2

, 𝑎𝑙1𝑛 ) ≤ 𝐼(𝑒𝑚1
, 𝑎𝑙1𝑛 ), (9)

𝐼(𝑒𝑚2
, 𝑎𝑛) ≤ 𝐼(𝑒𝑚1

, 𝑎𝑛) ⇔ 𝐼(𝑒𝑚2
, 𝑎𝑙2𝑛 ) ≤ 𝐼(𝑒𝑚1

, 𝑎𝑙2𝑛 ). (10)

It implies that
𝐼(𝑒𝑚2

, 𝑎𝑙1𝑛 ) ≤ 𝐼(𝑒𝑚1
, 𝑎𝑙1𝑛 ) ⇔ 𝐼(𝑒𝑚2

, 𝑎𝑙2𝑛 ) ≤ 𝐼(𝑒𝑚1
, 𝑎𝑙2𝑛 ). (11)

Based on Eq.  (11), for any 𝑋 ∈ 2𝐷𝑘 , we know that
⋀

𝑒∈𝑋
𝐼(𝑒, 𝑎𝑙1𝑛 ) ≤ 𝐼(𝑒𝑚1

, 𝑎𝑙1𝑛 ) ⇔
⋀

𝑒∈𝑋
𝐼(𝑒, 𝑎𝑙2𝑛 ) ≤ 𝐼(𝑒𝑚1

, 𝑎𝑙2𝑛 ). (12)

Thus,

𝑓 𝑙1
𝑘 (𝑋)(𝑎𝑙1𝑛 ) ≤ 𝐼(𝑒𝑚1

, 𝑎𝑙1𝑛 ) ⇔ 𝑓 𝑙2
𝑘 (𝑋)(𝑎𝑙2𝑛 ) ≤ 𝐼(𝑒𝑚1

, 𝑎𝑙2𝑛 ). (13)

Based on Eqs.  (8) and (13), it follows that ̃𝑔𝑙1𝑘 𝑓
𝑙1
𝑘 (𝑋) = 𝑔𝑙2𝑘 𝑓

𝑙2
𝑘 (𝑋).

 ∎
Property 2 demonstrates that: (1) The multi-scale data does not alter 

the relative degree of features possession among objects within the orig-
inal data; (2) Starting from the same clue X, the extent of the learned 
concepts under different scales are the same. An example is given in 
Example 1 to illustrate this progress.
Example 1. A dataset 𝐹  is represented in Table 1, where 𝐸 =
{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7}, 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} and 𝐷 = {𝑑1, 𝑑2}. Suppose 𝐿 =
3, then the generated multi-scale dataset is 𝑀𝐹 = {𝐹1, 𝐹2, 𝐹3}. The 
datasets at the first, second, and third scales are presented in Tables 2–4, 
respectively. Let 𝑋 = {𝑒5, 𝑒6} ⊆ 𝐷2, based on the discussion in this sec-
tion, it can be calculated that:

(𝑔12𝑓
1
2 (𝑋), 𝑓 1

2 (𝑋)) =

(

{𝑒5, 𝑒6},

{

0.70
𝑎11

, 0.10
𝑎12

, 0.10
𝑎13

, 0.80
𝑎14

})

,

(𝑔22𝑓
2
2 (𝑋), 𝑓 2

2 (𝑋)) =

(

{𝑒5, 𝑒6},

{

0.58
𝑎21

, 0.10
𝑎22

, 0.10
𝑎23

, 0.73
𝑎24

})

,

(𝑔32𝑓
3
2 (𝑋), 𝑓 3

2 (𝑋)) =

(

{𝑒5, 𝑒6},

{

0.48
𝑎31

, 0.10
𝑎32

, 0.10
𝑎33

, 0.66
𝑎34

})

.

Notice that at different scales, based on the same clue, one can learn 
concepts that have the same extent but different intent.

In Example 1, as the scale increases, it can be observed that objects 
with a low degree of possession of a certain feature will become even 
less possessive of that feature, while objects with a higher degree of 
possession will relatively become more possessive. In other words, it can 
be understood that as the scale increases, some noise will be gradually 
eliminated, and relatively important information will be retained.
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Table 1 
An example of a dataset.
 Objects 𝑎1 𝑎2 𝑎3 𝑎4 𝑑1 𝑑2

𝑒1  0.10  0.80  0.70  0.15  1  0
𝑒2  0.10  0.90  0.90  0.10  1  0
𝑒3  0.30  0.90  0.85  0.20  1  0
𝑒4  0.50  0.30  0.20  0.70  0  1
𝑒5  0.70  0.10  0.15  0.80  0  1
𝑒6  0.90  0.20  0.10  0.90  0  1
𝑒7  0.70  0.10  0.10  0.70  0  1

Table 2 
The first scale of the multi-scale dataset.
 Objects 𝑎11 𝑎12 𝑎13 𝑎14 𝑑1 𝑑2

𝑒1  0.10  0.80  0.70  0.15  1  0
𝑒2  0.10  0.90  0.90  0.10  1  0
𝑒3  0.30  0.90  0.85  0.20  1  0
𝑒4  0.50  0.30  0.20  0.70  0  1
𝑒5  0.70  0.10  0.15  0.80  0  1
𝑒6  0.90  0.20  0.10  0.90  0  1
𝑒7  0.70  0.10  0.10  0.70  0  1

Table 3 
The second scale of the multi-scale dataset.
 Objects 𝑎21 𝑎22 𝑎23 𝑎24 𝑑1 𝑑2

𝑒1  0.10  0.73  0.58  0.11  1  0
𝑒2  0.10  0.90  0.90  0.10  1  0
𝑒3  0.18  0.90  0.82  0.13  1  0
𝑒4  0.34  0.18  0.13  0.58  0  1
𝑒5  0.58  0.10  0.11  0.73  0  1
𝑒6  0.90  0.13  0.10  0.90  0  1
𝑒7  0.58  0.10  0.10  0.58  0  1

Table 4 
The third scale of the multi-scale dataset.
 Objects 𝑎31 𝑎32 𝑎33 𝑎34 𝑑1 𝑑2

𝑒1  0.10  0.67  0.48  0.10  1  0
𝑒2  0.10  0.90  0.90  0.10  1  0
𝑒3  0.13  0.90  0.77  0.11  1  0
𝑒4  0.24  0.13  0.10  0.48  0  1
𝑒5  0.48  0.10  0.10  0.66  0  1
𝑒6  0.90  0.10  0.10  0.90  0  1
𝑒7  0.48  0.10  0.10  0.48  0  1

3.2.  Feature selection based on inter-scale correlation and intra-scale class 
distance

In multi-scale datasets, the rich information provided by features are 
mined. However, some generated features may have weak representa-
tional power or be redundant. Therefore, by considering the character-
istic of CCL, a feature selection method that simultaneously considers 
inter-scale correlations and intra-scale class distances is proposed in this 
subsection.

For a multi-scale dataset 𝑀𝐹 = {𝐹1, 𝐹2,… , 𝐹𝐿}, let 𝐴𝑇 = {𝑎𝑙𝑛|𝑛 =
1, 2,… , 𝑁, 𝑙 = 1, 2,… , 𝐿} be the set of features under all scales. First, 
the following definitions are given to measure the intra-scale class dis-
tances.

Definition 2. For any 𝑎𝑙𝑛 ∈ 𝐴𝑇 , the distance between 𝑒𝑚1
, 𝑒𝑚2

∈ 𝐸 under 
𝑎𝑙𝑛 is define as follows:

𝑑𝑖𝑠(𝑎𝑙𝑛|𝑒𝑚1
, 𝑒𝑚2

) =

{

0, 𝐽 (𝑒𝑚1
, ∶) = 𝐽 (𝑒𝑚2

, ∶),

||𝐼(𝑒𝑚1
, 𝑎𝑙𝑛) − 𝐼(𝑒𝑚2

, 𝑎𝑙𝑛)||1, 𝐽 (𝑒𝑚1
, ∶) ≠ 𝐽 (𝑒𝑚2

, ∶).

(14)

|| ⋅ ||1 represents 1-norm. 𝐽 (𝑒𝑚1
, ∶) = 𝐽 (𝑒𝑚2

, ∶) indicates that 𝑒𝑚1
 and 𝑒𝑚2

have the same label, i.e., for all 𝑑𝑘 ∈ 𝐷, 𝐽 (𝑒𝑚1
, 𝑑𝑘) = 𝐽 (𝑒𝑚2

, 𝑑𝑘). 𝐽 (𝑒𝑚1
, ∶

) ≠ 𝐽 (𝑒𝑚2
, ∶) represents that there exists 𝑑𝑘 ∈ 𝐷 such that 𝐽 (𝑒𝑚1

, 𝑑𝑘) ≠
𝐽 (𝑒𝑚2

, 𝑑𝑘).

Based on Definition 2, the class distance under each feature is defined 
as follows.
Definition 3. For any 𝑎𝑙𝑛 ∈ 𝐴𝑇 , the class distance with respect to 𝑎𝑙𝑛 is 
defined as follows:
𝑐𝑑(𝑎𝑙𝑛) =

∑

𝑒𝑚1∈𝐸

∑

𝑒𝑚2∈𝐸
𝑑𝑖𝑠(𝑎𝑙𝑛|𝑒𝑚1

, 𝑒𝑚2
). (15)

𝑐𝑑(𝑎𝑙𝑛) reflects the discriminative power of feature 𝑎𝑙𝑛 in distinguishing 
objects across different classes.

Then, the Pearson correlation coefficient is used to measure the cor-
relation among all features in 𝐴𝑇 . For any 𝑎𝑙1𝑛1 , 𝑎

𝑙2
𝑛2 ∈ 𝐴𝑇 , the Pearson 

correlation coefficient 𝑃 (𝑎𝑙1𝑛1 , 𝑎
𝑙2
𝑛2 ) between them is defined as follows,

𝑃 (𝑎𝑙1𝑛1 , 𝑎
𝑙2
𝑛2 ) =

∑

𝑒∈𝐸 (𝐼(𝑒, 𝑎
𝑙1
𝑛1 ) − 𝑎𝑙1𝑛1 )(𝐼(𝑒, 𝑎

𝑙2
𝑛2 ) − 𝑎𝑙2𝑛2 )

√

∑

𝑒∈𝐸 (𝐼(𝑒, 𝑎
𝑙1
𝑛1 ) − 𝑎𝑙1𝑛1 )

2 ∑
𝑒∈𝐸 (𝐼(𝑒, 𝑎

𝑙2
𝑛2 ) − 𝑎𝑙2𝑛2 )

2

, (16)

where 𝑎𝑙1𝑛1  represents the average value of feature 𝑎
𝑙1
𝑛1 , and 𝑎

𝑙2
𝑛2  is the 

average value of 𝑎𝑙2𝑛2 .
Then, the features that are both representative and discriminative 

are expected to be selected from 𝐴𝑇 . Discriminability is given by Eq. 
(15), while the Pearson correlation coefficient can reflect representative-
ness to some extent. Based on this idea, the proposed feature selection 
method can paper be divided into the following two steps.

(1) Calculate the 𝑐𝑑 value of each feature in 𝐴𝑇  according to Defini-
tion 3, and sort all them from largest to smallest based on the 𝑐𝑑
values. On the basis of the sorted features, calculate the correlation 
coefficient matrix 𝑃  among these features.

(2) Based on 𝑃 , we aim to select a feature subset 𝑆𝐴𝑇 = {𝑎𝑙1𝑛1 , 𝑎
𝑙2
𝑛2 ,… , 𝑎𝑙𝑖𝑛𝑖}

from 𝐴𝑇 , where the features in 𝑆𝐴𝑇  correspond to the top-𝑖 features 
with the largest 𝑐𝑑 values in 𝐴𝑇  (𝑐𝑑(𝑎𝑙1𝑛1 ) ≥ 𝑐𝑑(𝑎𝑙2𝑛2 ) ≥ … ≥ 𝑐𝑑(𝑎𝑙𝑖𝑛𝑖 )). 
First, we define the set of features whose Pearson correlation coeffi-
cient with 𝑎𝑙𝑛 exceeds 𝛿 as 𝑐𝑜𝑟𝑟𝛿𝑎𝑙𝑛 = {𝑎

𝑙𝑗
𝑛𝑗 |𝑃 (𝑎

𝑙
𝑛, 𝑎

𝑙𝑗
𝑛𝑗 ) > 𝛿}. The features 

in 𝑐𝑜𝑟𝑟𝛿
𝑎𝑙𝑛
 can be represented by 𝑎𝑙𝑛 within the threshold 𝛿. Then, we 

aim to select the top-𝑖 features that satisfy the following two condi-
tions:

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙1𝑛1

⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙2𝑛2

⋃

…
⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙𝑖−1𝑛𝑖−1

⊂ 𝐴𝑇 , (17)

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙1𝑛1

⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙2𝑛2

⋃

…
⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙𝑖𝑛𝑖

= 𝐴𝑇 , (18)

where 𝛿 ∈ [−1, 1] is a parameter.

After obtaining 𝑆𝐴𝑇 , retaining the features existing in 𝑆𝐴𝑇  at each 
scale can obtain the multi-scale dataset after feature selection. The pur-
pose of the above process is to identify features that are both discrimi-
native and representative at each scale, thereby enhancing the represen-
tation ability of the subsequently learned concepts from a data-driven 
perspective. The detailed method to obtain 𝑆𝐴𝑇  is given in Algorithm 2. 
Based on Algorithm 2, the features with strong discriminability and rep-
resentativeness are selected at each scale.
Example 2. Continued from Example 1. If 𝛿 = 0.5, according to Al-
gorithm 3, it can be calculated that 𝐴′

1 = {𝑎12, 𝑎
1
3, 𝑎

1
4}, 𝐴′

2 = {𝑎22, 𝑎
2
3}, 

𝐴′
3 = {𝑎32}. If 𝛿 = 1, then 𝐴′

1 = {𝑎11, 𝑎
1
2, 𝑎

1
3, 𝑎

1
4}, 𝐴′

2 = {𝑎21, 𝑎
2
2, 𝑎

2
3, 𝑎

2
4}, 𝐴′

3 =
{𝑎31, 𝑎

3
2, 𝑎

3
3, 𝑎

3
4}. After feature selection, the corresponding multi-scale 

dataset 𝑀𝐹 ′ = {𝐹 ′
1 , 𝐹

′
2 , 𝐹

′
3} is also obtained, where 𝐹 ′

1 = (𝐸,𝐴′
1, 𝐼1, 𝐷, 𝐽 ), 

𝐹 ′
2 = (𝐸,𝐴′

2, 𝐼2, 𝐷, 𝐽 ), and 𝐹 ′
3 = (𝐸,𝐴′

3, 𝐼3, 𝐷, 𝐽 ).
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Algorithm 2: Feature selection in multi-scale datasets.
Input: A multi-scale dataset 𝑀𝐹 = {𝐹1, 𝐹2,… , 𝐹𝐿}, the 

parameter 𝛿.
Output: The multi-scale dataset 𝑀𝐹 ′ = {𝐹 ′

𝑙 |𝑙 = 1, 2,… , 𝐿}
after feature selection.

Calculate the 𝑐𝑑 value of all feature in 𝐴𝑇  and sort them in 
descending order;
Calculate the Pearson correlation coefficients matrix 𝑃 ;
for 𝑖 ∈ {2, 3,… , |𝐴𝑇 |} do

𝑇 𝑒𝑚𝑝1 ← 𝑐𝑜𝑟𝑟𝛿
𝑎𝑙1𝑛1

⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙2𝑛2

⋃

…
⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙𝑖−1𝑛𝑖−1

;

𝑇 𝑒𝑚𝑝2 ← 𝑐𝑜𝑟𝑟𝛿
𝑎𝑙1𝑛1

⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙2𝑛2

⋃

…
⋃

𝑐𝑜𝑟𝑟𝛿
𝑎𝑙𝑖𝑛𝑖
;

if 𝑇 𝑒𝑚𝑝1 ⊂ 𝐴𝑇  and 𝑇 𝑒𝑚𝑝2 = 𝐴𝑇  then
break;

𝑆𝐴𝑇  are top-𝑖 features with the largest 𝑐𝑑 values in 𝐴𝑇 ;
for 𝑙 ∈ {1, 2,… , 𝐿} do

𝐴′
𝑙 ← 𝐴𝑙 ∩ 𝑆𝐴𝑇 ;

return the multi-scale dataset 𝑀𝐹 ′ = {𝐹 ′
1 , 𝐹

′
2 ,… , 𝐹 ′

𝐿} after 
feature selection. 

3.3.  Concept-cognitive learning for multi-scale data

In this subsection, the CCL model for the multi-scale dataset 𝑀𝐹 ′ =
{𝐹 ′

1 , 𝐹
′
2 ,… , 𝐹 ′

𝐿} after feature selection is investigated.
In 𝑀𝐹 ′, for any 𝑑𝑘 ∈ 𝐷, 𝑋 ∈ 2𝐷𝑘  and 𝐵 ∈ 𝐴′

𝑙 , the local operators 
𝑓 𝑙
𝑘 and 𝑔𝑙𝑘 to learn concepts at the 𝑙th scale associated with label 𝑑𝑘 are 
defined as follows,

𝑓 𝑙
𝑘(𝑋)(𝑎𝑙𝑛) =

⋀

𝑒∈𝑋
𝐼(𝑒, 𝑎𝑙𝑛), 𝑎

𝑙
𝑛 ∈ 𝐴′

𝑙 ,

𝑔𝑙𝑘(𝐵) = {𝑒 ∈ 𝐷𝑘|𝐵(𝑎𝑙𝑛) ≤ 𝐼(𝑒, 𝑎𝑙𝑛),∀𝑎
𝑙
𝑛 ∈ 𝐴′

𝑙}.
(19)

Based on the discussion in Section 2, it is extremely difficult to learn 
all concepts from a dataset. Therefore, granular concepts learned from 
individual objects as clues received considerable attention. For example, 
(𝑔𝑙𝑘𝑓

𝑙
𝑘({𝑒}), 𝑓

𝑙
𝑘({𝑒})) is a concept induced by 𝑒 ∈ 𝐷𝑘 under the 𝑙th scale, 

and it is simply recorded as (𝑔𝑙𝑘𝑓 𝑙
𝑘(𝑒), 𝑓

𝑙
𝑘(𝑒)). Let 𝐺𝑙

𝑘 = {(𝑔𝑙𝑘𝑓
𝑙
𝑘(𝑒), 𝑓

𝑙
𝑘(𝑒))|𝑒 ∈

𝐷𝑘} is be set of granular concepts with respect to 𝐷𝑘 under the 𝑙th scale.
It should be noted that while granular concepts are relatively easy 

to learn, they possess a weaker representational capability. This implies 
that the intents of granular concepts may not adequately reflect the char-
acteristics of the features associated with 𝑑𝑘. Therefore, some methods 
attempt to obtain concepts with stronger representational capabilities. 
Inspired by Yuan et al. [10] and Mi et al. [32], this subsection proposes 
a CCL method that integrates similar granular concepts to enhance their 
representational power. A concept (𝑋,𝐵) ∈ 𝐺𝑙

𝑘 is called a maximal con-
cept in 𝐺𝑙

𝑘, if:

(1) There exists (𝑋1, 𝐵1) ∈ 𝐺𝑙
𝑘 such that 𝑋1 ⊆ 𝑋;

(2) There does not exist (𝑋2, 𝐵2) ∈ 𝐺𝑙
𝑘 such that 𝑋 ⊂ 𝑋2.

Based on maximal concepts, the method to learn progressive concepts 
is defined in the following way.

Definition 4. Let (𝑋,𝐵) be a maximal concept in 𝐺𝑙
𝑘, suppose 

{(𝑋𝑖, 𝐵𝑖)|𝑖 = 1, 2,… , 𝑗} ⊆ 𝐺𝑙
𝑘 and 𝑋𝑖 ⊆ 𝑋 (𝑖 ∈ {1, 2,… , 𝑗)}. A progressive 

concept ( ,) is defined as follows:
 = 𝑋1 ∪𝑋2 ∪𝑋3 ∪… ∪𝑋𝑗 ,

 = 1
2𝑗−1

(𝐵1 + 𝐵2 + 2𝐵3 +…+ 2𝑗−2𝐵𝑗 ),
(20)

where |𝑋1| ≤ |𝑋2| ≤ … ≤ |𝑋𝑗 |.

It can be seen that progressive concepts are formed by integrating max-
imal concepts with their sub-concepts. The more objects a concept’s ex-
tent encompasses, the more effectively it reflects the core characteristics 
of those objects. Consequently, during the fusion process, its correspond-
ing weight is increased.

The set of progressive concepts learned from 𝐺𝑙
𝑘n is called a concept 

subspace associated with label 𝑑𝑘 under the 𝑙th scale, and is denoted 
as 𝐶𝑆𝑙

𝑘. The detailed process of generating 𝐶𝑆𝑙
𝑘 is elaborated in Algo-

rithm 3. Based on 𝐶𝑆𝑙
𝑘, a concept space 𝐶𝑆 = {𝐶𝑆𝑙

𝑘|𝑘 = 1, 2,… , 𝐾, 𝑙 =
1, 2,… , 𝐿} is then generated.

Algorithm 3: The construction of progressive concepts.
Input: A set of granular concept 𝐺𝑙

𝑘.
Output: The concept subspace 𝐶𝑆𝑙

𝑘.
Let {(𝑋𝑖, 𝐵𝑖)|𝑖 = 1, 2,… , 𝑝} be the set maximal concepts in 𝐺𝑙

𝑘, 
and |𝑋1| ≥ |𝑋2| ≥ … ≥ |𝑋𝑝|;
for 𝑖 ∈ {1, 2,… , 𝑝} do

Find the sub-concepts set 𝑆 of (𝑋𝑖, 𝐵𝑖) from 𝐺𝑙
𝑘;

Compute ( ,) according to Definition 4;
Add ( ,) to 𝐶𝑆𝑙

𝑘;
𝐺𝑙
𝑘 ← 𝐺𝑙

𝑘 − 𝑆;

return 𝐶𝑆𝑙
𝑘.

Example 3. Continued from Example 2, if 𝛿 = 0.5, it can be calculated 
that:

𝐶𝑆1
1 =

{

(

{𝑒1, 𝑒3}, {
0.78
𝑎12

, 0.10
𝑎13

, 0.18
𝑎14

}
)

,

(

{𝑒2}, {
0.90
𝑎12

, 0.90
𝑎13

, 0.10
𝑎14

}
)

}

;

𝐶𝑆1
2 =

{

(

{𝑒4, 𝑒5, 𝑒6, 𝑒7}, {
0.18
𝑎12

, 0.13
𝑎13

, 0.83
𝑎14

}
)

}

;

𝐶𝑆2
1 =

{

(

{𝑒1, 𝑒2, 𝑒3}, {
0.86
𝑎22

, 0.80
𝑎23

}
)

}

;

𝐶𝑆2
2 =

{

(

{𝑒4, 𝑒5, 𝑒6, 𝑒7}, {
0.15
𝑎22

, 0.12
𝑎23

}
)

}

;

𝐶𝑆3
1 =

{

(

{𝑒1, 𝑒2, 𝑒3}, {
0.84
𝑎32

}
)

}

;

𝐶𝑆3
2 =

{

(

{𝑒4, 𝑒5, 𝑒6, 𝑒7}, {
0.12
𝑎32

}
)

}

.

3.4.  Scale collaboration and uncertainty assessment

This subsection explores the collaborative mechanisms of progres-
sive concepts at various scales and completes classification task using 
concepts as knowledge carriers. First, the following discussion is based 
on the two assumptions:

(1) Progressive concepts can reflect the essential characteristics of data;
(2) The representational power of progressive concepts is stronger than 

that of data.

According to the discussion in Section 3.3, for any 𝑙 ∈ {1, 2,… , 𝐿}, 
we can learn the concept set family 𝐶𝑆𝑙 = {𝐶𝑆𝑙

𝑘|𝑘 = 1, 2,… , 𝐾} from 𝐹 ′
𝑙 . 

It can be observed that the progressive concepts can be seen as a more 
powerful method of knowledge representation that is abstracted from 
data. The intents of progressive concepts along with the corresponding 
labels under the 𝑙th scale are denoted as 𝐼𝑛𝑡𝑙 for simplicity, and define 
𝐼𝑛𝑡 = {𝐼𝑛𝑡1, 𝐼𝑛𝑡2,… , 𝐼𝑛𝑡𝐿}. An example is provided below for further 
clarification.

Example 4. Continued from Example 3. The intents of all progressive 
concepts learned from 𝐹 ′

1 , 𝐹 ′
2 , and 𝐹 ′

3 , along with their labels, are listed 
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Table 5 
The intents of progressive concepts and their labels under 
the first scale.
 Extent 𝑎12 𝑎13 𝑎14 𝑑1 𝑑2

𝑒1 , 𝑒3  0.78  0.10  0.18  1  0
𝑒2  0.90  0.90  0.10  1  0
𝑒4 , 𝑒5 , 𝑒6 , 𝑒7  0.18  0.13  0.83  0  1

Table 6 
The intents of progressive concepts and their labels under 
the second scale.
 Extent 𝑎22 𝑎23 𝑑1 𝑑2

𝑒1 , 𝑒2 , 𝑒3  0.86  0.80  1  0
𝑒4 , 𝑒5 , 𝑒6 , 𝑒7  0.15  0.12  0  1

Table 7 
The intents of progressive concepts and their labels under 
the third scale.
 Extent 𝑎32 𝑑1 𝑑2

𝑒1 , 𝑒2 , 𝑒3  0.84  1  0
𝑒4 , 𝑒5 , 𝑒6 , 𝑒7  0.12  0  1

in Tables 5–7, i.e., 𝐼𝑛𝑡1, 𝐼𝑛𝑡2 and 𝐼𝑛𝑡3 correspond to Tables 5–7, respec-
tively.

For convenience, the feature part and the label part of dataset 𝐹 ′
𝑙 ∈

𝑀𝐹 ′ are denoted as 𝐹𝑒𝑎(𝐹 ′
𝑙 ) and 𝐿𝑎𝑏(𝐹 ′

𝑙 ), respectively. In subsequent 
discussions, we aim to give the labels of new objects. To achieve this, we 
need to introduce a classifier, denoted as 𝐶𝐿, which could be K-Nearest 
Neighbors, Decision Tree or else. It should be noted that the classifiers 
at all scales should be the same type. As is well known, the train feature, 
train label and the test feature are the necessary inputs for a classifier, 
and the output is a predicted category 𝑌 . It can be described as
𝑌 ← 𝐶𝐿({train feature,train label}|test feature). (21)

We provide a detailed description of the detailed process. The 
multi-scale dataset after feature selection is denoted by 𝑀𝐹 ′ =
{𝐹 ′

1 , 𝐹
′
2 ,… , 𝐹 ′

𝐿}. The intents of progressive concept with corresponding 
labels are represented by 𝐼𝑛𝑡 = {𝐼𝑛𝑡1, 𝐼𝑛𝑡2,… , 𝐼𝑛𝑡𝐿}. A new object 𝑜 is 
characterized by its features 𝑇𝑜 = {𝐼(𝑜, 𝑎𝑙𝑛)|𝑎

𝑙
𝑛 ∈ 𝐴′

𝑙 , 𝑙 = 1, 2,… , 𝐿}. Then, 
the label of 𝑜 is given based on 𝐶𝐿, 𝑀𝐹 ′ and 𝐼𝑛𝑡. To this end, two ques-
tions are considered here: (1) How to collaborate on integrating the pro-
gressive concepts across various scales to predict the label of object 𝑜; 
(2) How to address the representational disparities between progressive 
concepts and data.

For question (1), the label of object 𝑜 is determined as follows:

𝑌 ←
𝐿
∑

𝑙=1
𝑊𝑙 ⋅ 𝐶𝐿(𝐼𝑛𝑡𝑙|𝑇𝑜). (22)

For question (2), we assess the uncertainty of data within each scale by 
evaluating the differences between progressive concepts and data, and 
generate a weight vector 𝑊  as follows:
𝑊 = {𝑊1,𝑊2,… ,𝑊𝐿}. (23)

The weight 𝑊  is calculated using the following equation:

𝑊𝑙 = exp

(

2 × 𝑐𝑜𝑢𝑛𝑡𝑙
∑𝐿

𝑙=1 𝑐𝑜𝑢𝑛𝑡𝑙

)

. (24)

Here, 𝑐𝑜𝑢𝑛𝑡𝑙 refers to the number of correct predictions obtained by com-
paring the results from the classifier 𝐶𝐿, which is trained on 𝐼𝑛𝑡𝑙 and 
tested on 𝐹𝑒𝑎(𝐹 ′

𝑙 ) , against the ground truth 𝐿𝑎𝑏(𝐹 ′
𝑙 ), i.e.,

𝑐𝑜𝑢𝑛𝑡𝑙 ← 𝐿𝑎𝑏(𝐹 ′
𝑙 ) ← 𝐶𝐿(𝐼𝑛𝑡′𝑙|𝐹𝑒𝑎(𝐹 ′

𝑙 )). (25)

Some explanations are provided here for the convenience of the read-
ers’ understanding.

(1) In Eq.  (22), 𝐶𝐿(𝐼𝑛𝑡𝑙|𝑇𝑜) represents the label in vector form. For 
example, suppose 𝐷 = {𝑑1, 𝑑2, 𝑑3}, if the predicted label is 𝑑1 ∈ 𝐷, 
then it is represented as (1, 0, 0). Suppose there are two scales and 
𝑊 = {1.5, 1.2}, where 1.5 and 1.2 represents the weight of the data 
at the first and the second scale, respectively. For an object 𝑜, if it 
is predicted that the labels of 𝑜 is 𝑑1 and 𝑑2 at the first and second 
scales respectively, then it can be calculated that 1.5 × (1, 0, 0) + 1.2 ×
(0, 1, 0) = (1.5, 1.2, 0). The label corresponding to the maximum value 
in (1.5, 1.2, 0) is the label of 𝑜, indicating that the label of 𝑜 is 𝑑1.

(2) The weights of each scale are calculated based on the differences in 
the representational capabilities between intents of the progressive 
concepts and the data. After learning the progressive concepts from 
the data, we take the intents of the progressive concepts as the train-
ing set, while the data itself serves as the testing set under each scale. 
We then compare the prediction results with the true labels of the 
data to assess the uncertainty of the data at each scale, as represented 
by the weight vector 𝑊 .

The content discussed in this subsection corresponds to Algorithm 4. 
Overall, the proposed model is divided into three stages: generating the 
multi-scale dataset, advancing feature selection and learning progres-
sive concepts, and collaboratively predicting the labels for new objects 
based on progressive concepts across multiple scales. The time complex-
ity of the first stage is 𝑂(𝐿|𝐴||𝐸|), and the second stage is 𝑂(𝐿2

|𝐴|2|𝐸| +
𝐿|𝐴||𝐸|

2). Therefore, the total time complexity of learning progressive 
concepts from a multi-scale dataset is 𝑂(𝐿2

|𝐴|2|𝐸| + 𝐿|𝐴||𝐸|

2).

Algorithm 4: Scale collaboration mechanism for object clas-
sification.
Input: A concept space 𝐶𝑆, a multi-scale dataset 

𝑀𝐹 = {𝐹 ′
1 , 𝐹

′
2 ,… , 𝐹 ′

𝐿}, a new object 𝑜 with feature 
{𝐼(𝑜, 𝑎𝑙𝑛)|𝑎

𝑙
𝑛 ∈ 𝐴′

𝑙 , 𝑙 = 1, 2,… , 𝐿}, a classifier 𝐶𝐿.
Output: The label of 𝑜.
for 𝑙 ∈ {1, 2,… , 𝐿} do

Calculate 𝐼𝑛𝑡𝑙 based on 𝐶𝑆𝑙;
Calculate 𝑐𝑜𝑢𝑛𝑡𝑙 based on Eq.  (25);

Calculate the weight vector 𝑊  based on Eq.  (24);
Calculate 𝑌  based on Eq.  (22);
Assign the label corresponding to the maximum value of 𝑌  to 𝑜.

3.5.  Dynamic knowledge updating via concepts

One of the key characteristics of CCL is its ability to flexibly handle 
dynamic data. This subsection explores the dynamic updating mech-
anisms of knowledge based on the proposed collaborative multi-scale 
concept-cognitive learning model.

We formally describe the problem of dynamic knowledge updating. 
The knowledge in this paper is composed of three parts: the multi-scale 
dataset 𝑀𝐹 ′, the progressive concepts 𝐼𝑛𝑡 at multiple scales, and the 
uncertainty measurement vector 𝑊 . Then, when a new set of objects, 
denoted as Chunk, is added, the mechanism of knowledge updating is 
studied. For any object 𝑜 ∈ Chunk, its feature values {𝐼(𝑜, 𝑎𝑙𝑛)|𝑎𝑙𝑛 ∈ 𝐴′

𝑙 , 𝑙 =
1, 2,… , 𝐿} are known, while its label is unknown. More specifically, 
based on Chunk, we need to obtain the updated multi-scale dataset 
Δ𝑀𝐹 ′, the updated progressive concepts Δ𝐼𝑛𝑡 and the updated weight 
Δ𝑊 . The detailed steps are shown in Algorithm 5.

4.  Experiments

To validate the effectiveness of the proposed collaborative multi-
scale concept-cognitive learning model (CM-CCL), several experiments 
are conducted, and the results are discussed in this section. The exper-
iments are designed to draw the following three conclusions: (1) Con-
cepts exhibit superior representation capabilities compared to raw data; 
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Algorithm 5: Knowledge updating in dynamic environment.
Input: The initial multi-scale dataset 𝑀𝐹 ′, the initial intents of 

progressive concepts 𝐼𝑛𝑡, the updated set of object 
Chunk and the weight vector 𝑊 .

Output: The updated multi-scale dataset Δ𝑀𝐹 ′, the updated 
intents of progressive concepts Δ𝐼𝑛𝑡, and the updated 
weight vector Δ𝑊 .

Assign labels to all objects in Chunk based on Algorithm 4;
Add the feature values and labels of each object to 𝑀𝐹 ′ to 
obtain Δ𝑀𝐹 ′;
Learn the progressive concepts based on Algorithm 3 from 
Δ𝑀𝐹 ′ and get the updated Δ𝐼𝑛𝑡;
Based on Δ𝐼𝑛𝑡, Δ𝑀𝐹 ′, and Eqs.  (24) and (25), obtain the 
updated Δ𝑊 ;
return Δ𝑀𝐹 ′, Δ𝐼𝑛𝑡 and Δ𝑊 .

Table 8 
Detailed information of the datasets.
 ID  Dataset  Object  Feature  Class
 1  Breast Cancer Coimbra  116  9  2
 2  Darwin  174  450  2
 3  Glass Identification  214  9  6
 4  Heart Failure Clinical Records  299  12  2
 5  Haberman  306  3  2
 6  Indian Liver Patient  579  9  2
 7  Austrulia  690  14  2
 8  Parkinson’s Disease Classification  756  753  2
 9  HCV  1385  28  4
 10  Steel Plates Faults  1941  27  7
 11  CTG  2126  30  3
 12  Dry Bean  13,611  16  7

(2) The CM-CCL model outperforms the single-scale CCL model; (3) The 
CM-CCL model demonstrates better performance in dynamic environ-
ment.

4.1.  Experiment settings

The experiments are conducted on 12 datasets from the UCI repos-
itory, and the detailed information about these datasets are listed in 
Table 8.

The datasets used in this paper are all continuous data. In order to 
construct fuzzy data and to meet the requirements of the comparison 
methods used in this paper, we scale the values of all features to the 
range of [0.1000, 0.9000] based on the following equation:

𝐼(𝑒, 𝑎) = 0.1 + (0.9 − 0.1)
𝐼 ′(𝑒, 𝑎) − min(𝑎)
max(𝑎) − min(𝑎)

, (26)

where 𝑒 is an object, and min(𝑎) and max(𝑎) are the minimum and maxi-
mum of 𝑎. 𝐼 ′(𝑒, 𝑎) represents the value of object 𝑒 under feature 𝑎 in the 
original dataset.

The experiments are conducted on a personal computer with 
OS: Microsoft WIN10; Processor: Intel(R) Core(TM) i7-13700H 
CPU @2400Mhz; Memory: 32GB; Programming language: MATLAB 
R2020b.

4.2.  Baseline comparison

This subsection aims to demonstrate that the representational power 
of concepts derived from multi-scale datasets is stronger than that of 
raw data. To illustrate this, we conducted experiments using three rep-
resentative classifiers: K-Nearest Neighbors (KNN), Decision Trees(DT), 
and Random Forests(RF). On one hand, we input the data directly into 
the classifiers to obtain the corresponding classification results. On the 
other hand, we embedded the classifiers into our CM-CCL framework 

to achieve classification accuracy. To ensure fairness, the experiments 
in this subsection utilize a ten-fold cross-validation approach with con-
sistent data partitioning, and the average classification accuracy and 
standard deviation are recorded in percentage form. The results are pre-
sented in Table 9. The CM-CCL methods under KNN, DT, and RF classi-
fiers are denoted as CM-CCL-KNN, CM-CCL-DT, and CM-CCL-RF, respec-
tively. Additionally, the classification performance using the raw data 
directly with the KNN, DT, and RF classifiers is recorded for compari-
son. Furthermore, the average classification accuracies that show supe-
rior performance across each dataset are highlighted in bold for each 
classifier. Under each dataset, the parameter 𝛿 in the proposed multi-
scale concept cognitive learning model is searched with a step size of 
0.1 from the interval [0, 1]. Besides, the number of scales in CM-CCL is 
set to 5 for all datasets.

According to Table 9, it is evident that the performance of CM-CCL-
KNN surpasses that of KNN in 10 datasets, CM-CCL-DT exceeds DT in 11 
datasets, and CM-CCL-RF outperforms RF in 10 datasets, indicating that 
the progressive concepts have better representational capability com-
pared to the data. The experimental results demonstrate that the repre-
sentational power of progressive concepts learned across multiple scales 
is stronger than that of the data, thereby validating conclusion (1).

4.3.  Comparison with other methods

In this subsection, some comparative experiments are conducted 
to verify the effectiveness of CM-CCL. Four CCL models and a repre-
sentation learning method are adopted as comparative methods. Four 
CCL models are, respectively, incremental learning mechanism based 
on progressive fuzzy three-way concept (ILMPFTC) [10], dynamic up-
dating mechanism of progressive weighted fuzzy concept (DMPWFC) 
[12], memory-based fuzzy concept-cognitive learning (MFCCL) [15], 
and interval-intent fuzzy concept re-cognition learning model(IFCRL) 
[13]. An association-based fusion method (AF) [33] is also employed. 
AF is a represent learning method, and the same classifiers, KNN, DT, 
and RF, are used as the base classifiers, denoted as AF-KNN, AF-DT and 
AF-RF, respectively. All parameter configurations are set according to 
the original literature. Similarly, under the 12 datasets, after ten-fold 
cross-validation, the average classification accuracy and standard devi-
ation for each algorithm is recorded in Table 10. And the average rank 
of each method is listed in the last row of Table 10.

From Table 10, some experimental results can be observed. Firstly, 
CM-CCL-RF achieve the best classification performance in 8 out of 12 
datasets, and CM-CCL-KNN achieve the best classification performance 
in 1 datasets. Secondly, compared to AF, CM-CCL-RF outperforms AF-
RF on 9 datasets, CM-CCL-DT outperforms AF-DT on 10 datasets, and 
CM-CCL-KNN outperforms AF-KNN on 9 datasets. Furthermore, CM-CCL 
outperform single-scale CCL methods across most datasets. More specif-
ically, the average rank of CM-CCL-RF, CM-CCL-DT, CM-CCL-KNN are, 
respectively, 2.33, 4.50 and 4.79, which are all better than those of 
ILMPFTC (6.00), DMPWFC (8.38), MFCCL (4.83) and IFCRL (9.25).

The Friedman test at a significance level of 0.05 is conducted to fur-
ther illustrate the advantages of CM-CCL [34]. The calculated 𝑝-value is 
8.2937 × 10−9, which is less than 0.05, indicating that there are signifi-
cant differences between the different methods at the 0.05 significance 
level. Furthermore, the Nemenyi post hoc test is conducted to further 
analyze the differences between pairs of methods [35]. The critical dis-
tance is calculated by

CD = 𝑞0.05

√

𝑘(𝑘 + 1)
6𝑁

, (27)

where 𝑞0.05 = 2.773, 𝑘 = 10 and 𝑁 = 12. The CD value is calculated to be 
3.4275. Subsequently, the corresponding CD plot is displayed in Fig. 2. 
It can be observed that the performance of CM-CCL-RF is superior to that 
of CM-CCL-DT, which in turn outperforms CM-CCL-KNN. Moreover, the 
average rank of CM-CCL-KNN is still better than that of the four single-
scale CCL models.
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Table 9 
Classification accuracy comparison between data and concepts.
 Dataset  CM-CCL-KNN  KNN  CM-CCL-DT  DT  CM-CCL-RF  RF
 1 68.48 ± 18.06 64.47 ± 12.01 69.09 ± 12.55 74.39 ± 14.10 74.17 ± 10.14 69.96 ± 15.59
 2 78.76 ± 8.14 71.93 ± 13.21 85.56 ± 10.80 76.27 ± 10.30 90.13 ± 9.28 86.63 ± 8.86
 3 69.65 ± 7.20 68.79 ± 10.34 66.93 ± 13.38 66.00 ± 13.07 76.75 ± 9.81 76.73 ± 6.94
 4 70.25 ± 3.85 71.26 ± 6.79 80.97 ± 6.99 77.93 ± 7.04 83.62 ± 7.09 83.28 ± 7.86
 5 73.83 ± 8.13 68.99 ± 9.22 73.52 ± 9.23 69.39 ± 10.41 68.24 ± 8.29 66.43 ± 9.60
 6 71.50 ± 4.95 67.88 ± 5.83 70.81 ± 6.04 65.63 ± 7.83 72.88 ± 4.66 70.64 ± 5.50
 7 84.35 ± 3.33 83.19 ± 2.66 83.04 ± 3.28 82.61 ± 3.86 85.07 ± 4.16 86.96 ± 4.32
 8 91.40 ± 3.67 91.13 ± 2.95 82.02 ± 5.10 81.88 ± 4.04 88.09 ± 2.93 87.69 ± 2.94
 9 25.49 ± 2.86 23.61 ± 4.15 25.78 ± 4.43 23.33 ± 4.20 26.35 ± 3.06 25.42 ± 4.33
 10 68.57 ± 4.06 70.32 ± 4.63 74.91 ± 3.22 73.37 ± 3.47 79.29 ± 2.35 77.90 ± 2.33
 11 90.97 ± 1.96 90.26 ± 2.18 93.18 ± 1.67 93.13 ± 1.29 95.39 ± 1.50 95.25 ± 1.70
 12 91.65 ± 0.57 91.65 ± 0.66 90.43 ± 0.96 89.79 ± 1.02 92.48 ± 0.81 92.56 ± 0.94

Table 10 
Classification accuracy comparison with other methods.
 Dataset  CM-CCL-RF  AF-RF  CM-CCL-DT  AF-DT  CM-CCL-KNN  AF-KNN  ILMPFTC  DMPWFC  MFCCL  IFCRL
 1 74.17 ± 10.14 77.65 ± 13.71 69.09 ± 12.55 78.41 ± 13.49 68.48 ± 18.06 69.34 ± 15.96 73.18 ± 12.77 57.80 ± 11.43 75.83 ± 11.72 49.74 ± 15.91
 2 90.13 ± 9.28 86.18 ± 9.59 85.56 ± 10.8 83.76 ± 9.09 78.76 ± 8.14 81.62 ± 5.07 73.07 ± 11.74 33.40 ± 8.42 78.79 ± 7.57 50.03 ± 8.52
 3 76.75 ± 9.81 70.13 ± 7.26 66.93 ± 13.38 64.57 ± 0.28 69.65 ± 7.20 69.72 ± 7.59 68.40 ± 12.76 50.61 ± 13.50 68.40 ± 12.76 30.77 ± 17.76
 4 83.62 ± 7.09 78.95 ± 6.98 80.97 ± 6.99 73.97 ± 8.21 70.25 ± 3.85 69.59 ± 8.31 65.57 ± 8.38 69.94 ± 6.54 70.92 ± 6.22 49.92 ± 19.44
 5 68.24 ± 8.29 70.66 ± 8.31 73.52 ± 9.23 70.32 ± 7.62 73.83 ± 8.13 69.63 ± 8.58 72.57 ± 12.03 39.88 ± 7.00 73.20 ± 10.65 69.97 ± 16.02
 6 72.88 ± 4.66 72.19 ± 6.30 70.81 ± 6.04 69.94 ± 5.38 71.50 ± 4.95 69.78 ± 4.31 64.94 ± 6.60 62.19 ± 6.91 64.94 ± 6.60 62.54 ± 19.07
 7 85.07 ± 4.16 84.78 ± 3.68 83.04 ± 3.28 81.16 ± 3.58 84.35 ± 3.33 83.77 ± 2.44 79.42 ± 4.03 84.35 ± 3.91 79.42 ± 4.03 48.12 ± 8.45
 8 88.09 ± 2.93 86.89 ± 3.12 82.02 ± 5.10 81.46 ± 5.00 91.40 ± 3.67 82.81 ± 4.66 95.37 ± 2.10 35.17 ± 7.49 95.37 ± 2.10 64.07 ± 21.53
 9 26.35 ± 3.06 26.42 ± 1.48 25.78 ± 4.43 26.49 ± 5.12 25.49 ± 2.86 25.34 ± 2.95 24.95 ± 4.41 25.85 ± 3.57 26.14 ± 4.30 25.71 ± 3.21
 10 79.29 ± 2.35 73.26 ± 3.97 74.91 ± 3.22 66.20 ± 2.67 68.57 ± 4.06 66.82 ± 3.67 72.23 ± 3.34 32.20 ± 3.88 72.23 ± 3.34 24.27 ± 12.28
 11 95.39 ± 1.50 92.64 ± 1.66 93.18 ± 1.67 89.56 ± 2.48 90.97 ± 1.96 90.21 ± 2.13 91.63 ± 1.33 83.07 ± 1.86 91.44 ± 1.68 51.77 ± 33.77
 12 92.48 ± 0.94 90.62 ± 1.07 90.43 ± 0.96 87.72 ± 0.90 91.65 ± 0.57 88.83 ± 1.20 90.45 ± 0.50 49.74 ± 2.09 90.45 ± 0.50 15.27 ± 1.76

 Average rank  2.33  2.83  4.50  5.67  4.79  6.42  6.00  8.38  4.83  9.25

Fig. 2. Comparison between CM-CCL and other methods.

The experiments in this subsection confirm that the performance of 
CM-CCL is better than that of the single-scale CCL model, which vali-
dates conclusion (2).

4.4.  Evaluation of dynamic concept learning performances

One of the major advantages of CCL is its ability to maintain good 
classification performance in dynamic environment. Therefore, in this 
subsection, we verify the performance of CM-CCL when objects are dy-
namically increases. In this paper, we assume a total of 5 incremental 
object sets. Specifically, we divide the raw data into 10 equal parts, se-
lecting 5 of them as the initial training set to build the initial concept 
space. Each of the remaining parts is then used as an additional chunk 
incrementally. By comparing the labels generated by Algorithm 4 for 
each Chunk𝑖 with the true labels, we can obtain the classification accu-
racy for each Chunk𝑖.

It should be noted that ILMPFTC, DMPWFC, and MFCCL all pro-
vide methods for dynamic concept updating. We compare CM-CCL with 
these methods, and the corresponding experimental results are listed in
Table 11. The classification accuracy for each chunk is recorded, along 
with the average value and standard deviation (Ave.+std.), and the rank 
of each algorithm for each dataset is calculated. The best average clas-
sification accuracy on each dataset is highlighted in bold.

Fig. 3. Comparison between CM-CCl and single-scale CCL in dynamic environ-
ment.

Similarly, the Nemenyi post hoc test [35] is also conducted to verify 
the differences between each algorithm, which is presented in Fig. 3. 
From Fig. 3, it can be visually observed that the classification perfor-
mance of CM-CCL-DT and CM-CCL-RF is superior to that of the four 
single-scale CCL methods. This indicates that in dynamic environments, 
CM-CCL can learn concepts with better representational capabilities 
compared to single-scale CCL methods, thus confirming conclusion (3).

4.5.  Ablation experiment

Ablation experiments are conducted to verify the role of each step in 
CM-CCL in enhancing the representation capability of concepts. CM-CCL 
consists of three successive steps, namely the construction of multi-scale 
data, multi-scale feature selection, concept learning and integration for 
classification. As the first two steps determine the input feature quality 
for concept learning, we validated their necessity. The corresponding 
experimental results are shown in Table 12. Step 1 represents the con-
struction of multi-scale data, and Step 2 indicates the multi-scale fea-
ture selection. ✓indicates the inclusion of the corresponding step, while 
× indicates its exclusion. The DT classifier is still used, and the average 
classification accuracy is recorded after ten-fold cross-validation. It is 
observed that Step 1 or Step 2 alone does not enhance the capability of 
concept representation. Only when both Step 1 and Step 2 are applied 
can the capability of concept representation be significantly improved.
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Table 11 
Classification accuracy comparison with CCL methods in dynamic environment.
 Dataset  Methods Chunk1 Chunk2 Chunk3 Chunk4 Chunk5  Ave. ± std.  Rank  Dataset  Methods Chunk1 Chunk2 Chunk3 Chunk4 Chunk5  Ave. ± std.  Rank
 1  CM-CCL-KNN 33.33 72.73 58.33 81.82 75.00 64.24 ± 19.28  5  7  CM-CCL-KNN 86.96 88.41 86.96 85.51 81.16 85.80 ± 2.79  2.5

 CM-CCL-DT 58.33 63.64 41.67 81.82 83.33 65.76 ± 17.37  4  CM-CCL-DT 79.71 84.06 79.71 85.51 76.81 81.16 ± 3.55  4
 CM-CCL-RF 58.33 72.73 75.00 81.82 66.67 70.91 ± 8.88  3  CM-CCL-RF 86.96 89.86 86.96 88.41 79.71 86.38 ± 3.92  1
 ILMPFTC 75.00 54.55 83.33 72.73 83.33 73.79 ± 11.78  2  ILMPFTC 66.67 78.26 89.86 82.61 73.91 78.26 ± 8.76  5
 DMPWFC 41.67 54.55 83.33 63.64 66.67 61.97 ± 15.40  6  DMPWFC 88.41 81.16 92.75 82.61 84.06 85.80 ± 4.74  2.5
 MFCCL 58.33 81.82 83.33 72.73 83.33 75.91 ± 10.77  1  MFCCL 66.67 78.26 89.86 82.61 72.46 77.97 ± 8.96  6

 2  CM-CCL-KNN 88.24 72.22 66.67 83.33 88.24 79.74 ± 9.81  3  8  CM-CCL-KNN 88.00 88.16 76.00 82.89 81.33 83.28 ± 5.07  4
 CM-CCL-DT 76.47 83.33 94.44 83.33 88.24 85.16 ± 6.67  2  CM-CCL-DT 74.67 80.26 77.33 78.95 82.67 78.78 ± 3.01  5
 CM-CCL-RF 88.24 83.33 94.44 100.00 100.00 93.20 ± 7.35  1  CM-CCL-RF 81.33 84.21 82.67 82.89 85.33 83.29 ± 1.53  3
 ILMPFTC 64.71 61.11 77.78 66.67 76.47 69.35 ± 7.39  5  ILMPFTC 90.67 93.42 85.33 88.16 85.33 88.58 ± 3.50  1.5
 DMPWFC 23.53 22.22 50.00 27.78 23.53 29.41 ± 11.70  6  DMPWFC 44.00 36.84 46.67 46.05 38.67 42.45 ± 4.44  6
 MFCCL 82.35 66.67 77.78 88.89 82.35 79.61 ± 8.25  4  MFCCL 90.67 93.42 85.33 88.16 85.33 88.58 ± 3.50  1.5

 3  CM-CCL-KNN 52.38 63.64 66.67 71.43 63.64 63.55 ± 7.01  3  9  CM-CCL-KNN 22.46 23.19 26.81 20.14 31.16 24.75 ± 4.31  5
 CM-CCL-DT 71.43 40.91 61.90 80.95 63.64 63.77 ± 14.83  2  CM-CCL-DT 26.81 20.29 27.54 29.50 26.09 26.04 ± 3.46  3
 CM-CCL-RF 61.90 45.45 7143 90.48 72.73 68.40 ± 16.46  1  CM-CCL-RF 29.71 32.61 34.06 23.74 18.12 27.65 ± 6.63  2
 ILMPFTC 57.14 45.45 61.90 71.43 68.18 60.82 ± 10.22  4.5  ILMPFTC 20.29 19.57 31.88 25.90 31.88 25.90 ± 5.98  4
 DMPWFC 42.86 31.82 71.43 57.14 36.36 47.92 ± 16.25  6  DMPWFC 20.29 28.26 27.54 23.74 21.74 24.31 ± 3.50  6
 MFCCL 57.14 45.45 61.92 71.43 68.18 60.82 ± 10.22  4.5  MFCCL 24.64 28.26 30.43 24.46 31.88 27.94 ± 3.35  1

 4  CM-CCL-KNN 63.33 63.33 70.00 73.33 63.33 66.67 ± 4.71  5  10  CM-CCL-KNN 67.01 72.68 69.07 67.53 65.98 68.45 ± 2.61  5
 CM-CCL-DT 80.00 76.67 76.67 86.67 83.33 80.67 ± 4.35  2  CM-CCL-DT 72.16 76.80 66.49 75.26 70.62 72.27 ± 4.05  2
 CM-CCL-RF 86.67 80.00 80.00 96.67 93.33 87.33 ± 7.60  1  CM-CCL-RF 79.38 83.51 77.84 78.87 69.07 77.73 ± 5.30  1
 ILMPFTC 66.67 73.33 66.67 56.67 76.67 68.00 ± 7.67  4  ILMPFTC 67.01 73.20 69.59 72.16 67.53 69.90 ± 2.74  3.5
 DMPWFC 56.67 73.33 66.67 66.67 63.33 65.33 ± 6.06  6  DMPWFC 40.21 37.63 38.14 41.75 34.02 38.35 ± 2.93  6
 MFCCL 63.33 63.33 70.00 83.33 80.00 72.00 ± 9.31  3  MFCCL 67.01 73.20 69.59 72.16 67.53 69.90 ± 2.74  3.5

 5  CM-CCL-KNN 66.67 67.74 74.19 83.33 87.10 75.81 ± 9.16  1.5  11  CM-CCL-KNN 85.45 88.21 88.26 87.26 90.14 87.86 ± 1.71  5
 CM-CCL-DT 66.67 67.74 74.19 83.33 87.10 75.81 ± 9.16  1.5  CM-CCL-DT 92.49 94.81 92.02 95.28 90.14 92.95 ± 2.11  2
 CM-CCL-RF 63.33 67.74 74.19 73.33 83.87 72.49 ± 7.74  3  CM-CCL-RF 93.90 94.34 93.90 97.17 94.37 94.73 ± 1.38  1
 ILMPFTC 43.33 70.97 64.52 70.00 80.65 65.89 ± 13.88  5  ILMPFTC 88.73 91.51 91.08 91.98 92.02 91.06 ± 1.36  3
 DMPWFC 40.00 35.48 41.94 40.00 32.26 37.96 ± 3.96  6  DMPWFC 78.40 83.49 82.16 84.43 84.98 82.69 ± 2.63  6
 MFCCL 50.00 61.29 61.29 70.00 87.10 65.94 ± 13.80  4  MFCCL 88.26 91.51 91.08 91.98 92.02 90.97 ± 1.56  4

 6  CM-CCL-KNN 75.44 67.24 58.62 62.07 68.97 66.47 ± 6.49  4  12  CM-CCL-KNN 91.55 91.40 91.70 91.26 90.60 91.30 ± 0.43  2
 CM-CCL-DT 63.16 79.31 68.97 74.14 58.62 68.84 ± 8.28  2  CM-CCL-DT 90.96 90.52 91.04 90.30 88.98 90.36 ± 0.83  3
 CM-CCL-RF 73.68 79.31 68.97 74.14 68.97 73.01 ± 4.31  1  CM-CCL-RF 92.14 92.58 92.73 92.58 90.67 92.14 ± 0.85  1
 ILMPFTC 71.93 72.41 67.24 63.79 58.62 66.80 ± 5.79  3  ILMPFTC 90.01 91.04 90.08 89.71 88.76 89.92 ± 0.82  4.5
 DMPWFC 54.39 58.62 55.17 55.17 74.14 59.50 ± 8.35  6  DMPWFC 49.89 50.77 51.95 49.74 50.99 50.67 ± 0.90  6
 MFCCL 28.07 79.31 70.69 70.69 70.69 63.89 ± 20.37  5  MFCCL 90.01 91.04 90.08 89.71 88.76 89.92 ± 0.82  4.5

Table 12 
Ablation study in the steps in CM-CCL.
 Step 1  Step 2  Dataset 1  Dataset 2  Dataset 3  Dataset 4  Dataset 5  Dataset 6  Dataset 7  Dataset 8  Dataset 9  Dataset 10  Dataset 11  Dataset 12
× ×  64.39±17.38  76.27±10.30  67.38±13.54  77.95±7.00  36.00±8.31  69.94±5.50  81.01±4.66  81.87±4.23  23.40±4.25  72.28±2.87  93.23±1.73  89.91±0.81
✓ ×  62.58±20.97  76.86±10.47  67.38±13.91  77.97±8.14  36.98±7.99  67.53±7.19  82.46±4.24  81.74±4.27  23.26±4.18  72.39±3.31  93.37±1.77  89.90±0.81
✓ ✓  69.09±12.55  85.56±10.80  66.93±13.38  80.97±6.99  73.52±9.23  70.81±6.04  83.04±3.28  82.02±5.10  25.78±4.43  74.91±3.22  93.18±1.67  90.43±0.96

Moreover, the proposed feature selection method in this paper can 
also be replaced. To illustrate its effectiveness, we also tried another 
filter feature selection method based on the Pearson correlation coeffi-
cient (PCC) [36], and the corresponding code is available.1 It should be 
pointed out that PCC first sorts the features and then specifies the num-
ber of features to be selected. For the sake of fairness, under each dataset, 
we successively select 50%, 55%, …, 100% of the features and take the 
best classification performance among them. The experimental results 
are recorded in Table 13, where “Baseline” indicates the classification 
performance without feature selection under the CM-CCL framework. 
It can be seen that the feature selection method designed in this paper 
achieves the best results on 9 datasets. In addition, PCC outperforms 
the Baseline on 11 datasets, which indicates that the proposed CM-CCL 
framework is scalable and that the feature selection method can also be 
replaced by other methods to enhance the representation capability of 
learned concepts.

1 https://github.com/JingweiToo/Filter-Feature-Selection-Toolbox

4.6.  Parameter analysis

A parameter 𝛿 is employed in CM-CCL. To analysis the impact of 𝛿, 
some experiments are conducted. Under the classifier DT, we adjusted 
𝛿 within the range [0,1] with a step size of 0.1. After ten-fold cross-
validation, the average classification accuracy and standard deviation 
for different parameter settings are recorded in Table 14, and the corre-
sponding data are intuitively presented in Fig. 4. The number of selected 
features at each scale is determined by 𝛿, and as 𝛿 gradually increases, 
the number of selected features at each scale will also increase step by 
step. When 𝛿 = 1, all feature will be selected. Overall, the optimal 𝛿 value 
for achieving the best classification accuracy in each dataset is less than 
1, which indicates that the multi-scale feature selection method is effec-
tive in enhancing the representation capability of concepts.

It should be pointed out that the characteristics of using concepts 
to represent knowledge in data are reflected in two aspects: (1) Preci-
sion: Concepts capture knowledge more accurately than raw data, as 
evidenced by classification accuracy.(2) Conciseness: A smaller number 
of concepts can be used to represent the valuable information in data, 
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Table 13 
Ablation study on the feature selection method.
 Method  Dataset 1  Dataset 2  Dataset 3  Dataset 4  Dataset 5  Dataset 6  Dataset 7  Dataset 8  Dataset 9  Dataset 10  Dataset 11  Dataset 12
 Baseline  62.58±20.97  76.86±10.47  67.38±13.91  77.97±8.14  36.98±7.99  67.53±7.19  82.46±4.24  81.74±4.27  23.26±4.18  72.39±3.31  93.37±1.77  89.90±0.81
 PCC  67.27±9.32  76.90±10.70  72.03±13.93  80.94±6.47  73.52±9.23  68.39±7.26  82.46±4.24  83.20±3.79  24.19±2.68  72.70±3.29  94.03±1.46  90.03±0.87
 Our  69.09±12.55  85.56±10.80  66.93±13.38  80.97±6.99  73.52±9.23  70.81±6.04  83.04±3.28  82.02±5.10  25.78±4.43  74.91±3.22  93.18±1.67  90.43±0.96

Table 14 
Classification accuracy under the classifier DT for different values of 𝛿.
 Dataset 𝛿 = 0 𝛿 = 0.1 𝛿 = 0.2 𝛿 = 0.3 𝛿 = 0.4 𝛿 = 0.5 𝛿 = 0.6 𝛿 = 0.7 𝛿 = 0.8 𝛿 = 0.9 𝛿 = 1

 1  54.55±14.40  54.55±14.40  54.55±14.40  55.38±14.88  55.38±14.88  55.38±14.88  66.52±18.60  69.09±12.55  64.55±17.16  66.36±13.16  60.91±19.76
 2  68.99±9.08  85.56±10.80  83.20±8.57  77.35±11.10  78.46±15.94  77.91±16.27  77.91±16.27  77.42±13.38  75.75±11.99  76.34±11.52  76.93±11.34
 3  32.71±11.61  32.71±11.61  34.13±10.58  47.84±13.36  54.33±9.30  60.41±10.45  60.41±10.45  60.89±9.90  66.47±14.72  66.93±13.38  65.02±13.27
 4  67.92±4.61  80.30±7.72  80.30±7.72  80.30±7.72  80.30±7.72  80.30±7.72  80.97±6.99  79.62±6.70  79.62±6.88  79.62±7.40  77.63±8.41
 5  73.52±9.23  73.52±9.23  73.52±9.23  73.52±9.23  73.52±9.23  73.52±9.23  71.26±14.05  71.26±14.05  70.94±14.89  36.98±7.99  36.98±7.99
 6  39.55±12.53  40.76±10.71  42.66±10.56  42.66±10.56  63.22±15.82  63.22±15.82  68.40±6.01  69.78±5.52  70.81±6.04  69.78±6.84  67.36±7.29
 7  51.74±8.48  57.10±16.58  57.10±16.58  66.67±12.98  79.71±4.37  81.59±3.49  82.03±2.66  82.03±2.66  83.04±3.28  83.04±3.42  82.17±3.99
 8  57.20±15.65  82.02±5.10  81.21±4.79  81.21±4.79  81.21±4.79  81.21±4.79  81.21±4.79  81.21±4.79  81.21±4.79  81.21±4.79  81.21±4.79
 9  24.55±2.93  25.06±4.05  25.06±4.05  25.42±4.24  25.78±4.43  25.78±4.43  25.78±4.43  25.78±4.43  23.76±4.54  23.76±4.54  23.47±4.40
 10  7.63±3.32  72.49±2.83  72.95±2.82  74.45±3.03  74.65±3.70  74.50±3.78  74.91±3.22  74.86±3.28  74.75±3.11  74.50±3.58  72.80±3.39
 11  57.20±12.96  89.27±3.50  93.18±1.67  93.18±1.67  93.18±1.67  93.18±1.67  93.18±1.67  93.18±1.67  93.18±1.67  93.18±1.67  93.18±1.67
 12  10.00±3.30  73.59±6.80  81.81±1.07  81.81±1.07  82.24±0.78  82.24±0.78  84.23±1.15  89.30±0.83  90.35±0.80  90.43±0.96  90.09±0.90

Fig. 4. Variation of classification accuracy with parameter 𝛿 across 12 datasets.

that is, the number of concepts is less than the number of objects. To 
verify (2), under the 𝑙th scale, we define the compression rate (𝐶𝑅𝑙) as 
follows:

𝐶𝑅𝑙 = 1 −
∑𝐾

𝑘=1 |𝐶𝑆𝑙
𝑘|

|𝐸|

. (28)

The larger the 𝐶𝑅𝑙, the fewer the number of concepts learned at the 𝑙th 
scale compared to the number of objects, which means that the learned 
concepts have stronger representational power. Under the optimal pa-
rameter 𝛿 for each dataset, we verified the 𝐶𝑅𝑙 value for each scale, 
presented in the form of percentages. The results are listed in Table 15, 
and the last column indicates the running time of CM-CCL in seconds. 
It can be seen that the 𝐶𝑅𝑙 values on the 10 datasets are greater than 
0, indicating that the number of concepts learned on these datasets is 
less than the number of objects. Thus, CM-CCL represents knowledge in 
data using fewer concepts than the number of objects, achieving better 
classification performance. Besides, as the scale gradually increases, the 
compression rate also gradually rises, which means that more important 
information is being presented at bigger scales.

In addition, the experiments specified the number of scales as 5. This 
part further analyzes the classification performance as the number of 
scales varies from 1 to 5, and DT is still used as the basic classifier. 

Table 15 
Compression rate at each scale.
 Dataset 𝐶𝑅1 𝐶𝑅2 𝐶𝑅3 𝐶𝑅4 𝐶𝑅5  Time
 1  22.86  58.10  86.67  95.24  95.24  0.89
 2  0.00  0.64  3.18  6.37  21.66  2.19
 3  1.04  1.04  1.04  1.55  4.66  1.55
 4  18.59  57.25  57.25  72.49  72.49  1.24
 5  94.93  98.55  98.55  99.28  99.28  1.84
 6  62.76  62.76  69.10  77.93  88.48  2.21
 7  65.38  65.38  67.63  76.17  76.17  2.27
 8  0.00  0.00  0.00  0.00  0.00  80.05
 9  0.00  0.00  0.00  0.00  0.00  8.36
 10  1.37  1.37  1.43  1.43  2.92  10.76
 11  4.75  4.75  4.75  5.22  16.09  17.71
 12  0.45  0.45  0.45  55.15  55.15  229.08

Table 16 
Variation of classification accuracy with parameter 𝐿 under DT classifier.
 Dataset 𝐿=1 𝐿=2 𝐿=3 𝐿=4 𝐿=5

 1  68.26±13.93  68.26 ± 13.93  63.48 ± 20.78  71.59 ± 11.24  69.09± 12.55
 2  76.37±8.51  82.65 ± 6.35  84.38 ± 8.89  84.93 ± 9.36  85.56± 10.80
 3  72.06±13.37  71.58 ± 14.03  65.61 ± 14.53  66.45 ± 13.29  66.93± 13.38
 4  78.29±7.01  79.29 ± 6.38  78.29 ± 7.19  78.62 ± 6.64  80.97± 6.99
 5  47.63±20.27  73.52 ± 9.23  73.52 ± 9.23  73.52 ± 9.23  73.52± 9.23
 6  69.43±5.66  69.43 ± 5.66  71.50 ± 6.05  71.50 ± 6.05  70.81± 6.04
 7  80.72±4.53  82.61 ± 4.16  83.04 ± 4.04  83.48 ± 3.22  83.04± 3.28
 8  81.60±3.92  81.47 ± 3.45  81.34 ± 4.32  81.34 ± 4.65  82.02± 5.10
 9  25.49±3.90  23.69 ± 4.45  25.35 ± 4.04  25.50 ± 4.08  25.78± 4.43
 10  72.95±2.91  73.42 ±2.68  74.60 ± 3.75  74.70 ± 3.60  74.91± 3.22
 11  93.13±1.60  93.08±1.56  93.23 ±1.73  93.27 ± 1.71  93.18± 1.67
 12  89.93±0.74  89.96 ±0.73  90.06 ±0.85  90.59 ± 0.86  90.43± 0.96

The experimental results are presented in Table 16. As evidenced by 
the experimental results, in most cases, higher classification accuracy is 
achieved when there are more scales. This demonstrates that the pro-
posed CM-CCL model is capable of fully mining the multi-scale informa-
tion of features to enhance the representation ability of concepts.

4.7.  Analysis of the effects of embedding different CCL models in the 
CM-CCL framework

The proposed CM-CCL is a multi-scale concept-cognitive learning 
framework that can incorporate existing CCL models. To verify the ef-
fectiveness and scalability of CM-CCL, in this subsection, MFCCL and 
ILMPFTC are embedded in CM-CCL. Specifically, the concept learning 
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Table 17 
Classification accuracy of embedding ILMPFTC in CM-CCL.
 Dataset  CM-CCL-KNN  CM-CCL-DT  CM-CCL-RF  ILMPFTC
 1  64.77 ± 15.64  75.23 ± 13.84  70.00 ± 15.20  73.18 ± 12.77
 2  75.26 ± 9.48  78.56 ± 13.05  90.65 ± 8.89  73.07 ± 11.74
 3  68.70 ± 7.28  68.29 ± 13.46  77.64 ± 9.66  68.40 ± 12.76
 4  67.92 ± 4.61  80.61 ± 5.37  84.29 ± 7.02  65.57 ± 8.38
 5  72.18 ± 8.81  72.61 ± 6.96  69.34 ± 8.10  72.57 ± 12.03
 6  70.13 ± 7.14  67.00 ± 6.61  69.94 ± 5.40  64.94 ± 6.60
 7  84.93 ± 3.36  86.96 ± 2.90  86.81 ± 5.27  79.42 ± 4.03
 8  91.40 ± 3.67  82.15 ± 4.92  87.96 ± 2.90  95.37 ± 2.10
 9  25.42 ± 2.89  26.00 ± 4.37  24.70 ± 3.09  24.95 ± 4.41
 10  68.52 ± 4.01  74.34 ± 3.63  79.55 ± 2.28  72.23 ± 3.34
 11  90.83 ± 1.82  93.41 ± 1.38  95.48 ± 1.75  91.63 ± 1.33
 12  90.14 ± 0.75  90.84 ± 1.17  92.37 ± 0.71  90.45 ± 0.50
 Average rank  2.92  2.08  2.00  3.00

Table 18 
Classification accuracy of embedding MFCCL in CM-CCL.
 Dataset  CM-CCL-KNN  CM-CCL-DT  CM-CCL-RF  MFCCL
 1  66.44 ± 17.97  75.23 ± 13.84  70.00 ± 15.20  75.83 ± 11.72
 2  79.93 ± 9.00  86.08 ± 9.70  91.90 ± 7.93  78.79 ± 7.57
 3  71.06 ± 7.73  69.76 ± 13.03  78.16 ± 9.78  68.40 ± 12.76
 4  67.92 ± 4.61  80.28 ± 5.73  84.62 ± 6.69  70.92 ± 6.22
 5  71.90 ± 7.57  71.91 ± 8.32  72.24 ± 8.89  73.20 ± 10.65
 6  69.44 ± 6.90  67.53 ± 4.85  70.29 ± 5.27  64.94 ± 6.60
 7  84.93 ± 3.36  86.67 ± 3.19  86.81 ± 5.27  79.42 ± 4.03
 8  90.47 ± 3.55  82.01 ± 5.06  88.22 ± 2.97  95.37 ± 2.10
 9  25.42 ± 2.89  26.00 ± 4.37  24.92 ± 3.15  26.14 ± 4.30
 10  68.52 ± 4.01  74.34 ± 3.63  79.55 ± 2.28  72.23 ± 3.34
 11  90.87 ± 1.48  94.03 ± 1.78  95.58 ± 1.70  91.44 ± 1.68
 12  91.39 ± 0.67  89.99 ± 0.87  92.63 ± 0.76  90.45 ± 0.50
 Average rank  3.08  2.58  1.67  2.67

model is replaced with MFCCL and ILMPFTC, with KNN, DT, and RF 
serving as classifiers. The experimental results are shown in Tables 17 
and 18. It can be seen that after embedding ILMPFTC in the CM-CCL 
framework, its average rank in classification performance under the 
KNN, DT, and RF classifiers is 2.92, 2.08, and 2.00 respectively, ex-
ceeding its original rank of 3.00. For MFCCL, after embedding it in the 
CM-CCL framework, its average rank in classification performance un-
der the KNN, DT, and RF classifiers is 3.08, 2.58, and 1.67 respectively, 
compared to its original rank of 2.67. The experimental results indicate 
that the proposed CM-CCL framework is scalable and capable of em-
bedding existing CCL models to enhance the representation ability of 
concepts by leveraging multi-scale information.

5.  Conclusion

How to effectively represent the knowledge contained in data has al-
ways been a meaningful question. Concept-cognitive learning provides 
a framework for knowledge representation that simulates the way hu-
mans perceive and understand things. Building on the foundation of 
existing CCL models, this paper has introduced multi-scale information 
into the process of learning concepts to enhance their representational 
capabilities. Specifically, a multi-scale data construction method based 
on the characteristics of CCL has been proposed, along with a multi-
scale feature selection approach. On this basis, progressive concepts 
with stronger representational abilities are learned by fusing similar 
concepts. Besides, a corresponding collaborative mechanism has been 
designed to integrate these progressive concepts across multiple scales 
for the classification of unlabeled objects. The experimental results in-
dicate that, on the one hand, the representation capability of concepts 
is stronger than that of data, and on the other hand, the proposed 
multi-scale concept-cognitive learning model outperforms the single-
scale concept-cognitive learning model. Overall, the proposed CM-CCL 

has provided a knowledge representation paradigm that can accurately 
represent the valuable information in data.

This study broadens the scope of CCL, demonstrating that CM-CCL 
represents knowledge more comprehensively than single-scale CCL. Un-
der the CM-CCL framework, there are still some issues worth further 
investigating.

(1) The multi-scale collaborative mechanism introduced in this paper 
serves as a method to integrate knowledge from multiple views. 
Therefore, it is a meaningful issue to investigate the application of 
this collaborative mechanism in multi-view or multi-modal data.

(2) CM-CCL fully exploits the intents of concepts for classification. It 
should be noted that the extents of concepts naturally provide a 
method for cross-scale information retrieval. Therefore, exploring 
the use of extents for multi-scale information fusion is worth inves-
tigating.
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